
COMP251:	Bipartite	graphs

Jérôme Waldispühl
School	of	Computer	Science

McGill	University
Based	on	slides	fom M.	Langer	(McGill)	&	P.	Beame (UofW)

Recap:	Dijkstra’s	algorithm

DIJKSTRA(V, E,w,s)
INIT-SINGLE-SOURCE(V,s)
S ← ∅
Q ← V
while Q ≠ ∅ do

u ← EXTRACT-MIN(Q)
S ← S ∪ {u}
for each vertex v ∈ Adj[u] do

RELAX(u,v,w)

Recap:	Correctness	of	Dijkstra

Loop	invariant:
At	the	start	of	each	iteration	of	the	while loop,	
d[v]	=	δ(s,v)	for	all	v	∈ S.

Initialization:
Initially,	S	=	∅,	so	trivially	true.

Termination:
At	end,	Q=∅⇒ S	=	V	⇒ d[v]	=	δ(s,v)	for	all	v	∈ V.
Maintenance:
Show	that	d[u]	=	δ(s,u)	when	u	is	added	to	S	in	
each	Iteration.

Recap:	Correctness	of	Dijkstra

Show	that	d[u]	=	δ(s,u)	when	u	is	added	to	S	in	each	iteration.
Suppose	there	exists	u	such	that	d[u] ≠	δ(s,u).
Let	u	be	the	first	vertex	for	which	d[u] ≠	δ(s,	u)	when	u	is	added	to	S.	
• u	≠	s,	since	d[s]	=	δ(s,s)	=	0.	
• Therefore,	s	∈ S,	so	S ≠	∅.	
• There	must	be	some	path	s	 u.	Otherwise	d[u]	=	δ(s,u)	=	∞	by	

no-path	property.
• So,	there	is	a	path	s	 u.		Thus,	there	is	a	shortest	path	p s		 u.

p

Recap:	Correctness	of	Dijkstra
Show	that	d[u]	=	δ(s,u)	when	u	is	added	to	S	in	each	iteration.
Just	before	u	is	added	to	S,	shortest	path	p	connects	a	vertex	in	
S	(i.e.,	s)	to	a	vertex	in	V	−	S	(i.e.,	u).
Let	y	be	first	vertex	along	p	that	is	in	V	−	S,	and	let	x	∈ S	be	y is	
predecessor.	

Decompose	p	into	s		 x	→	y	 u.	

x

s

y

u

S
p1

p2

p1 p2

Recap:	Correctness	of	Dijkstra
Claim:	d[y]	=	δ(s,	y)	when	u	is	added	to	S.

Proof:
x	∈ S	and	u	is	the	first	vertex	such	that	d[u] ≠ δ(s,	u)	when	
u	is	added	to	S	⇒ d[x]	=	δ(s,	x)	when	x	is	added	to	S.
Relaxed	(x,	y)	at	that	time,	so	by	the	convergence	property,	
d[y]	=	δ(s,	y).

x

s

y

u

S
p1

p2

Recap:	Correctness	of	Dijkstra
Show	that	d[u]	=	δ(s,u)	when	u	is	added	to	S	in	each	iteration.
Now	can	get	a	contradiction	to	d[u] ≠	δ(s,	u):

y	is	on	shortest	path	s	 u,	and	all	edge	weights	are	nonnegative.	

⇒ d[y]	=	δ(s,y) (from	previous	claim)

≤	δ(s,u) (by	sub-optimal	paths	property)

≤	d[u]	 (upper-bound	property)

In	addition,	since	y	and	u	were	in	Q	when	we	chose	u:	d[u]	≤	d[y]	

⇒ d[u]	=	d[y]	.

But	d[y]	≤	δ(s,u) ≤	d[u]	⇒ d[y]	=	δ(s,	u)	=	d[u].

Contradicts	assumption	that	d[u] ≠	δ(s,u).	n

p

what	will	be	the	value	of	d[v]	after	relaxation	of	the	edge	(u,v)?

• 12
• 9
• 17
• 7
• None	of	the	values	proposed

✓

We	want	to	calculate	the	shortest	paths	from	s	in	a	DAG	with	
negative	weight	edges.	Is	it	ok?

• Yes	because	there	are	no	negative	weight	cycles.

• Not	a	problem.	Negative	weight	edges	cannot	be	reached	from	the	source.

• This	is	wrong!	Negative	weight	edges	are	forbidden	even	in	case	of	a	DAG.

✓

Let	u	be	a	vertex	extracted	from	the	queue	during	the	execution	
of	the	Dijkstra's	algorithm.	What	would	happen	if	we	use	a	First-

In-First-Out	queue	instead	of	a	min	priority	queue?

• We	cannot	guarantee	that	the	shortest-path	estimate	of	u	is	the	shortest	
path	from	s	to	u.

