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Flow Network

G = (V, E) directed.

Each edge (u, v) has a capacity c(u, v) > 0.

If (u,v) ¢ E, then c(u,v)=0.

Source vertex s, sink vertex t, assume s ~svaxtforallv € V.




Definitions

Positive flow: A function p : V x V - R satisfying.

Capacity constraint: Forallu,v &€ V, 0 < p(u, v) £ c(u, v),
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Flow conservation: Forallu € V - {s, t}, EP(VM) = EP(M,V)
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Cancellation with positive flows

Without loss of generality, can say positive flow goes either
from u to v or from v to u, but not both.

In the above example, we can “cancel” 1 unit of flow in each
direction between x and z.
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Capacity constraint is still satisfied.

Flow conservation is still satisfied.



Net flow

A function f: V x V — R satisfying:
e Capacity constraint: For allu,v € V, f (u, v) < c(u, v),
e Skew symmetry: Forallu,v<E V,f(u,v)=-f(v,u),v&EV

* Flow conservation: For allu & V -{s, t}, E f(u,v)=0
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Positive vs. Net flows

Define net flow in terms of positive flow:

f(uv) =plu,v) - plv,u).
The differences between positive flow p and net flow f :

* pluyv) =0,
e fsatisfies skew symmetry.



Values of flows

Definition: f = |f]| = Ef(s,v) = total flow out of source.
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Value of flow f =|f|=3.



Flow properties

Flow in == Flow out

Source s has outgoing flow

Sink t has ingoing flow

Flow out of source s == Flow in the sink t

Source s has only outgoing flow
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Maximum-flow problem

Given G, s, t, and ¢, find a flow whose value is maximum.
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Naive algorithm

Initialize £ = 0
While true {

if (d path P from s to t such that all
edges have a flow less than capacity)

then
increase flow on P up to max capacity
else

break



Naive algorithm

Initialize £ = 0
While true {

if (d a path P from s to t s.t. all
edges e &€ P f(e) < c(e) )
then {
B = min{ c(e)-f(e) | e € P}
for all e ©« P { f(e) += B }
} else { break }



Example where algorithm works
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Example where algorithm works

2/2

0/3

|f]=2



Example where algorithm works
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Example where algorithm works
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Example where algorithm fail!
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Example where algorithm fail!
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|f|=3 And terminates...



Challenges

How to choose paths such that:
 We do not get stuck

 We guarantee to find the maximum flow

* The algorithm is efficient!



A better algorithm

Motivation: If we could subtract flow, then we could find it.
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Residual graphs

Given a flow network G=(V,E) with edge capacities c and a
given flow f, define the residual graph G; as:

* G; has the same vertices as G

* The edges E; have capacities c; (called residual capacities)
that allow us to change the flow f, either by:

1. Adding flowtoanedgee & E

2. Subtracting flow from an edge © E



Residual graphs

for each edge e = (u, v) € E
if f(e) < c(e)
then {
put a forward edge (u,v) in E;
with residual capacity c¢(e)=c(e)—£f(e)
}
if £(e)>0
then {
put a backward edge (v,u) 1n E;
with residual capacity cq(e) = f(e)
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Augmenting path

An augmenting path is a path from the source s to the sink t
in the residual graph G; that allows us to increase the flow.

Q: By how much can we increase the flow using this path?
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Residual
graph G;
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Example

|£]=3




Methodology

* Compute the residual graph G;
* FindapathP
 Augment the flow f along the path P

1. Let B be the bottleneck (smallest residual capacity cqe)
of edges on P)

2. Add B to the flow f(e) on each edge of P.

Q: How do we add B into G?



Augmenting a path

f.augment (P) {
B=min{c(e)fle) | e= P}
for each edgee=(uv) & P{
if eisaforward edge {
fle) +=B
}else {// eisabackward edge
fle)-=P
}



Ford-Fulkerson algorithm

f <0

GG

while (thereis a s-t path in G;) {
f.augment (P)

update G; based on new f



Correctness (termination)

Claim: The Ford-Fulkerson algorithm terminates.

Proof:

The capacities and flows are strictly positive integers.
The sum of capacities leaving s is finite.

Bottleneck values B are strictly positive integers.

The flow increase by B after each iteration of the loop.
The flow is an increasing sequence of integers that is bounded.



Complexity (Running time)
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* Finding an augmenting path fromstot
takes O(|E|) (e.g. BFS or DFS).

* The flow increases by at least 1 at each
iteration of the main while loop.

 The algorithm runsin O(C. |E|)



