
COMP251:	Single	source	shortest	
paths

Jérôme Waldispühl
School	of	Computer	Science

McGill	University
Based	on	(Cormen et	al.,	2002)

Which	assertions	are	true?

• A	light	edge	crosses	the	cut.
• A	light	edge	is	unique.
• A	MST	is	unique.
• A	graph	A	that	respects	the	cut	has	no	light	edge.

✓

✗
✓

✗

How	do	we	decide	if	an	edge	(i,j)	belongs	to	a	MST	during	the	
execution	of	the	Kruskal's algorithm?

• When	this	edge	connects	two	sets	of	vertices	that	are	not	
connected.

• When	the	weight	of	(i,j)	is	the	lowest	among	all	candidate	
edges.

• When	the	vertices	i and	j	have	not	been	used	in	the	solution	
under	construction.

✓

✗

✗

Let	G=(V,E)	be	a	connected	undirected	weighted	graph	on	which	
we	run	the	Prim's	algorithm	to	compute	a	MST.	How	many	

iterations	the	main	loop	of	the	algorithm	will	do?

• |E|
• |V|	- 1
• |E|	+	|V|
• |V|	^	2

✓

✗
✗

✗

Problem
What	is	the	shortest	road	to	go	
from	one	city	to	another?

Example:	Which	road	should	I	
take	to	go	from	Montréal	to	
Boston	(MA)?

Variants:
• What	is	the	fastest	road?
• What	is	the	cheapest	road?

Input:
• Directed	graph	G	=	(V,E)
• Weight	function	w:	E➝ℝ
Weight	of	path	p =	⟨ v0,	v1,	… ,	vk ⟩

=

=	sum	of	edges	weights	on	path	p
Shortest-path	weight	u to	v:

Shortest	path	u to	v is	any	path	p such	that	w(p) = δ(u,v)
Generalization	of	breadth-first	search	to	weighted	graphs

Modeling	as	graphs

w(vk−1,vk)
k=1

n

∑

δ(u,v) = min w(p) :u! v
p{ }

∞

"

#
$

%
$

If	there	exists	a	path	u									v.

Otherwise.		

Example

3

5

1

6

6

2 72
4

3
s

z

x

y

t

Shortest	path	from	s?

Example

0

3

5

9

11

3

5

1

6

6

2 72
4

3
s

z

x

y

t

Shortest	paths	are	organized	as	a	tree.
Vertices	store	the	length	of	the	shortest	path	from	s.

Example

0

3

5

9

11

3

5

1

6

6

2 72
4

3
s

z

x

y

t

Shortest	paths	are	not	necessarily	unique!

Variants

• Single-source:	Find	shortest	paths	from	a	given	source	
vertex	s	∈ V to	every	vertex	v	∈ V.

• Single-destination:	Find	shortest	paths	to	a	given	
destination	vertex.

• Single-pair:	Find	shortest	path	from	u to	v.

Note:	No	way	to	known	that	is	better	in	worst	case	than	
solving	the	single-source	problem!

• All-pairs:	Find	shortest	path	from	u to	v for	all	u,	v	∈ V	.

Negative	weight	edges

Negative	weight	edges	can	create	issues.

Why? If	we	have	a	negative-weight	cycle,	we	can	just	keep	
going	around	it,	and	get	w(s,	v)	=	−∞	for	all	v	on	the	cycle.

When? If	they	are	reachable	from	the	source.	Corollary:	OK,	if	
the	negative-weight	cycles	is	not	reachable	from	the	source.

Who?	Some	algorithms	work	only	if	there	are	no	negative-
weight	edges	in	the	graph.	We	must	specify	when	they	are	
allowed	and	not.

Cycles

Shortest	paths	cannot	contain	cycles:

• Negative-weight:	Already	ruled	out.

• Positive-weight:	we	can	get	a	shorter	path	by	omitting	the	
cycle.

• Zero-weight:	no	reason	to	use	them	⇒ assume	that	our	
solutions	will	not	use	them.

Optimal	substructure
Lemma
Any	subpath of	a	shortest	path	is	a	shortest	path.

