COMP251: Bipartite graphs

Jérôme Waldispühl
School of Computer Science
McGill University

Based on slides fom M. Langer (McGill) & P. Beame (UofW)

Recap: Dijkstra's algorithm

```
DIJKSTRA(V, E,w,s)

INIT-SINGLE-SOURCE(V,s)

S \leftarrow \varnothing
Q \leftarrow V

while Q \neq \varnothing do

u \leftarrow \text{EXTRACT-MIN}(Q)
S \leftarrow S \cup \{u\}

for each vertex v \in Adj[u] do

RELAX(u,v,w)
```

Loop invariant:

At the start of each iteration of the while loop, $d[v] = \delta(s,v)$ for all $v \in S$.

Initialization:

Initially, $S = \emptyset$, so trivially true.

Termination:

At end, $Q=\emptyset \Rightarrow S=V \Rightarrow d[v]=\delta(s,v)$ for all $v \in V$.

Maintenance:

Show that $d[u] = \delta(s,u)$ when u is added to S in each Iteration.

Show that $d[u] = \delta(s,u)$ when u is added to S in each iteration.

Suppose there exists u such that $d[u] \neq \delta(s,u)$.

Let u be the first vertex for which $d[u] \neq \delta(s, u)$ when u is added to S.

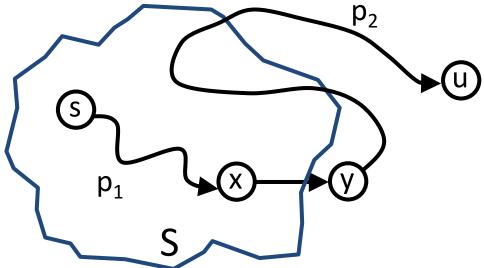
- $u \neq s$, since $d[s] = \delta(s,s) = 0$.
- Therefore, $s \in S$, so $S \neq \emptyset$.
- There must be some path $s \sim u$. Otherwise $d[u] = \delta(s,u) = \infty$ by no-path property.
- So, there is a path $s \sim u$. Thus, there is a shortest path $p s \sim u$.

Show that $d[u] = \delta(s,u)$ when u is added to S in each iteration.

Just before u is added to S, shortest path p connects a vertex in S (i.e., s) to a vertex in V - S (i.e., u).

Let y be first vertex along p that is in V - S, and let $x \in S$ be y is

predecessor.



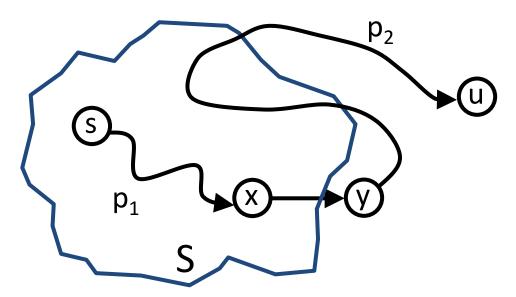
Decompose p into $s \stackrel{p_1}{\leadsto} x \rightarrow y \stackrel{p_2}{\leadsto} u$.

Claim: $d[y] = \delta(s, y)$ when u is added to S.

Proof:

 $x \in S$ and u is the first vertex such that $d[u] \neq \delta(s, u)$ when u is added to $S \Rightarrow d[x] = \delta(s, x)$ when x is added to S.

Relaxed (x, y) at that time, so by the convergence property, $d[y] = \delta(s, y)$.



Show that $d[u] = \delta(s,u)$ when u is added to S in each iteration.

Now can get a contradiction to $d[u] \neq \delta(s, u)$:

y is on shortest path $s \sim u$, and all edge weights are nonnegative.

$$\Rightarrow d[y] = \delta(s,y) \qquad \text{(from previous claim)}$$

$$\leq \delta(s,u) \qquad \text{(by sub-optimal paths property)}$$

$$\leq d[u] \qquad \text{(upper-bound property)}$$

In addition, since y and u were in Q when we chose $u: d[u] \le d[y]$

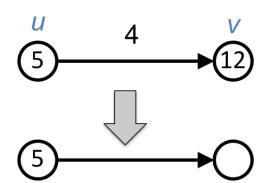
$$\Rightarrow$$
 $d[u] = d[y]$.

But
$$d[y] \le \delta(s,u) \le d[u] \Rightarrow d[y] = \delta(s,u) = d[u]$$
.

Contradicts assumption that $d[u] \neq \delta(s,u)$.

what will be the value of d[v] after relaxation of the edge (u,v)?