• Relaxing	the	outgoing	edges	of	u	is	useless	(i.e.	it	will	not	change	the	
shortest	path	estimates).

• It	does	not	matter.	We	can	use	a	FIFO	queue.

✓

Bipartite	graphs

Vertices	are	partitioned	into	2	sets.
All	edges	cross	the	sets.	

A B

Examples

A

Women

Students

People

People

B

Men

Courses

Companies

Books/Movies

Traditional	marriage

registration

employment

Have	read/seen

Counter-examples

Easy	to	identify. But	not	always...

Cycles

Claim:	If	a	graph	is	bipartite	if	and	only	if	does	
not	contain	an	odd	cycle.

Proof:	Q5	of	assignment	2.

Is	it	a	bipartite	graph?
Assuming	G=(V,E)	is	an	undirected	connected	graph.
1. Run	DFS	and	use	it	to	build	a	DFS	tree.
2. Color	vertices	by	layers	(e.g.	red	&	black)
3. If	all	non-tree	edges	join	vertices	of	different	color	

then	the	graph	is	bipartite.

Non-tree	edges	in	DFS	tree	cross	2	or	more	levels.	Why?

Bipartite	matching

A B

A B

A	matching	is	a	subset	of	the	edges	{	(α,	β)	}	such	that	no	two	
edges	share	a	vertex.

Consider	an	undirected	bipartite	graph.

Perfect	matching

A B

Suppose	we	have	a	bipartite	graph	with	n vertices	in	each	A	and	B.
A	perfect	matching is	a	matching	that	has	n edges.

Note:	It	is	not	always	possible	to	find	a	perfect	matching.	

Complete	bipartite	graph

A B

A	complete	bipartite	graph	is	a	bipartite	graph	that	has	an	
edge	for	every	pair	of	vertices	(α,	β)	such	that	α∈A,	β∈B.

The	algorithm	of	happiness

Resident	matching	program
• Goal:	Given	a	set	of	preferences	among	hospitals	and	

medical	school	students,	design	a	self-reinforcing	
admissions	process.	

• Unstable	pair:	applicant	x	and	hospital	y	are	unstable	if:
o x	prefers	y	to	their	assigned	hospital.
o y	prefers	x	to	one	of	its	admitted	students.

• Stable	assignment:	Assignment	with	no	unstable	pairs.
o Natural	and	desirable	condition.	
o Individual	self-interest	will	prevent	any	

applicant/hospital	deal	from	being	made.	

Stable	marriage	problem
Goal: Given	n	elements	of	A and	n	elements	of	B,	find	a	
"suitable"	matching.	Participants	rate	members	of	opposite	set:
• Each	element	of	A	lists	elements	of	B	in	order	of	preference	

from	best	to	worst.
• Each	element	of	B	lists	elements	of	A	in	order	of	preference	

from	best	to	worst.

1st 2nd 3rd

Xavier Alphabet Baidu Campbell

Yulia Baidu Alphabet Campbell

Zoran Alphabet Baidu Campbell

1st 2nd 3rd

Alphabet Yulia Xavier Zoran

Baidu Xavier Yulia Zoran

Campbell Xavier Yulia Zoran

A’s	preferences B’s	preferences

Stable	marriage	problem
• Context:	Candidates	apply	to	companies.

• Perfect	matching:	everyone	is	matched	with	a	single	company.
o Each	candidate	gets	exactly	one	company.
o Each	company	gets	exactly	one	candidate.

• Stability: no	incentive	for	some	pair	of	participants	to	undermine	
assignment	by	joint	action.
o In	matching	M,	an	unmatched	pair	𝛂-𝛃 is	unstable	if	candidate	
𝛂 and	company	𝛃 prefer	each	other	to	current	match.

o Unstable	pair	𝛂-𝛃 could	each	improve	by	“escaping”.

• Stable	matching:	perfect	matching	with	no	unstable	pairs.

• Stable	matching	problem: Given	the	preference	lists	of	n	
candidates	and	n	companies,	find	a	stable	matching	(if	one	exists).

Example

Z

X

Y

A

C

B Companies

1st 2nd 3rd

Xavier Alphabet Baidu Campbell

Yulia Baidu Alphabet Campbell

Zoran Alphabet Baidu Campbell

1st 2nd 3rd

Alphabet Yulia Xavier Zoran

Baidu Xavier Yulia Zoran

Campbell Xavier Yulia Zoran

Companies’	preferences

Q:	Is	X-C,	Y-B,	Z-A	a	good	assignment?