Proof: (cut	and	paste)

Suppose	this	path	p is	a	shortest	path	from	u to	v.

Then	δ(u,v)	=	w(p)	=	w(pux)	+	w(pxy)	+	w(pyv).

u x y v

pxy

Optimal	substructure
Lemma
Any	subpath of	a	shortest	path	is	a	shortest	path.

Proof: (cont’d)

Now	suppose	there	exists	a	shorter	path	x								y.

Then	w(p’xy)<w(pxy).

w(p’)	=	w(pux)	+	w(p’xy)	+	w(pyv)	<	w(pux)	+	w(pxy)	+	w(pyv)	=	w(p).

Contradiction	of	the	hypothesis	that	p is	the	shortest	path!

p’xy

u x y v

pxy

p’xy

Customized	breadth-first	search

s

z

x

y

t

0

Vertices	count	the	number	of	edges	used	to	reach	them.	

Customized	breadth-first	search

s

z

x

y

t

0

1

1

Customized	breadth-first	search

s

z

x

y

t

0

1

1

2

Customized	breadth-first	search

s

z

x

y

t

0

1

1

2

2

Customized	breadth-first	search

s

z

x

y

t

0

1

1

2

2

Can	we	generalize	BFS	to	use	edge	weights?

Output	of	single-source	shortest-path	
algorithm	

For	each	vertex	v	∈ V	:	
• d[v]	=	δ(s,v).	
• Initially,	d[v]	=	∞.	
• Reduces	as	algorithms	progress,	but	always	maintain	

d[v]	≥	δ(s,v).	
• Call	d[v]	a	shortest-path	estimate.	

• π[v]	=	predecessor	of	v	on	a	shortest	path	from	s.	
• If	no	predecessor,	π[v]	=	NIL.	
• π	induces	a	tree	- shortest-path	tree (see	proof	in	

textbook).

Algorithm	structure

1. Initialization
2. Scan	vertices	and	relax	edges

The	algorithms	differ	in	the	order	and	
how	many	times	they	relax	each	edge.

Initialization

INIT-SINGLE-SOURCE(V,s)
for each v ∈ V do
d[v]ß ∞
π[v]ß NIL

d[s]ß0

Relaxing	an	edge

RELAX(u,v,w)
if d[v]>d[u]+w(u,v) then
d[v] ß d[u]+w(u,v)
π[v]ßu

4 9
3 vu

4 7

Relax

4 6
3 vu

4 6

Triangle	inequality

For	all	(u,v)∈ E,	we	have	δ(u,v)	≤	δ(u,x)	+	δ(x,v).

Proof:	
Weight	of	shortest	path	u	 v	is	≤	weight	of	any	path	u	 v.
Path	u x				 v	is	a	path	u	 v,	and	if	we	use	a	shortest	
path	u x	and	x							v,	its	weight	is	δ(u,	x)	+	δ (x,	v).	

u v

x

δ(u,v)	

δ(u,x)	 δ(x,	v)	

Upper	bound	property
Always	have	δ(s,	v)	≤	d[v]	for	all	v.	
Once	d[v]	=	δ(s,	v),	it	never	changes.

Proof:
Initially	true.
Suppose	there	exists	a	vertex	such	that	d[v]	<	δ(s,	v).
Assume	v	is	first	vertex	for	which	this	happens.
Let	u	be	the	vertex	that	causes	d[v]	to	change.
Then	d[v]	=	d[u]	+	δ(u,	v).
d[v]	<	δ(s,v)	≤	 δ(s,	u)	+	δ(u,	v)	≤	 d[u]	+	δ(u,	v)	⇒d[v]	<	d[u]	+	δ(u,v).	

(triangle	inequality)										(v	is	first	violation)

Contradicts	d[v]	=	d[u]	+	δ(u,	v).	

No-path	property

If	δ(s,	v)	=	∞,	then	d[v]	=	∞	always.

Proof:	d[v]	≥	δ(s,v)	=	∞	⇒ d[v]	=	∞.

