COMP251: Bipartite graphs

Jérome Waldispuhl
School of Computer Science
McGill University

Based on slides fom M. Langer (McGill) & P. Beame (UofW)

Recap: Dijkstra’s algorithm

DIJKSTRA(V, E,w,S)
INIT-SINGLE-SOURCE(V, s)
S & 9
O <V
while O # 9 do
u ¢ EXTRACT-MIN(Q)
S & S U {u}
for each vertex v &€ Adj[u] do
RELAX(u,v,w)

Recap: Correctness of Dijkstra

Loop invariant:
At the start of each iteration of the while loop,
d[v] = 6(s,v) for allv € S.

Initialization:
Initially, S = 9, so trivially true.

Termination:
Atend, Q=2 = S=V = d[v] = 6(s,v) forallv € V.

Maintenance:
Show that d[u] = 6(s,u) when u is added to S in
each lteration.

Recap: Correctness of Dijkstra

Show that d[u] = 6(s,u) when u is added to S in each iteration.
Suppose there exists u such that d[u] # 6(s,u).

Let u be the first vertex for which d[u] # 6(s, u) when u is added to S.
e u#s,sinced[s] =6(s,s)=0.

* Therefore,s € S,so S # 2.

 There must be some path s~~u. Otherwise d[u] = 6(s,u) = o= by
no-path property.

.) p
* So, there is a path s~~u. Thus, there is a shortest path p s~A~ u.

Recap: Correctness of Dijkstra

Show that d[u] = 6(s,u) when u is added to S in each iteration.

Just before u is added to S, shortest path p connects a vertex in
S (i.e., s)toavertexinV-S(i.e., u).
Let y be first vertex along p thatisin V-5, andletx Sbeyis

predecessor.
P>

©

P1

S

. P1 Py
Decompose p into s Am~X =2 Y A~ U.

Recap: Correctness of Dijkstra

Claim: d[y] = 6(s, y) when u is added to S.

Proof:

X & S and u is the first vertex such that d[u] # 6(s, u) when
uis added to S = d[x] = 6(s, x) when x is added to S.

Relaxed (x, y) at that time, so by the convergence property,
dly] = 6(s, y).

Recap: Correctness of Dijkstra

Show that d[u] = 6(s,u) when u is added to S in each iteration.

Now can get a contradiction to d[u] # &(s, u):
p
y is on shortest path s™™u, and all edge weights are nonnegative.

= d[y] = 6(s,y) (from previous claim)
< 5(S,U) (by sub-optimal paths property)
< d[u] (upper-bound property)

In addition, since y and u were in Q when we chose u: d[u] £ d[y]
= du] =dly] .

But d[y] < 6(s,u) < d[u] = d[y] = &(s, u) = d[u].

Contradicts assumption that d[u] # 6(s,u). B

what will be the value of d[v] after relaxation of the edge (u,v)?

¢ 12 Y 4 4

9 v ® 1)

. 17
L @@O

None of the values proposed

We want to calculate the shortest paths from s in a DAG with
negative weight edges. Is it ok?

* Yes because there are no negative weight cycles. /
* Not a problem. Negative weight edges cannot be reached from the source.

* This is wrong! Negative weight edges are forbidden even in case of a DAG.

Let u be a vertex extracted from the queue during the execution
of the Dijkstra's algorithm. What would happen if we use a First-
In-First-Out queue instead of a min priority queue?

We cannot guarantee that the shortest-path estimate of u is the shortest
path from s to u. /

Relaxing the outgoing edges of u is useless (i.e. it will not change the
shortest path estimates).

It does not matter. We can use a FIFO queue.

Bipartite graphs

-

Vertices are partitioned into 2 sets.
All edges cross the sets.

A
Women
Students
People

People

Examples

B
Traditional marriage Men
registration COU rses
TP ovment Companies

Have read/seen

Books/Movies

Counter-examples

Easy to identify. But not always...

Cycles

Claim: If a graph is bipartite if and only if does
not contain an odd cycle.

Proof: Q5 of assignment 2.

Is it a bipartite graph?

Assuming G=(V,E) is an undirected connected graph.