- 12
- 9 🗸
- 17
- 7
- None of the values proposed



We want to calculate the shortest paths from s in a DAG with negative weight edges. Is it ok?

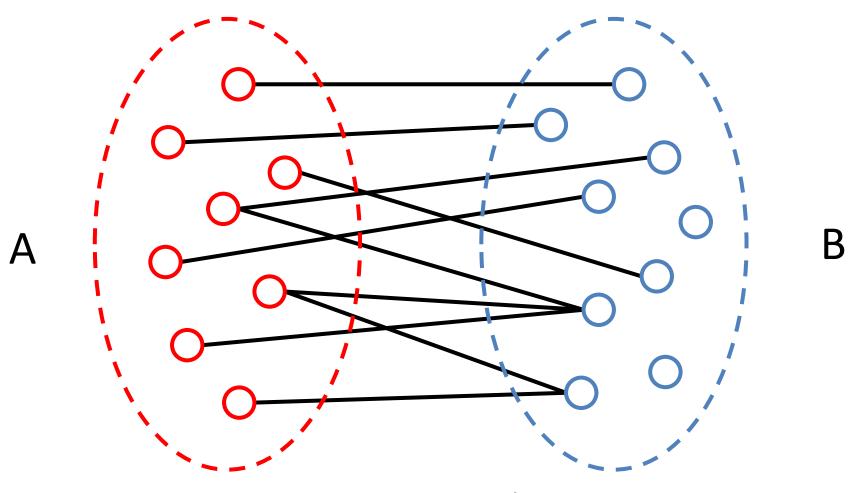
Yes because there are no negative weight cycles.

- Not a problem. Negative weight edges cannot be reached from the source.
- This is wrong! Negative weight edges are forbidden even in case of a DAG.

Let u be a vertex extracted from the queue during the execution of the Dijkstra's algorithm. What would happen if we use a First-In-First-Out queue instead of a min priority queue?

- We cannot guarantee that the shortest-path estimate of u is the shortest path from s to u.
- Relaxing the outgoing edges of u is useless (i.e. it will not change the shortest path estimates).
- It does not matter. We can use a FIFO queue.

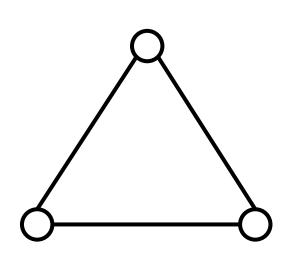
Bipartite graphs



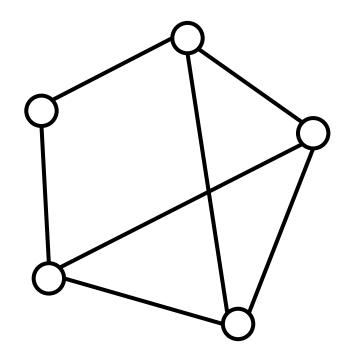
Vertices are partitioned into 2 sets.
All edges cross the sets.

B Traditional marriage Women Men registration **Students** Courses employment People Companies Have read/seen People **Books/Movies**

Counter-examples



Easy to identify.



But not always...

Cycles

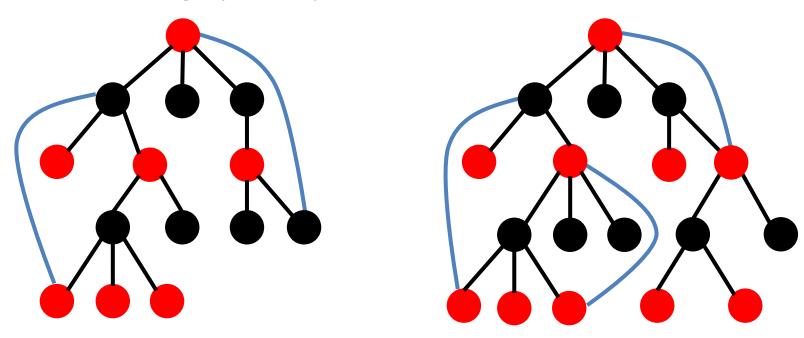
Claim: If a graph is bipartite if and only if does not contain an odd cycle.

Proof: Q5 of assignment 2.

Is it a bipartite graph?

Assuming G=(V,E) is an undirected connected graph.