Convergence	property
If:
1. s		 u→v is	a	shortest	path,
2. d[u]	=	δ(s,u),
3. we	call	RELAX(u,v,w),
then	d[v]	=	δ(s,v)	afterward.

Proof:
After	relaxation:
d[v]	≤	d[u]	+	w(u,v)	 (RELAX	code)

=	δ(s,	u)	+	w(u,	v)
=	δ(s,	v)	 (lemma-optimal	substructure)

Since	d[v]	≥	δ(s,	v),	must	have	d[v]	=	δ(s,	v).

Path-relaxation	property
Let	p	=	⟨v0,v1,...,vk⟩ be	a	shortest	path	from	s	=	v0 to	vk.	
If	we	relax,	in	order,	(v0,v1),	(v1,v2),...,	(vk−1,vk),	even	
intermixed	with	other	relaxations,	then	d[vk]	=	δ(s,vk).

Proof:
Induction	to	show	that	d[vi]=δ(s,vi)	after	(vi−1,vi)	is	relaxed.
Basis:	i =	0.	Initially,	d[v0]	=	0	=	δ(s,	v0)	=	δ(s,s).
Inductive	step:	Assume	d[vi−1]	=	δ(s,vi−1).	Relax	(vi−1,vi).	By	
convergence	property,	d[vi]	=	δ(s,	vi)	afterward	and	d[vi]	
never	changes.

Single-source	shortest	paths	in	a	DAG
Since	a	DAG,	we	are	guaranteed	no	negative-weight	cycles.

DAG-SHORTEST-PATHS(V,E,w,s)
topologically	sort	the	vertices
INIT-SINGLE-SOURCE(V,s)
for each vertex u in topological order do

for each vertex v∈Adj[u] do
RELAX(u,v,w)

2 ts
7 -1 -2

6 1

4
2

x

y z

Example

ts

2

0 2 7 -1 -2

6 1

4
x

y z
∞ ∞∞ ∞

Example

ts

2

0 2
2 6

7 -1 -2

6 1

4
x

y z
∞ ∞

Example

ts

2

0 2
2 6

7
6

-1
4

-2

6 1

4
x

y z

Example

ts

2

0 2
2 6

7
5

-1
4

-2

6 1

4
x

y z

Example

ts

2

0 2
2 6

7
5

-1
3

-2

6 1

4
x

y z

Example

ts

2

0 2
2 6

7
5

-1
3

-2

6 1

4
x

y z

Single-source	shortest	paths	in	a	DAG
DAG-SHORTEST-PATHS(V, E,w,s)
topologically	sort	the	vertices
INIT-SINGLE-SOURCE(V,s)
for each vertex u in topological order do

for each vertex v ∈ Adj[u] do
RELAX(u,v,w)

Time:	(V	+	E).	
Correctness:	
Because	we	process	vertices	in	topologically	sorted	order,	edges	
of	any	path	must	be	relaxed	in	order	of	appearance	in	the	path.	
⇒ Edges	on	any	shortest	path	are	relaxed	in	order.
⇒ By	path-relaxation	property,	correct.

Dijkstra’s algorithm
• No	negative-weight	edges.
• Weighted	version	of	BFS:

• Instead	of	a	FIFO	queue,	uses	a	priority	queue.
• Keys	are	shortest-path	weights	(d[v]).

• Have	two	sets	of	vertices:
• S	=	vertices	whose	final	shortest-path	weights	are	determined,
• Q	=	priority	queue	=	V	−	S.

• Similar	Prim’s	algorithm,	but	computing	d[v],	and	using	shortest-
path	weights	as	keys.	

• Greedy	choice:	At	each	step	we	choose	the	light	edge.	

