COMP251: Network flows (1)

Jérome Waldispuhl
School of Computer Science
McGill University

Based on slides from M. Langer (McGill) & (Cormen et al., 2009)

Flow Network

G = (V, E) directed.

Each edge (u, v) has a capacity c(u, v) > 0.

If (u,v) ¢ E, then c(u,v)=0.

Source vertex s, sink vertex t, assume s ~svaxtforallv € V.

Definitions

Positive flow: A function p : V x V - R satisfying.

Capacity constraint: Forallu,v &€ V, 0 < p(u, v) £ c(u, v),

Positive flow

Capacity

O

1/2
O

Flow conservation: Forallu € V - {s, t}, EP(VM) = EP(M,V)

0/2

2/2

|VEV

|VEV f

Y
Flow into u

Flowin:0+2+1=3
Flowout:2+1=3

Y
Flow out of u

1/3

2/2

0/1

Example

Cancellation with positive flows

Without loss of generality, can say positive flow goes either
from u to v or from v to u, but not both.

In the above example, we can “cancel” 1 unit of flow in each
direction between x and z.

3 0

O——=0 &> O—=0

Capacity constraint is still satisfied.

Flow conservation is still satisfied.

Net flow

A function f: V x V — R satisfying:
e Capacity constraint: For allu,v € V, f (u, v) < c(u, v),
e Skew symmetry: Forallu,v<E V,f(u,v)=-f(v,u),v&EV

* Flow conservation: For allu & V -{s, t}, E f(u,v)=0

veV
o= Y f)
veV;f(v,u)>0 vEV f (u,v)>0
| Y) Y)
Total positive flow Total positive flow

entering u leaving u

Positive vs. Net flows

Define net flow in terms of positive flow:

f(uv) =plu,v) - plv,u).
The differences between positive flow p and net flow f :

* pluyv) =0,
e fsatisfies skew symmetry.

Values of flows

Definition: f = |f]| = Ef(s,v) = total flow out of source.

veV

2/2

1/3

0/1

2/2

Value of flow f =|f|=3.

Flow properties

Flow in == Flow out

Source s has outgoing flow

Sink t has ingoing flow

Flow out of source s == Flow in the sink t

Source s has only outgoing flow

2/2

1/3 2/3

1/1

0/1

2/2

Maximum-flow problem

Given G, s, t, and ¢, find a flow whose value is maximum.

Applications

Customer
demand [E
/ ‘-__‘_‘—\—_._,___-
- Transport ;/
Pon, Depaot,
- Supplier
- DEPOT
Materials for » \ A/ v
Production >/ STORE < e
e
-
T |sToRE
Spare Parts Manufacturer

(https://ais.web.cern.ch/ais/)

% i

(http://driverlayer.com)

Naive algorithm

Initialize £ = 0
While true {

if (d path P from s to t such that all
edges have a flow less than capacity)

then
increase flow on P up to max capacity
else

break

Naive algorithm

Initialize £ = 0
While true {

if (d a path P from s to t s.t. all
edges e &€ P f(e) < c(e))
then {
B = min{ c(e)-f(e) | e € P}
for all e ©« P { f(e) += B }
} else { break }

Example where algorithm works

0/2

0/3

Example where algorithm works

2/2

0/3

|f]=2

Example where algorithm works

2/2

2/3

|f]=4

Example where algorithm works

2/2

3/3

[£1=5

Example where algorithm fail!

0/2

0/3

Example where algorithm fail!

0/2

3/3

|f|=3 And terminates...

Challenges

How to choose paths such that:
 We do not get stuck

 We guarantee to find the maximum flow

* The algorithm is efficient!

A better algorithm

Motivation: If we could subtract flow, then we could find it.

0/1
1
0/1 0/1
Algo 1 Negative value
terminates on edge that
here... does not satisfy

the definition

Residual graphs

Given a flow network G=(V,E) with edge capacities c and a
given flow f, define the residual graph G; as:

* G; has the same vertices as G

* The edges E; have capacities c; (called residual capacities)
that allow us to change the flow f, either by:

1. Adding flowtoanedgee & E

2. Subtracting flow from an edge © E

Residual graphs

for each edge e = (u, v) € E
if f(e) < c(e)
then {
put a forward edge (u,v) in E;
with residual capacity c¢(e)=c(e)—£f(e)
}
if £(e)>0
then {
put a backward edge (v,u) 1n E;
with residual capacity cq(e) = f(e)

Example 1/3

Flow network Flow Residual graph

forward backward

Example 2/3

Flow network Flow Residual graph

backward
1=3-2

forward

Example 3/3

0/2

0/2

0/3

0/2

3/3

Example 3/3

0/2

0/2

Flow

3/3

Residual
graph

Augmenting path

An augmenting path is a path from the source s to the sink t
in the residual graph G; that allows us to increase the flow.

Q: By how much can we increase the flow using this path?

0/2

Flow in G

3/3

Residual
graph G;

Residual
graph G;

Flow in G;

Example

|£]=3

Methodology

* Compute the residual graph G;
* FindapathP
 Augment the flow f along the path P

1. Let B be the bottleneck (smallest residual capacity cqe)
of edges on P)

2. Add B to the flow f(e) on each edge of P.

Q: How do we add B into G?

Augmenting a path

f.augment (P) {
B=min{c(e)fle) | e= P}
for each edgee=(uv) & P{
if eisaforward edge {
fle) +=B
}else {// eisabackward edge
fle)-=P
}

Ford-Fulkerson algorithm

f <0

GG

while (thereis a s-t path in G;) {
f.augment (P)

update G; based on new f

Correctness (termination)

Claim: The Ford-Fulkerson algorithm terminates.

Proof:

The capacities and flows are strictly positive integers.
The sum of capacities leaving s is finite.

Bottleneck values B are strictly positive integers.

The flow increase by B after each iteration of the loop.
The flow is an increasing sequence of integers that is bounded.

Complexity (Running time)

s let C=) cle)
ecE

outgoing
from s

* Finding an augmenting path fromstot
takes O(|E|) (e.g. BFS or DFS).

* The flow increases by at least 1 at each
iteration of the main while loop.

 The algorithm runsin O(C. |E|)

