
COMP251:	Network	flows	(1)

Jérôme Waldispühl
School	of	Computer	Science

McGill	University
Based	on	slides	from	M.	Langer	(McGill)	&	(Cormen et	al.,	2009)	

Flow	Network
G	=	(V,	E)	directed.
Each	edge	(u,	v)	has	a	capacity	c(u,	v)	≥	0.
If	(u,v) Ï E,	then	c(u,v)	=	0.
Source	vertex	s,	sink	vertex	t,	assume	s	 v						 t	for	all	v	∈ V.

s

3

2

3

2

3

1
23

1

3

t

2

Definitions
Positive	flow:	A	function	p	:	V	× V	→	R	satisfying.

Capacity	constraint:	For	all	u,	v	∈ V,	0	≤	p(u,	v)	≤	c(u,	v),	��

Flow	conservation:	For	all	u	∈ V	−	{s,	t},	 p(v,u)
v∈V
∑ = p(u,v)

v∈V
∑

Flow	into	u Flow	out	of	u

1/2

Positive	flow Capacity

0/2 2/2
2/3

1/1 1/2
Flow	in:	0	+	2	+	1	=	3
Flow	out:	2	+	1	=	3

Example

s

1/3

2/2

1/3

2/2

2/3

0/1
1/22/3

1/1

2/3

t

1/2

Cancellation	with	positive	flows	

• Without	loss	of	generality,	can	say	positive	flow	goes	either	
from	u	to	v	or	from	v	to	u,	but	not	both.

• In	the	above	example,	we	can	“cancel”	1	unit	of	flow	in	each	
direction	between	x	and	z.

• Capacity	constraint	is	still	satisfied.

• Flow	conservation	is	still	satisfied.

3

5

0

2

Net	flow

A	function	f	:	V	× V	® R	satisfying:

• Capacity	constraint:	For	all	u,	v	∈ V,	f	(u,	v)	≤	c(u,	v),

• Skew	symmetry:	For	all	u,	v	∈ V,	f	(u,	v)	=	−	f	(v,	u),	v∈V

• Flow	conservation:	For	all	u	∈ V	−	{s,	t}	, f (u,v)
v∈V
∑ = 0

f (v,u)
v∈V ; f (v,u)>0
∑ = f (u,v)

v∈V ; f (u,v)>0
∑

Total	positive	flow	
entering	u

Total	positive	flow	
leaving	u

Positive	vs.	Net	flows

Define	net	flow	in	terms	of	positive	flow:

f (u,v)	=	p(u,v)	−	p(v,u).

The	differences	between	positive	flow	p	and	net	flow	f	:	
• p(u,v)	≥	0,
• f	satisfies	skew	symmetry.	

Values	of	flows

s

1/3

2/2

1/3

2/2

2/3

0/1
0/21/3

1/1

2/3

t

Value	of	flow	f	=|f|=3.	

Definition:	f		=	|f|	=																			=	total	flow	out	of	source.	f (s,v)
v∈V
∑

1/2

Flow	properties

s

1/3

2/2

1/3

2/2

2/3

0/1
0/21/3

1/1

2/3

t1/2

• Flow	in	==	Flow	out
• Source	s has	outgoing	flow
• Sink	t has	ingoing	flow	
• Flow	out	of	source	s ==	Flow	in	the	sink	t

• Source	s	has	only	outgoing	flow	

Maximum-flow	problem

Given	G,	s,	t,	and	c,	find	a	flow	whose	value	is	maximum.

s

3

2

3

2

3

1
23

1

3

t

2

Applications

(https://ais.web.cern.ch/ais/)

(http://driverlayer.com)

Naïve	algorithm

Initialize f = 0
While true {

if (∃ path P from s to t such that all
edges have a flow less than capacity)

then
increase flow on P up to max capacity

else
break

}

Naïve	algorithm

Initialize f = 0
While true {

if (∃ a path P from s to t s.t. all
edges e ∈ P f(e) < c(e))

then {
β = min{ c(e)-f(e) | e ∈ P}
for all e ∈ P { f(e) += β }

} else { break }
}

Example	where	algorithm	works

s

0/2

0/3

0/2

0/3

0/4

0/3

t

0/2

Example	where	algorithm	works

s

2/2

0/3

2/2

0/3

0/4

2/3

t

0/2

|f|=2

Example	where	algorithm	works

s

2/2

2/3

2/2

2/3

0/4

2/3

t

2/2

|f|=4

Example	where	algorithm	works

s

2/2

3/3

2/2

2/3

1/4

3/3

t

2/2

|f|=5

Example	where	algorithm	fail!

s

0/2

0/3

0/2

0/3

0/4

0/3

t

0/2

Example	where	algorithm	fail!

s

0/2

3/3

0/2

0/3

3/4

3/3

t

0/2

|f|=3 And	terminates…

Challenges

How	to	choose	paths	such	that:

• We	do	not	get	stuck

• We	guarantee	to	find	the	maximum	flow

• The	algorithm	is	efficient!