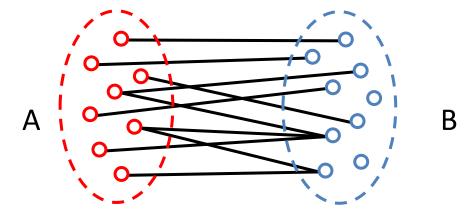
- 1. Run DFS and use it to build a DFS tree.
- 2. Color vertices by layers (e.g. red & black)
- 3. If all non-tree edges join vertices of different color then the graph is bipartite.



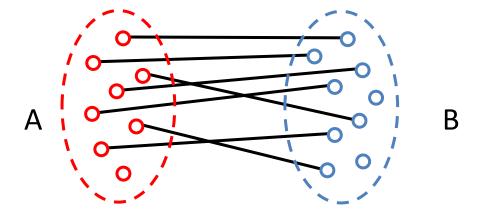
Non-tree edges in DFS tree cross 2 or more levels. Why?

Bipartite matching

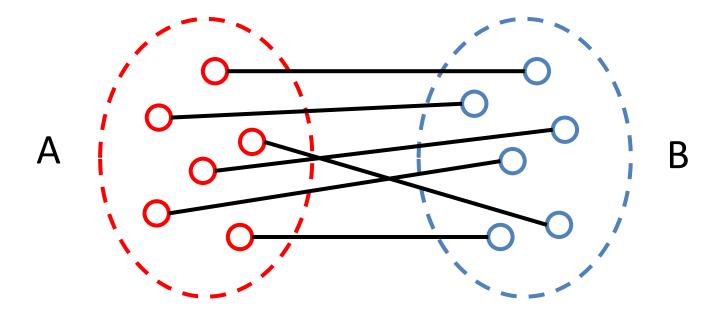
Consider an undirected bipartite graph.



A matching is a subset of the edges $\{ (\alpha, \beta) \}$ such that no two edges share a vertex.



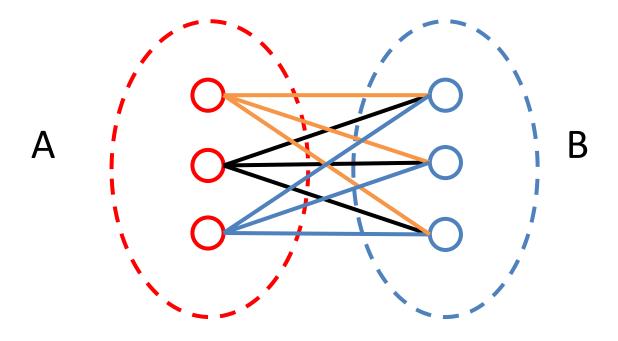
Perfect matching



Suppose we have a bipartite graph with *n* vertices in each A and B. A **perfect matching** is a matching that has *n* edges.

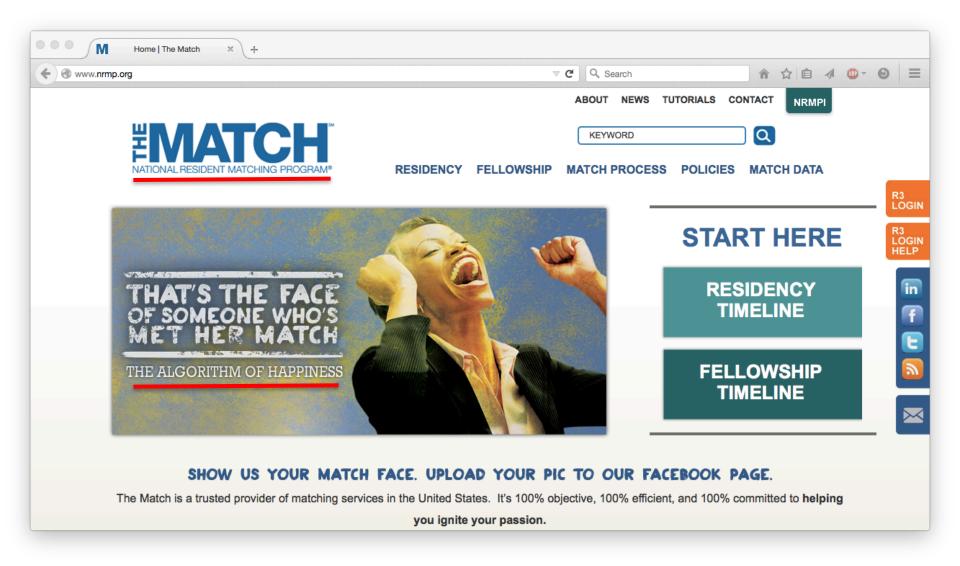
Note: It is not always possible to find a perfect matching.