1. Run DFS and use it to build a DFS tree.

2. Color vertices by layers (e.g. red & black)

3. If all non-tree edges join vertices of different color
then the graph is bipartite.

\

Non-tree edges in DFS tree cross 2 or more levels. Why?

Bipartite matching

Consider an undirected bipartite graph.

\
t O— () \
' ®)
I { \
I O
A 1 I B
| C__x\() I

A matching is a subset of the edges { (a, B) } such that no two
edges share a vertex.

. —O
IICﬁ l’ —0 \\
| | O
A O I | I B
r -0
O—'O\\O O
‘o /! /

/ \ /
~ 7’ ~ 7’

Perfect matching

” ~ Ve ~
/ S / S
¢ O - O
! : L0 ‘
1 O ‘| / 0 \l
I
Al O ' O , B
\ T]
\O' / \ /
\ C/ \ O /
\ /7 N\ /
~ ~ ~ &

Suppose we have a bipartite graph with n vertices in each A and B.
A perfect matching is a matching that has n edges.

Note: It is not always possible to find a perfect matching.

Complete bipartite graph

A complete bipartite graph is a bipartite graph that has an
edge for every pair of vertices (a, B) such that a €A, B =B.

The algorithm of happiness

/M Home | The Match %\ 4+

& @ www.nrmp.org

@ | | Q search ’ﬁ\{}g{l@'e\E

ABOUT NEWS TUTORIALS CONTACT m

:MIATCH - -

NATIONAL RESIDENT MATCHING PROGRAM®

RESIDENCY FELLOWSHIP MATCH PROCESS POLICIES MATCH DATA

START HERE
THAT'S THE FACE
OF SOMECNE WHO'S
MET HER MATCH

RESIDENCY
TIMELINE

- THE ALGORITHM OF HARPINESS FELLOWSHIP

TIMELINE

SHOW US YOUR MATCH FACE. UPLOAD YOUR PIC TO OUR FACEBOOK PAGE.
The Match is a trusted provider of matching services in the United States. It's 100% objective, 100% efficient, and 100% committed to helping

you ignite your passion.

Resident matching program

Goal: Given a set of preferences among hospitals and
medical school students, design a self-reinforcing
admissions process.

Unstable pair: applicant x and hospital y are unstable if:
o X prefers y to their assigned hospital.
o Yy prefers x to one of its admitted students.

Stable assighment: Assignment with no unstable pairs.
o Natural and desirable condition.

o Individual self-interest will prevent any
applicant/hospital deal from being made.

from best to worst.

Stable marriage problem

Goal: Given n elements of A and n elements of B, find a
"suitable" matching. Participants rate members of opposite set:

* Each element of A lists elements of B in order of preference
from best to worst.
* Each element of B lists elements of A in order of preference

A’s preferences

B’s preferences

1st 2nd 3rd
Xavier Alphabet Baidu Campbell
Yulia Baidu Alphabet | Campbell
Zoran Alphabet Baidu Campbell

1st 2nd 3rd
Alphabet Yulia Xavier Zoran
Baidu Xavier Yulia Zoran
Campbell Xavier Yulia Zoran

Stable marriage problem

Context: Candidates apply to companies.

Perfect matching: everyone is matched with a single company.
o Each candidate gets exactly one company.
o Each company gets exactly one candidate.

Stability: no incentive for some pair of participants to undermine
assignment by joint action.
o In matching M, an unmatched pair a-B is unstable if candidate
o and company B prefer each other to current match.
o Unstable pair a-B could each improve by “escaping”.

Stable matching: perfect matching with no unstable pairs.

Stable matching problem: Given the preference lists of n
candidates and n companies, find a stable matching (if one exists).

Candidates

Q: Is X-C, Y-B, Z-A a good assignment?

Example

Candidates’ preferences

1st 2nd 3rd
Xavier Alphabet Baidu -
Yulia Alphabet | Campbell
Zoran - Baidu Campbell

1St

znd

Alphabet

Baidu

Campbell

Xavier

Q: Is X-C, Y-B, Z-A a good assignment?
A: No! Xavier and Baidu will hook up...