A	better	algorithm

Motivation:	If	we	could	subtract	flow,	then	we	could	find	it.		

t

s
0/1 0/1

0/1

0/1 0/1
t

s
0/1 1/1

1/1

1/1 0/1
t

s
1/1 0/1

1-1/1

0/1 1/1
t

s
1/1 1/1

0/1

1/1 1/1

Algo 1	
terminates	
here…

Negative	value	
on	edge	that	

does	not	satisfy	
the	definition

Residual	graphs

Given	a	flow	network	G=(V,E)	with	edge	capacities	c	and	a	
given	flow	f,	define	the	residual	graph	Gf as:

• Gf has	the	same	vertices	as	G

• The	edges	Ef have	capacities	cf (called	residual	capacities)	
that	allow	us	to	change	the	flow	f,	either	by:

1. Adding	flow	to	an	edge	e	∈ E	

2. Subtracting	flow	from	an	edge	∈ E

Residual	graphs
for each edge e = (u, v) ∈ E

if f(e) < c(e)
then {

put a forward edge (u,v) in Ef
with residual capacity cf(e)=c(e)–f(e)

}
if f(e)>0
then {

put a backward edge (v,u) in Ef
with residual capacity cf(e) = f(e)

}
}

Example	1/3

t

s
0/1 0/1

0/1

0/1 0/1
t

s
0/1 1/1

1/1

1/1 0/1

Flow	network Flow Residual	graph

t

s
0/1 0/1

0/1

0/1 0/1

forward backward

Example	2/3

t

s
0/1 0/3

0/2

0/3 0/1
t

s
0/1 2/3

2/2

2/3 0/1

Flow	network Flow Residual	graph

t

s
1 1	=	3-2

2

3-2=1 1/1

forward backward

2

2

Example	3/3

s

0/2

0/3

0/2

0/3

0/4
0/3

t

0/2

s

0/2

3/3

0/2

0/3

3/4
3/3

t

0/2

Example	3/3

s

0/2

3/3

0/2

0/3

3/4
3/3

t

0/2

Flow

Residual
graph s

0/2

0/3

0/2

0/3

0/3
0/3

t

0/2

0/1

Augmenting	path

An	augmenting	path	is	a	path	from	the	source	s to	the	sink	t
in	the	residual	graph	Gf that	allows	us	to	increase	the	flow.

s

2

3

2

3

3
3

t

2

1

Q:	By	how	much	can	we	increase	the	flow	using	this	path?

Example

s

0/2

3/3

0/2

0/3

3/4
3/3

t

0/2

Flow	in	G

Residual
graph	Gf

s

2

3

2

3

3
3

t

2

1

Example

Residual
graph	Gf

Flow	in	Gf

s

2

3

2

3

3
3

t

2

1

s

2

0

2

2

2
0

t

2

0

Example

G

Gf s

2

0

2

2

2
0

t

2

0

s

0/2

3/3

0/2

0/3

3/4
3/3

t

0/2

s

2/2

3/3

2/2

2/3

1/4
3/3

t

2/2

|f|=3

|f|=5

β=2

Methodology

• Compute	the	residual	graph	Gf

• Find	a	path	P

• Augment	the	flow	f	along	the	path	P

1. Let	β	be	the	bottleneck	(smallest	residual	capacity	cf(e)	
of	edges	on	P)

2. Add	β	to	the	flow	f(e)	on	each	edge	of	P.

Q:	How	do	we	add	β	into	G?

Augmenting	a	path

f.augment(P) {
β	=	min	{	c(e)-f(e)	|	e	∈ P	}
for each edge	e	=	(u,v)	∈ P	{

if e	is	a	forward	edge	{
f(e)	+=	β

}	else {	//	e	is	a	backward	edge
f(e)	-=	β

}
}

}

Ford-Fulkerson	algorithm

f ¬0
Gf¬G
while (there	is	a	s-t	path	in	Gf)	{

f.augment(P)
update	Gf based	on	new	f

}

Correctness	(termination)

Claim: The	Ford-Fulkerson	algorithm	terminates.
Proof:	
• The	capacities	and	flows	are	strictly	positive	integers.
• The	sum	of	capacities	leaving	s	is	finite.
• Bottleneck	values	β are	strictly	positive	integers.
• The	flow	increase	by	β	after	each	iteration	of	the	loop.
• The	flow	is	an	increasing	sequence	of	integers	that	is	bounded.

Complexity	(Running	time)

C = c(e)
e∈E
outgoing
from s

∑• Let

• Finding	an	augmenting	path	from	s to	t
takes	O(|E|)	(e.g.	BFS	or	DFS).

• The	flow	increases	by	at	least	1	at	each	
iteration	of	the	main	while	loop.

• The	algorithm	runs	in	O(C .	|E|)