Complete bipartite graph



A complete bipartite graph is a bipartite graph that has an edge for every pair of vertices (α, β) such that $\alpha \subseteq A$, $\beta \subseteq B$.

The algorithm of happiness



Resident matching program

- Goal: Given a set of preferences among hospitals and medical school students, design a self-reinforcing admissions process.
- Unstable pair: applicant x and hospital y are unstable if:
 - x prefers y to their assigned hospital.
 - y prefers x to one of its admitted students.
- Stable assignment: Assignment with no unstable pairs.
 - Natural and desirable condition.
 - Individual self-interest will prevent any applicant/hospital deal from being made.

Stable marriage problem

Goal: Given **n** elements of **A** and **n** elements of **B**, find a "suitable" matching. Participants rate members of opposite set:

- Each element of A lists elements of B in order of preference from best to worst.
- Each element of B lists elements of A in order of preference from best to worst.

A's preferences

	1 st	2 nd	3 rd
Xavier	Alphabet	Baidu	Campbell
Yulia	Baidu	Alphabet	Campbell
Zoran	Alphabet	Baidu	Campbell

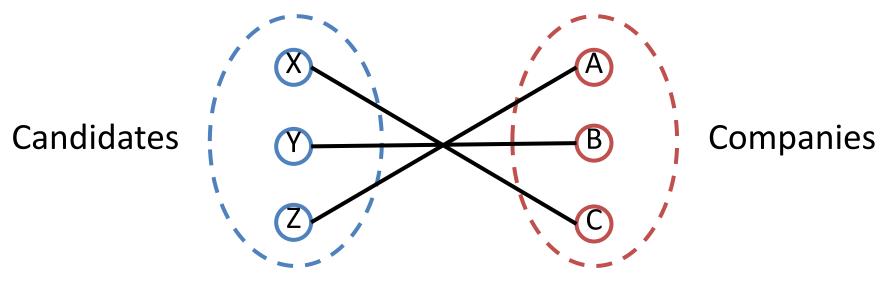
B's preferences

	1 st	2 nd	3 rd
Alphabet	Yulia	Xavier	Zoran
Baidu	Xavier	Yulia	Zoran
Campbell	Xavier	Yulia	Zoran

Stable marriage problem

- Context: Candidates apply to companies.
- Perfect matching: everyone is matched with a single company.
 - Each candidate gets exactly one company.
 - Each company gets exactly one candidate.
- **Stability:** no incentive for some pair of participants to undermine assignment by joint action.
 - In matching M, an unmatched pair α - β is unstable if candidate α and company β prefer each other to current match.
 - \circ Unstable pair α - β could each improve by "escaping".
- Stable matching: perfect matching with no unstable pairs.
- Stable matching problem: Given the preference lists of n candidates and n companies, find a stable matching (if one exists).

Q: Is X-C, Y-B, Z-A a good assignment?



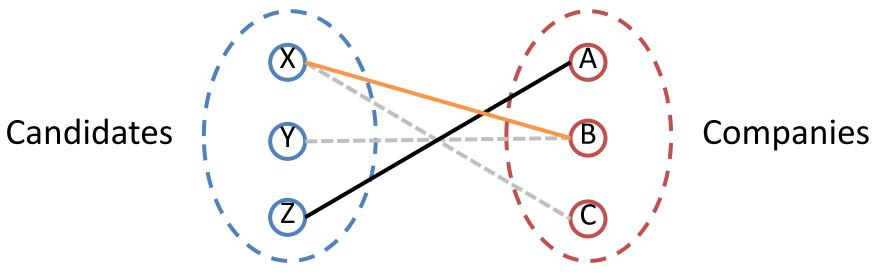
Candidates' preferences

	1 st	2 nd	3 rd
Xavier	Alphabet	Baidu	Campbell
Yulia	Baidu	Alphabet	Campbell
Zoran	Alphabet	Baidu	Campbell

	1 st	2 nd	3 rd
Alphabet	Yulia	Xavier	Zoran
Baidu	Xavier	Yulia	Zoran
Campbell	Xavier	Yulia	Zoran

Q: Is X-C, Y-B, Z-A a good assignment?

A: No! Xavier and Baidu will hook up...