- =

7

/B

I
Candidates :

®

-_—

Example

N
\

Candidates’ preferences

1st 2nd 3rd
Xavier Alphabet Baidu -
Yulia Alphabet | Campbell
Zoran - Baidu Campbell

o= Ty

/7

N

/ \
/ \
\

I

\ /
\\@2/,

Companies’ preferences

Companies

Campbell

1st znd
Alphabet Yulia Xavier
Baidu Xavier

Zoran

Example

Q: Is X-A, Y-B, Z-C a good assignment?

A: Yes!
/’"\\
/
®_‘ / @ \
I ‘ I \
. l I ‘
Candidates | (V)— —®B , Companies
I 1 !
\
/
\ @ N {9 /
S /’
-— -
Candidates’ preferences Companies’ preferences
1st 2nd 3rd 1st
Xavier Baidu Campbell Alphabet Yulia
Yulia Alphabet | Campbell Baidu Xavier

Zoran Alphabet Baidu - Campbell Xavier

Stable “marriage” problem

Consider a complete bipartite graph such that |A|=|B|=n.
 Each member of A has a preference ordering of members of B.
 Each member of B has a preference ordering of members of A.

Algorithm for finding a matching:

 Each A member offer to a B, in preference order.

 Each B member accepts the first offer from an A, but then
rejects that offer if/when it receives a offer from a A that it
prefers more.

In our example: Candidates applies to companies. Companies
accept the first offer they receive, but companies will drop their
applicant when/if a preferred candidate applies after.

Note the asymmetry between A and B.

Gale-Shapley algorithm

For each a=A, let pref[a] be the ordering of its preferences in B
For each B<B, let pref[B] be the ordering of its preferences in A
Let matching be a set of crossing edges between A and B

matching<«J
while there is a & A not yet matched do
B<«—pref[a].removeFirst()
if B not yet matched then
matching«<matchingu{(a,B)}
else
y<—PB’s current match
if B prefers a over y then
matching<matching-{(y,B)}v{(a,B)}

returnmatching

Candidates !

Candidates’ preferences

1st 2nd 3rd
Xavier Baidu Alphabet | Campbell
Yulia Baidu Campbell | Alphabet
Zoran Alphabet | Campbell Baidu

/7 N
/ \
/ @ \
| \
(B , Companies
\ I
\ /
\ © /
N\ - 7
Companies’ preferences
1st 2nd 3rd
Alphabet Zoran Xavier Yulia
Baidu Yulia Zoran Xavier
Campbell Xavier Yulia Zoran

Candidates :

\
\

®

\

\hf

/

/
/7

Candidates’ preferences

1st 2nd 3rd
Xavier Baidu Alphabet | Campbell
Yulia Baidu Campbell | Alphabet
Zoran Alphabet | Campbell Baidu

\
‘ .
: Companies
\ I
\ /
\ © /
N\ - 7
Companies’ preferences
1st 2nd 3rd
Alphabet Zoran Xavier Yulia
Baidu Yulia Zoran Xavier
Campbell Xavier Yulia Zoran

| \
Candidates | (V) ' Companies
| I
\ J ‘\ I
\ / /
\ / \ © /
S -_— 7 > - s
Candidates’ preferences Companies’ preferences
1st 2nd 3rd 1st an 3rd

Xavier - Alphabet | Campbell Alphabet Zoran Xavier Yulia
Yulia Baidu Campbell | Alphabet Baidu Yulia Zoran -

Zoran Alphabet | Campbell Baidu Campbell Xavier Yulia Zoran

e S
N
7 \ // N
®--» G
| “ | \
Candidates | (V)— —® |, Companies
\ J \ I
/ \ /
\ @ / \ © /
S -_— 7 N - s
Candidates’ preferences Companies’ preferences
1st 2nd 3rd 1st an 3rd
Xavier Baidu Alphabet | Campbell Alphabet Zoran Xavier Yulia
Yulia - Campbell | Alphabet Baidu - Zoran Xavier
Zoran Alphabet | Campbell Baidu Campbell Xavier Yulia Zoran

- -
/ \ Ve S \
/ . /
;O > ®
| ! I \
. 1 1
| |
Candidates | (V)— —®
\ J \ I
\ / \ /
\ @ / \ @ /
Candidates’ preferences
3rd
Xavier Campbell Alphabet
Yulia Campbell | Alphabet Baidu
Zoran Alphabet | Campbell Baidu Campbell Xavier