Dijkstra’s algorithm

DIJKSTRA(V, E,w,s)
INIT-SINGLE-SOURCE(V,s)
S ← ∅
Q ← V
while Q ≠ ∅ do

u ← EXTRACT-MIN(Q)
S ← S ∪ {u}
for each vertex v ∈ Adj[u] do

RELAX(u,v,w)

Example

0

10

5

1

2

6

2 72
4

3
s

z

x

y

t

∞

∞

∞

∞

s t y x zQ

Example

0

10

5

10

5

1

2

6

2 72
4

3
s

z

x

y

t

∞

∞

y t x zQ

Example

0

6

5

9

11

10

5

1

2

6

2 72
4

3
s

z

x

y

t

t x zQ

Example

0

6

5

8

11

10

5

1

2

6

2 72
4

3
s

z

x

y

t

x zQ

Example

0

6

5

8

10

10

5

1

2

6

2 72
4

3
s

z

x

y

t

zQ

Example

0

6

5

8

10

10

5

1

2

6

2 72
4

3
s

z

x

y

t

Q

Example

0

6

5

8

10

10

5

1

2

6

2 72
4

3
s

z

x

y

t

Correctness

Loop	invariant:
At	the	start	of	each	iteration	of	the	while loop,	
d[v]	=	δ(s,v)	for	all	v	∈ S.

Initialization:
Initially,	S	=	∅,	so	trivially	true.

Termination:
At	end,	Q=∅⇒ S	=	V	⇒ d[v]	=	δ(s,v)	for	all	v	∈ V.
Maintenance:
Show	that	d[u]	=	δ(s,u)	when	u	is	added	to	S	in	
each	Iteration.

Correctness	(cont’d)

Show	that	d[u]	=	δ(s,u)	when	u	is	added	to	S	in	each	iteration.
Suppose	there	exists	u	such	that	d[u] ≠	δ(s,u).
Let	u	be	the	first	vertex	for	which	d[u] ≠	δ(s,	u)	when	u	is	added	to	S.	
• u	≠	s,	since	d[s]	=	δ(s,s)	=	0.	
• Therefore,	s	∈ S,	so	S ≠	∅.	
• There	must	be	some	path	s	 u.	Otherwise	d[u]	=	δ(s,u)	=	∞	by	

no-path	property.
• So,	there	is	a	path	s	 u.		Thus,	there	is	a	shortest	path	s		 u.

Correctness	(cont’d)
Show	that	d[u]	=	δ(s,u)	when	u	is	added	to	S	in	each	iteration.
Just	before	u	is	added	to	S,	path	p	connects	a	vertex	in	S	(i.e.,	s)	
to	a	vertex	in	V	−	S	(i.e.,	u).
Let	y	be	first	vertex	along	p	that	is	in	V	−	S,	and	let	x	∈ S	be	y is	
predecessor.	

Decompose	p	into	s		 x	→	y	 u.	

x

s

y

u

S
p1

p2

p1 p2

Correctness	(cont’d)
Claim:	d[y]	=	δ(s,	y)	when	u	is	added	to	S.

Proof:
x	∈ S	and	u	is	the	first	vertex	such	that	d[u] ≠ δ(s,	u)	when	
u	is	added	to	S	⇒ d[x]	=	δ(s,	x)	when	x	is	added	to	S.
Relaxed	(x,	y)	at	that	time,	so	by	the	convergence	property,	
d[y]	=	δ(s,	y).

x

s

y

u

S
p1

p2

Correctness	(cont’d)
Show	that	d[u]	=	δ(s,u)	when	u	is	added	to	S	in	each	iteration.
Now	can	get	a	contradiction	to	d[u] ≠	δ(s,	u):
y	is	on	shortest	path	s	 u,	and	all	edge	weights	are	nonnegative.	
⇒ δ(s,	y)	≤	δ(s,	u)	
⇒ d[y]	=	δ(s,y)

≤	δ(s,u)
≤	d[u]	 (upper-bound	property)

In	addition,	since	y	and	u	were	in	Q	when	we	chose	u:
d[u]	≤	d[y]	⇒ d[u]	=	d[y]	.
Therefore,	d[y]	=	δ(s,	y)	=	δ(s,	u)	=	d[u].

Contradicts	assumption	that	d[u] ≠	δ(s,u).	n

Analysis

Like	Prim’s	algorithm,	it	depends	on	implementation	of	
priority	queue.

If	binary	heap,	each	operation	takes	O(lg V)	time
⇒ O(E	lg V).

Note:	We	can	achieve	O(V	lg V	+	E)	with	Fibonacci	heaps.