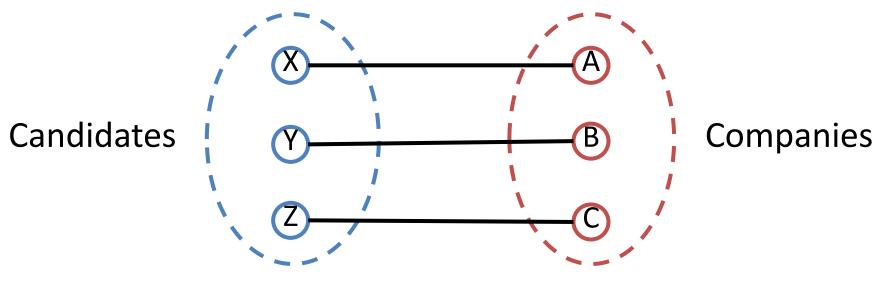
Candidates' preferences

	1 st	2 nd	3 rd
Xavier	Alphabet	Baidu	Campbell
Yulia	Baidu	Alphabet	Campbell
Zoran	Alphabet	Baidu	Campbell

	1 st	2 nd	3 rd
Alphabet	Yulia	Xavier	Zoran
Baidu	Xavier	Yulia	Zoran
Campbell	Xavier	Yulia	Zoran

Q: Is X-A, Y-B, Z-C a good assignment?

A: Yes!



Candidates' preferences

	1 st	2 nd	3 rd
Xavier	Alphabet	Baidu	Campbell
Yulia	Baidu	Alphabet	Campbell
Zoran	Alphabet	Baidu	Campbell

	1 st	2 nd	3 rd
Alphabet	Yulia	Xavier	Zoran
Baidu	Xavier	Yulia	Zoran
Campbell	Xavier	Yulia	Zoran

Stable "marriage" problem

Consider a complete bipartite graph such that |A| = |B| = n.

- Each member of A has a preference ordering of members of B.
- Each member of B has a preference ordering of members of A.

Algorithm for finding a matching:

- Each A member offer to a B, in preference order.
- Each B member accepts the first offer from an A, but then rejects that offer if/when it receives a offer from a A that it prefers more.

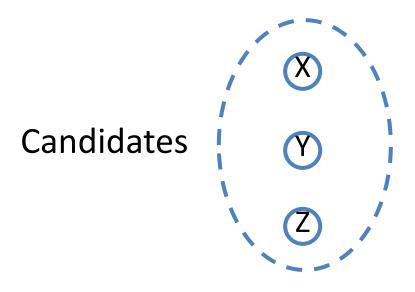
In our example: Candidates applies to companies. Companies accept the first offer they receive, but companies will drop their applicant when/if a preferred candidate applies after.

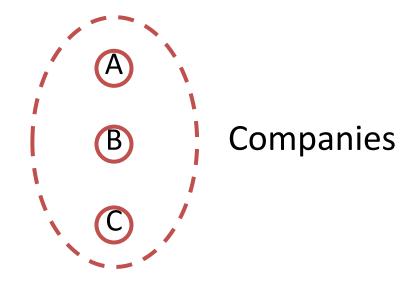
Note the asymmetry between A and B.

Gale-Shapley algorithm

For each $\alpha \subseteq A$, let pref[α] be the ordering of its preferences in B For each $\beta \subseteq B$, let pref[β] be the ordering of its preferences in A Let matching be a set of crossing edges between A and B

```
matching \leftarrow \emptyset
while there is \alpha \subseteq A not yet matched do
      \beta \leftarrow \text{pref}[\alpha].\text{removeFirst}()
     if β not yet matched then
           matching\leftarrowmatching\cup{(\alpha,\beta)}
     else
           \gamma \leftarrow \beta's current match
           if \beta prefers \alpha over \gamma then
                matching\leftarrowmatching-\{(\gamma,\beta)\}\cup\{(\alpha,\beta)\}
return matching
```

