COMP251: Network flows (1)

Jérôme Waldispühl School of Computer Science McGill University

Based on slides from M. Langer (McGill) & (Cormen et al., 2009)

Flow Network

G = (V, E) directed.

Each edge (u, v) has a *capacity* $c(u, v) \ge 0$.

If $(u,v) \notin E$, then c(u,v) = 0.

Source vertex *s*, **sink** vertex *t*, assume $s \sim v \sim t$ for all $v \in V$.

Definitions

Positive flow: A function $p : V \times V \rightarrow \mathbf{R}$ satisfying.

Capacity constraint: For all u, $v \in V$, $0 \le p(u, v) \le c(u, v)$,

Cancellation with positive flows

- Without loss of generality, can say positive flow goes either from *u* to v or from v to *u*, but not both.
- In the above example, we can "cancel" 1 unit of flow in each direction between *x* and *z*.

- Capacity constraint is still satisfied.
- Flow conservation is still satisfied.

Net flow

A function $f: V \times V \rightarrow \mathbf{R}$ satisfying:

- **Capacity constraint:** For all $u, v \in V, f(u, v) \leq c(u, v)$,
- Skew symmetry: For all $u, v \in V, f(u, v) = -f(v, u), v \in V$
- Flow conservation: For all $u \in V \{s, t\}$, $\sum_{v \in V} f(u, v) = 0$

Positive vs. Net flows

Define net flow in terms of positive flow:

$$f(u,v) = p(u,v) - p(v,u).$$

The differences between positive flow *p* and net flow *f* :

- $p(u,v) \ge 0$,
- *f* satisfies skew symmetry.

Values of flows

Definition: $f = |f| = \sum_{v \in V} f(s, v)$ = total flow out of source.

Value of flow f = |f| = 3.

Flow properties

- Flow in == Flow out
- Source *s* has outgoing flow
- Sink *t* has ingoing flow
- Flow out of source *s* == Flow in the sink *t*

Maximum-flow problem

Given *G*, *s*, *t*, and *c*, find a flow whose value is maximum.

Applications

(https://ais.web.cern.ch/ais/)

(http://driverlayer.com)

Naïve algorithm

Initialize f = 0 While true { if (∃ path P from s to t such that all edges have a flow less than capacity) then increase flow on P up to max capacity else break

}

Naïve algorithm

```
Initialize f = 0
While true {
   if (\exists a path P from s to t s.t. all
edges e \in P f(e) < c(e) )
   then {
      \beta = \min\{ c(e) - f(e) \mid e \in P \}
      for all e \in P \{ f(e) \neq \beta \}
   } else { break }
```

}

|f|=2

|f|=4

|f|=5

Example where algorithm fail!

Example where algorithm fail!

|f|=3 And terminates...

Challenges

How to choose paths such that:

- We do not get stuck
- We guarantee to find the maximum flow
- The algorithm is efficient!

A better algorithm

Motivation: If we could subtract flow, then we could find it.

Residual graphs

Given a flow network G=(V,E) with edge capacities c and a given flow f, define the *residual graph* G_f as:

- G_f has the same vertices as G
- The edges E_f have capacities c_f (called *residual capacities*) that allow us to change the flow f, either by:
 - 1. Adding flow to an edge $e \in E$
 - 2. Subtracting flow from an edge \in E

Residual graphs

```
for each edge e = (u, v) \in E
  if f(e) < c(e)
  then {
     put a forward edge (u,v) in E_f
     with residual capacity c_f(e) = c(e) - f(e)
  }
  if f(e) > 0
  then {
     put a backward edge (v, u) in E_{f}
     with residual capacity c_{f}(e) = f(e)
   }
```

Example 1/3

Example 2/3

Augmenting path

An augmenting path is a path from the source s to the sink t in the residual graph G_f that allows us to increase the flow.

Q: By how much can we increase the flow using this path?

Methodology

- Compute the residual graph G_f
- Find a path P
- Augment the flow f along the path P
 - 1. Let β be the bottleneck (smallest residual capacity $c_f(e)$ of edges on P)
 - 2. Add β to the flow f(e) on each edge of P.

Q: How do we add β into G?

Augmenting a path

```
f.augment(P) {
   \beta = \min \{ c(e) - f(e) \mid e \in P \}
    for each edge e = (u,v) \in P {
        if e is a forward edge {
            f(e) += \beta
        }else { // e is a backward edge
            f(e) = \beta
        }
```

Ford-Fulkerson algorithm

f ←0
G_f←G
while (there is a s-t path in G_f) {
 f.augment(P)
 update G_f based on new f
}

Correctness (termination)

Claim: The Ford-Fulkerson algorithm terminates.

Proof:

- The capacities and flows are strictly positive integers.
- The sum of capacities leaving s is finite.
- Bottleneck values β are strictly positive integers.
- The flow increase by β after each iteration of the loop.
- The flow is an increasing sequence of integers that is bounded.

Complexity (Running time)

• Let
$$C = \sum_{\substack{e \in E \\ outgoing \\ from s}} c(e)$$

- Finding an augmenting path from s to t takes O(|E|) (e.g. BFS or DFS).
- The flow increases by at least 1 at each iteration of the main while loop.
- The algorithm runs in O(C. |E|)