Candidates

Candidates’	preferences

Example

Z

X

Y

A

C

B Companies

1st 2nd 3rd

Xavier Alphabet Baidu Campbell

Yulia Baidu Alphabet Campbell

Zoran Alphabet Baidu Campbell

Candidates’	preferences

1st 2nd 3rd

Alphabet Yulia Xavier Zoran

Baidu Xavier Yulia Zoran

Campbell Xavier Yulia Zoran

Companies’	preferences

Q:	Is	X-C,	Y-B,	Z-A	a	good	assignment?
A:	No!	Xavier	and	Baidu	will	hook	up…

Candidates

Example

Z

X

Y

A

C

B Companies

1st 2nd 3rd

Xavier Alphabet Baidu Campbell

Yulia Baidu Alphabet Campbell

Zoran Alphabet Baidu Campbell

1st 2nd 3rd

Alphabet Yulia Xavier Zoran

Baidu Xavier Yulia Zoran

Campbell Xavier Yulia Zoran

Companies’	preferences

Q:	Is	X-A,	Y-B,	Z-C	a	good	assignment?
A:	Yes!

Candidates

Candidates’	preferences

Stable	“marriage”	problem
Consider	a	complete	bipartite	graph	such	that	|A|=|B|=n.
• Each	member	of	A	has	a	preference	ordering	of	members	of	B.
• Each	member	of	B	has	a	preference	ordering	of	members	of	A.

Algorithm	for	finding	a	matching:
• Each	A	member	offer	to	a	B,	in	preference	order.
• Each	B	member	accepts	the	first	offer	from	an	A,	but	then	

rejects	that	offer	if/when	it	receives	a	offer	from	a	A	that	it	
prefers	more.

In	our	example:	Candidates	applies	to	companies.	Companies	
accept	the	first	offer	they	receive,	but	companies	will	drop	their	
applicant	when/if	a	preferred	candidate	applies	after.
Note	the	asymmetry	between	A	and	B.	

Gale-Shapley	algorithm
For	each	α∈A,	let	pref[α]	be	the	ordering	of	its	preferences	in	B
For	each	β∈B,	let	pref[β]	be	the	ordering	of	its	preferences	in	A	
Let	matching	be	a	set	of	crossing	edges	between	A	and	B	