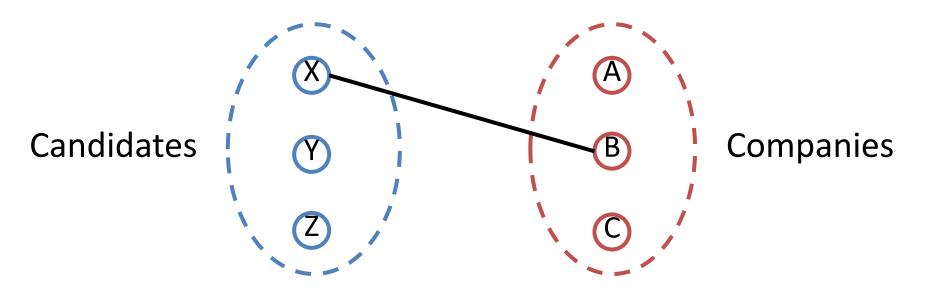




Candidates' preferences

	1 st	2 nd	3 rd
Xavier	Baidu	Alphabet	Campbell
Yulia	Baidu	Campbell	Alphabet
Zoran	Alphabet	Campbell	Baidu

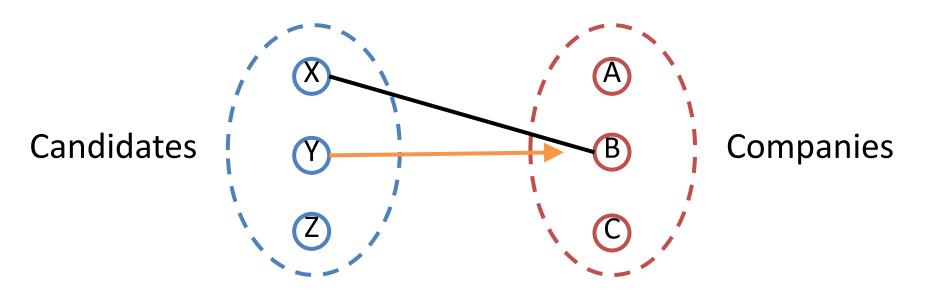
	1 st	2 nd	3 rd
Alphabet	Zoran	Xavier	Yulia
Baidu	Yulia	Zoran	Xavier
Campbell	Xavier	Yulia	Zoran



Candidates' preferences

	1 st	2 nd	3 rd
Xavier	Baidu	Alphabet	Campbell
Yulia	Baidu	Campbell	Alphabet
Zoran	Alphabet	Campbell	Baidu

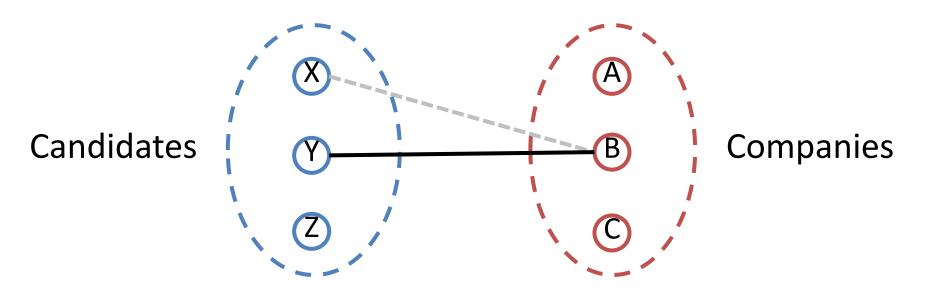
	1 st	2 nd	3 rd
Alphabet	Zoran	Xavier	Yulia
Baidu	Yulia	Zoran	Xavier
Campbell	Xavier	Yulia	Zoran



Candidates' preferences

	1 st	2 nd	3 rd
Xavier	Baidu	Alphabet	Campbell
Yulia	Baidu	Campbell	Alphabet
Zoran	Alphabet	Campbell	Baidu

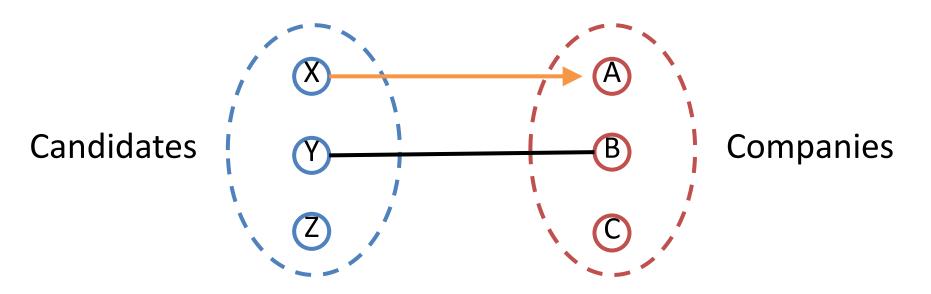
	1 st	2 nd	3 rd
Alphabet	Zoran	Xavier	Yulia
Baidu	Yulia	Zoran	Xavier
Campbell	Xavier	Yulia	Zoran