Companies

Companies’ preferences

3rd

Yulia

Xavier

Yulia

Zoran

Candidates

/

= = e

\

/
\

7

X—=

Example

\
1

’
\
N

-_—

U,
@

N
\
/
7/

|
l
/

Candidates’ preferences

Xavier

Yulia

Zoran

Companies

Companies’ preferences

Alphabet

3rd
Campbell
Campbell | Alphabet
Campbell Baidu

PREEREN .
/

7 @ \
1 \
I |
—®
\ I

\ /

\ © /
\N - 7
Alphabet
Baidu
Campbell Xavier

3rd

Yulia

Xavier

Yulia

Zoran

Candidates

Men’s preferences

Companies

Companies’ preferences

1st 2nd 3rd
Xavier Baidu Alphabet | Campbell
Yulia Campbell | Alphabet
Zoran Campbell Baidu

1St
Alphabet
Baidu
Campbell Xavier

2nd 3rd
Xavier Yulia
Zoran Xavier
Yulia Zoran

i S
7 /7 N
T O B
/ / \
| ! \
. |
Candidates ! : ®
\ 4 I
\ / \ /
\ / \ © /
S -_— 7 N - s
Candidates’ preferences
1st 2nd 3rd 1st
Xavier Baidu Alphabet | Campbell Alphabet
Yulia Campbell | Alphabet Baidu
Zoran Campbell Baidu Campbell Xavier

Companies

Companies’ preferences

2nd 3rd
Xavier Yulia
Zoran Xavier
Yulia Zoran

Candidates

-_—

Candidates’ preferences

1st 2nd

Xavier

Baidu Alphabet

Yulia

Zoran

3rd
Campbell | Alphabet
Campbell Baidu

Companies

Companies’ preferences

1St

Alphabet

Baidu

Campbell

2nd 3rd
Xavier Yulia
Zoran Xavier
Yulia Zoran

Correctness (termination)

Observations:

1. Candidates apply to companies in decreasing order of
preference.

2. Once a company is matched, it never becomes unmatched;
it only "trades up."

Claim: Algorithm terminates after at most n? iterations of while
loop (i.e. O(n?) running time).

Proof: Each time through the while loop a candidate applies to
a new company. There are only n? possible matches. B

Correctness (perfection)

Claim: All candidates and companies get matched.

Proof: (by contradiction)

Suppose, for sake of contradiction, that Zoran is not matched
upon termination of algorithm.

Then some company, say Alphabet, is not matched upon
termination.

By Observation 2 (only trading up, never becoming
unmatched), Alphabet never received any application.

But, Zoran applies everywhere. Contradiction. ®

Correctness (stability)

Claim: No unstable pairs.

Proof: (by contradiction)
* Suppose Z-A is an unstable pair: they prefer each other to the
association made in Gale-Shapley matching.
 (Case 1:Z never applied to A.
— Z prefers his GS match to A.
— Z-A is stable.
e (Case 2:Z applied to A.
= A rejected Z (right away or later)
— A prefers its GS match to Z.
= Z-Ais stable.
* In either case Z-A is stable. Contradiction. ®

Optimality

Definition: Candidate a is a valid partner of company B if
there exists some stable matching in which they are matched.

Applicant-optimal assignment: Each candidate receives best
valid match (according to his preferences).

Claim: All executions of GS yield a applicant-optimal
assignment, which is a stable matching!

Applicant-Optimality

Claim: GS matching S* is applicant-optimal.

Proof: (by contradiction)

Suppose some candidate is paired with someone other than his best
option. Candidates apply in decreasing order of preference = some
candidate is rejected by a valid match.

Let Y be first such candidate, and let A be the first valid company that
rejects him (i.e. A-Y is optimal).

Let S be a stable matching (not from GS) where A and Y are matched.
In GS, when Y is rejected, A forms (or reaffirms) engagement with a
candidate, say Z, whom it prefersto Y (i.e. A prefers Zto Y)

Let B be Z's match in S (i.e. B-Z is optimal).

In GS, Z is not rejected by any valid match at the point when Y is rejected
by A.

Thus, Z prefers A to B (because B-Z is optimal).

But A prefersZtoY.

Thus A-Z would be preferred in S (i.e. A-Y and B-Z are unstable).