matching¬Æ
while there	is	α∈A	not	yet	matched	do

β¬pref[α].removeFirst()
if	β	not	yet	matched	then

matching¬matchingÈ{(α,β)}
else

γ¬β’s	current	match	
if β	prefers	α	over	γ then

matching¬matching-{(γ,β)}È{(α,β)}
return matching

Example

Z

X

Y

A

C

BCandidates Companies

1st 2nd 3rd

Xavier Baidu Alphabet Campbell

Yulia Baidu Campbell Alphabet

Zoran Alphabet Campbell Baidu

1st 2nd 3rd

Alphabet Zoran Xavier Yulia

Baidu Yulia Zoran Xavier

Campbell Xavier Yulia Zoran

Companies’	preferencesCandidates’	preferences

Example

Z

X

Y

A

C

B Companies

1st 2nd 3rd

Xavier Baidu Alphabet Campbell

Yulia Baidu Campbell Alphabet

Zoran Alphabet Campbell Baidu

1st 2nd 3rd

Alphabet Zoran Xavier Yulia

Baidu Yulia Zoran Xavier

Campbell Xavier Yulia Zoran

Companies’	preferences

Candidates

Candidates’	preferences

Example

Z

X

Y

A

C

B Companies

1st 2nd 3rd

Xavier Baidu Alphabet Campbell

Yulia Baidu Campbell Alphabet

Zoran Alphabet Campbell Baidu

1st 2nd 3rd

Alphabet Zoran Xavier Yulia

Baidu Yulia Zoran Xavier

Campbell Xavier Yulia Zoran

Companies’	preferences

Candidates

Candidates’	preferences

Example

Z

X

Y

A

C

B Companies

1st 2nd 3rd

Xavier Baidu Alphabet Campbell

Yulia Baidu Campbell Alphabet

Zoran Alphabet Campbell Baidu

1st 2nd 3rd

Alphabet Zoran Xavier Yulia

Baidu Yulia Zoran Xavier

Campbell Xavier Yulia Zoran

Companies’	preferences

Candidates

Candidates’	preferences

Example

Z

X

Y

A

C

B Companies

1st 2nd 3rd

Xavier Baidu Alphabet Campbell

Yulia Baidu Campbell Alphabet

Zoran Alphabet Campbell Baidu

1st 2nd 3rd

Alphabet Zoran Xavier Yulia

Baidu Yulia Zoran Xavier

Campbell Xavier Yulia Zoran

Companies’	preferences

Candidates

Candidates’	preferences

Example

Z

X

Y

A

C

B Companies

1st 2nd 3rd

Xavier Baidu Alphabet Campbell

Yulia Baidu Campbell Alphabet

Zoran Alphabet Campbell Baidu

1st 2nd 3rd

Alphabet Zoran Xavier Yulia

Baidu Yulia Zoran Xavier

Campbell Xavier Yulia Zoran

Companies’	preferences

Candidates

Candidates’	preferences

Example

Z

X

Y

A

C

B Companies

1st 2nd 3rd

Xavier Baidu Alphabet Campbell

Yulia Baidu Campbell Alphabet

Zoran Alphabet Campbell Baidu

Men’s	preferences

1st 2nd 3rd

Alphabet Zoran Xavier Yulia

Baidu Yulia Zoran Xavier

Campbell Xavier Yulia Zoran

Companies’	preferences

Candidates

Example

Z

X

Y

A

C

B Companies

1st 2nd 3rd

Xavier Baidu Alphabet Campbell

Yulia Baidu Campbell Alphabet

Zoran Alphabet Campbell Baidu

1st 2nd 3rd

Alphabet Zoran Xavier Yulia

Baidu Yulia Zoran Xavier

Campbell Xavier Yulia Zoran

Companies’	preferences

Candidates

Candidates’	preferences

Example

Z

X

Y

A

C

B Companies

1st 2nd 3rd

Xavier Baidu Alphabet Campbell

Yulia Baidu Campbell Alphabet

Zoran Alphabet Campbell Baidu

1st 2nd 3rd

Alphabet Zoran Xavier Yulia

Baidu Yulia Zoran Xavier

Campbell Xavier Yulia Zoran

Companies’	preferences

Candidates

Candidates’	preferences

Correctness	(termination)

Observations:
1. Candidates	apply	to	companies	in	decreasing	order	of	

preference.
2. Once	a	company	is	matched,	it	never	becomes	unmatched;	

it	only	"trades	up."

Claim: Algorithm	terminates	after	at	most	n2 iterations	of	while	
loop	(i.e.	O(n2)	running	time).

Proof:	Each	time	through	the	while	loop	a	candidate	applies	to	
a	new	company.	There	are	only	n2 possible	matches.	n

Correctness	(perfection)

Claim: All	candidates	and	companies	get	matched.

Proof: (by	contradiction)	
• Suppose,	for	sake	of	contradiction,	that	Zoran	is	not	matched	

upon	termination	of	algorithm.
• Then	some	company,	say	Alphabet,	is	not	matched	upon	

termination.	
• By	Observation	2	(only	trading	up,	never	becoming	

unmatched),	Alphabet	never	received	any	application.	
• But,	Zoran	applies	everywhere.	Contradiction.	n

Correctness	(stability)
Claim:	No	unstable	pairs.

Proof:	(by	contradiction)	
• Suppose	Z-A	is	an	unstable	pair:	they	prefer	each	other	to	the		

association	made	in	Gale-Shapley	matching.
• Case	1:	Z	never	applied	to	A.
⇒ Z	prefers	his	GS	match	to	A.
⇒ Z-A	is	stable.

• Case	2:	Z	applied	to	A.
⇒ A	rejected	Z	(right	away	or	later)
⇒ A	prefers	its	GS	match	to	Z.
⇒ Z-A	is	stable.	

• In	either	case	Z-A	is	stable. Contradiction.	n

Optimality

Definition:	Candidate	𝛂 is	a	valid	partner	of	company	𝛃 if	
there	exists	some	stable	matching	in	which	they	are	matched.

Applicant-optimal	assignment:	Each	candidate	receives	best	
valid	match	(according	to	his	preferences).

Claim:	All	executions	of	GS	yield	a	applicant-optimal	
assignment,	which	is	a	stable	matching!

Applicant-Optimality
Claim:	GS	matching	S*	is	applicant-optimal.

Proof:	(by	contradiction)
• Suppose	some	candidate	is	paired	with	someone	other	than	his	best	

option.	Candidates	apply	in	decreasing	order	of	preference	⇒ some	
candidate	is	rejected	by	a	valid	match.

• Let	Y	be	first	such	candidate,	and	let	A	be	the	first	valid	company	that	
rejects	him	(i.e.	A-Y is	optimal).

• Let	S	be	a	stable	matching	(not	from	GS)	where	A	and	Y	are	matched.
• In	GS,	when	Y	is	rejected,	A	forms	(or	reaffirms)	engagement	with	a	

candidate,	say	Z,	whom	it	prefers	to	Y (i.e.	A	prefers	Z	to	Y)
• Let	B	be	Z's	match	in	S	(i.e.	B-Z is	optimal).
• In	GS,	Z	is	not	rejected	by	any	valid	match	at	the	point	when	Y	is	rejected	

by	A.
• Thus,	Z	prefers	A	to	B	(because	B-Z is	optimal).
• But	A	prefers	Z	to	Y.
• Thus	A-Z	would	be	preferred	in	S	(i.e.	A-Y	and B-Z	are	unstable).	