Candidates' preferences

	1 st	2 nd	3 rd
Xavier	Baidu	Alphabet	Campbell
Yulia	Baidu	Campbell	Alphabet
Zoran	Alphabet	Campbell	Baidu

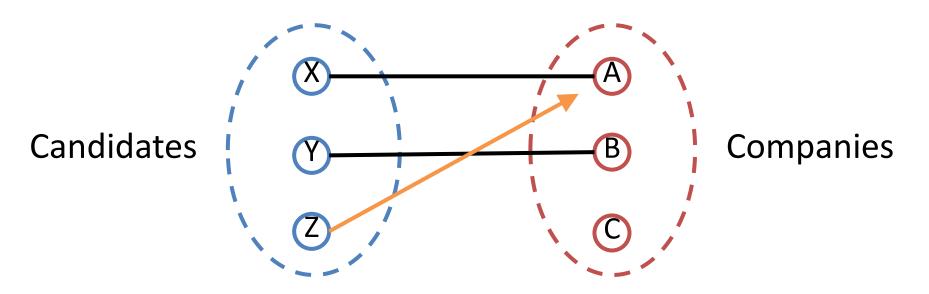
	1 st	2 nd	3 rd
Alphabet	Zoran	Xavier	Yulia
Baidu	Yulia	Zoran	Xavier
Campbell	Xavier	Yulia	Zoran



Candidates' preferences

	1 st	2 nd	3 rd
Xavier	Baidu	Alphabet	Campbell
Yulia	Baidu	Campbell	Alphabet
Zoran	Alphabet	Campbell	Baidu

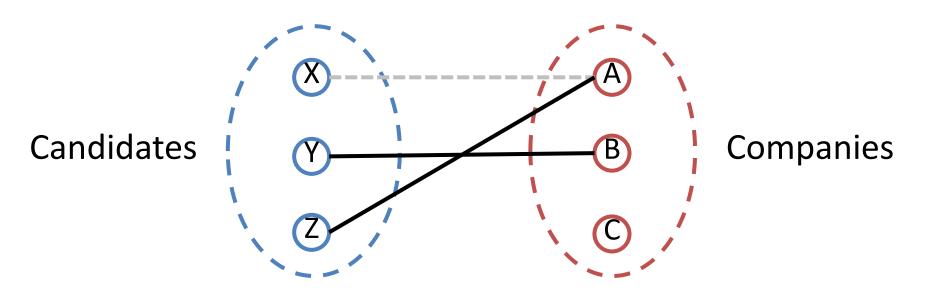
	1 st	2 nd	3 rd
Alphabet	Zoran	Xavier	Yulia
Baidu	Yulia	Zoran	Xavier
Campbell	Xavier	Yulia	Zoran



Candidates' preferences

	1 st	2 nd	3 rd
Xavier	Baidu	Alphabet	Campbell
Yulia	Baidu	Campbell	Alphabet
Zoran	Alphabet	Campbell	Baidu

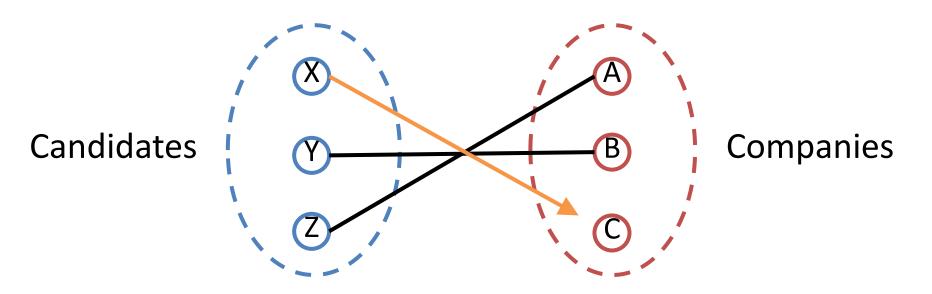
	1 st	2 nd	3 rd
Alphabet	Zoran	Xavier	Yulia
Baidu	Yulia	Zoran	Xavier
Campbell	Xavier	Yulia	Zoran



Men's preferences

	1 st	2 nd	3 rd
Xavier	Baidu	Alphabet	Campbell
Yulia	Baidu	Campbell	Alphabet
Zoran	Alphabet	Campbell	Baidu

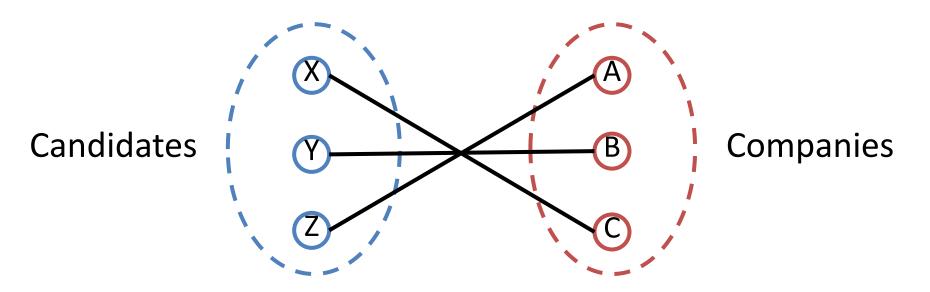
	1 st	2 nd	3 rd
Alphabet	Zoran	Xavier	Yulia
Baidu	Yulia	Zoran	Xavier
Campbell	Xavier	Yulia	Zoran



Candidates' preferences

	1 st	2 nd	3 rd
Xavier	Baidu	Alphabet	Campbell
Yulia	Baidu	Campbell	Alphabet
Zoran	Alphabet	Campbell	Baidu

	1 st	2 nd	3 rd
Alphabet	Zoran	Xavier	Yulia
Baidu	Yulia	Zoran	Xavier
Campbell	Xavier	Yulia	Zoran



Candidates' preferences

	1 st	2 nd	3 rd
Xavier	Baidu	Alphabet	Campbell
Yulia	Baidu	Campbell	Alphabet
Zoran	Alphabet	Campbell	Baidu

	1 st	2 nd	3 rd
Alphabet	Zoran	Xavier	Yulia
Baidu	Yulia	Zoran	Xavier
Campbell	Xavier	Yulia	Zoran

Correctness (termination)

Observations:

- 1. Candidates apply to companies in decreasing order of preference.
- 2. Once a company is matched, it never becomes unmatched; it only "trades up."

Claim: Algorithm terminates after at most n^2 iterations of while loop (i.e. $O(n^2)$ running time).

Proof: Each time through the while loop a candidate applies to a new company. There are only n² possible matches. ■

Correctness (perfection)

Claim: All candidates and companies get matched.

Proof: (by contradiction)

- Suppose, for sake of contradiction, that Zoran is not matched upon termination of algorithm.
- Then some company, say Alphabet, is not matched upon termination.
- By Observation 2 (only trading up, never becoming unmatched), Alphabet never received any application.
- But, Zoran applies everywhere. Contradiction. ■

Correctness (stability)

Claim: No unstable pairs.

Proof: (by contradiction)

- Suppose Z-A is an unstable pair: they prefer each other to the association made in Gale-Shapley matching.
- Case 1: **Z** never applied to **A**.
 - \Rightarrow **Z** prefers his GS match to **A**.
 - \Rightarrow **Z-A** is stable.
- Case 2: Z applied to A.
 - \Rightarrow **A** rejected **Z** (right away or later)
 - \Rightarrow **A** prefers its GS match to **Z**.
 - \Rightarrow **Z-A** is stable.
- In either case **Z-A** is stable. Contradiction. ■

Optimality

Definition: Candidate α is a valid partner of company β if there exists some stable matching in which they are matched.

Applicant-optimal assignment: Each candidate receives **best** valid match (according to his preferences).

Claim: All executions of GS yield a **applicant-optimal** assignment, which is a stable matching!

Applicant-Optimality

Claim: GS matching **S*** is applicant-optimal.

Proof: (by contradiction)

- Suppose some candidate is paired with someone other than his best option. Candidates apply in decreasing order of preference ⇒ some candidate is rejected by a valid match.
- Let Y be first such candidate, and let A be the first valid company that rejects him (i.e. A-Y is optimal).
- Let S be a stable matching (not from GS) where A and Y are matched.
- In GS, when Y is rejected, A forms (or reaffirms) engagement with a candidate, say Z, whom it prefers to Y (i.e. A prefers Z to Y)
- Let B be Z's match in S (i.e. B-Z is optimal).
- In GS, Z is not rejected by any valid match at the point when Y is rejected by A.
- Thus, Z prefers A to B (because B-Z is optimal).
- But A prefers Z to Y.
- Thus A-Z would be preferred in S (i.e. A-Y and B-Z are unstable).