
COMP251:	Minimum	Spanning	
Trees

Jérôme Waldispühl
School	of	Computer	Science

McGill	University
Based	on	(Cormen et	al.,	2002)

Based	on	slides	from	D.	Plaisted (UNC)

Recap:	Edge	Classification

1/8

4/5 3/6 10/11

2/7 9/12

u v w

x y z

BF C

B

Back	edge Cross	edge

Forward	edge Tree	edge

Recap:	Topological	Sort
Want	to	“sort” a	directed	acyclic	graph	(DAG).

B

E

D

C

A

C EDA B

Think	of	original	DAG	as	a	partial	order.

Want	a	total	order that	extends	this	partial	order.

Recap:	Strongly	Connected	
Components

a b c

e f g h

d

Recap:	GSCC	is	a	DAG

Proof:
• Suppose	there	is	a	path	v¢ v in	G.	
• Then	there	are	paths	u			 u¢ v¢ and	v¢ v u	in	G.	
• Therefore,	u	and	v¢ are	reachable	from	each	other,	so	
they	are	not	in	separate	SCC’s.

Lemma	2
Let	C	and	C¢ be	distinct	SCC’s	in	G,	let	u, v Î C,	u¢, v¢ Î C¢,	and	
suppose	there	is	a	path	u						 u¢ in	G.	Then	there	cannot	also	be	a	path	
v¢ v in	G.

Recap:	SCCs	and	DFS	finishing	times

Proof:
• Case	1:	d(C) < d(C¢)

– Let	x	be	the	first	vertex	discovered	
in	C.	

– At	time	d[x],	all	vertices	in	C	and	C¢
are	white.	Thus,	there	exist	paths	of	
white	vertices	from	x	to	all	vertices	in	
C	and	C¢.

– By	the	white-path	theorem,	all	
vertices	in	C	and	C¢ are	descendants	
of	x	in	depth-first	tree.

– By	the	parenthesis	theorem,	
f	[x]	= f	(C) > f(C¢).

Lemma	3
Let	C	and	C¢ be	distinct	SCC’s	in	G	= (V, E).	Suppose	there	is	an	edge	
(u, v) Î E	such	that	u	Î C	and	v ÎC¢.	Then	f	(C) > f	(C¢).

C C¢

u v

x

Recap:	SCCs	and	DFS	finishing	times

Proof:
• Case	2:	d(C) > d(C¢)

– Let	y	be	the	first	vertex	discovered	in	C¢.	
– At	d[y],	all	vertices	in	C¢ are	white	and	there	

is	a	white	path	from	y	to	each	vertex	in	C¢ Þ
all	vertices	in	C¢ become	descendants	of	y.	
Again,	f	[y]	= f	(C¢).

– At	d[y],	all	vertices	in	C	are	also	white.
– By	lemma	2,	since	there	is	an	edge	(u, v),	we	

cannot	have	a	path	from	C¢ to	C.
– So	no	vertex	in	C	is	reachable	from	y.
– Therefore,	at	time	f	[y],	all	vertices	in	C	are	

still	white.
– Therefore,	for	all	w Î C,	f	[w]	> f	[y],	which	

implies	that	f	(C) > f	(C¢).

Lemma	3
Let	C	and	C¢ be	distinct	SCC’s	in	G	= (V, E).	Suppose	there	is	an	edge	
(u, v) Î E	such	that	u	Î C	and	v ÎC¢.	Then	f	(C) > f	(C¢).

C C¢

u v

yx

Recap:	SCCs	and	DFS	finishing	times

Proof:
• (u, v) Î ET	Þ (v, u) Î E.	
• SCC’s	of	G	and	GT are	the	same	Þ f(C¢) > f	(C), by	Lemma	2.

Corollary	1
Let	C	and	C¢ be	distinct	SCC’s	in	G	= (V, E).	Suppose	there	is	an	
edge	(u, v) Î ET,	where	u	Î C	and	v Î C¢.	Then	f(C) < f(C¢).

Recap:	Correctness	of	SCC

• When	we	do	the	second	DFS,	on	GT,	start	with	
SCC	C	such	that	f(C) is	maximum.
– The	second	DFS	starts	from	some	x	Î C,	and	it	
visits	all	vertices	in	C.	

– Corollary	1	says	that	since	f(C) > f	(C¢) for	all	C ¹
C¢, there	are	no	edges	from	C	to	C¢ in	GT.

– Therefore,	DFS	will	visit	only	vertices	in	C.
–Which	means	that	the	depth-first	tree	rooted	at	x	
contains	exactly	the	vertices	of	C.

Recap:	Correctness	of	SCC
• The	next	root	chosen	in	the	second	DFS	is	in	SCC	
C¢ such	that	f	(C¢) is	maximum	over	all	SCC’s	other	
than	C.	
– DFS	visits	all	vertices	in	C¢,	but	the	only	edges	out	of		
C¢ go	to	C,	which	we’ve	already	visited.

– Therefore,	the	only	tree	edges	will	be	to	vertices	in	C¢.
• We	can	continue	the	process.
• Each	time	we	choose	a	root	for	the	second	DFS,	it	
can	reach	only
– vertices	in	its	SCC—get	tree	edges	to	these,
– vertices	in	SCC’s	already	visited	in	second	DFS—get	
no	tree	edges	to	these.

Let	G	be	a	directed	graph.	After	DFS,	we	found	that	G	has	a	back	
edge.

• G	has	one	cycle
• G	is	a	tree
• G	is	a	direct	acyclic	graph	(DAG)
• G	is	connected

✓

✗
✗

✗

Let	G	be	a	DAG.	Let	u	and	v	be	two	vertices	of	G,	such	that	there	
is	a	path	from	u	to	v	in	G.	During	the	execution	of	topological	

sort	algorithm,	we	discover	u	before	v.

• v	appears	before	u	in	the	total	order.
• v	appears	after	u	in	the	total	order.
• we	cannot	say	anything	about	the	order	of	u	and	v.

✓
✗

✗

Minimum	Spanning	Tree	(Example)

• A	town	has	a	set	of	houses	and	a	set	of	roads.
• A	road	connects	2	and	only	2	houses.
• A	road	connecting	houses	u	and	v	has	a	repair	cost	w(u,	v).

Goal:	Repair	enough	(and	no	more)	roads	such	that:

1. everyone	stays	connected:	can	reach	every	house	from	all	
other	houses,	and

2. total	repair	cost	is	minimum.

Model	as	graph

a

b

c

e

d

f h

g

i

10

12

9

8

7

3 3

1

8

5

6

2

11

9

• Undirected	graph	G	=	(V,	E).
• Weight	w(u,	v)	on	each	edge	(u,	v)	∈ E.
• Find	T	⊆ E	such	that:

1. T	connects	all	vertices	(T	is	a	spanning	tree),
2. is	minimized.w(T) = w(u,v)

(u,v)∈T
∑

Minimum	Spanning	Tree	(MST)

a

b

c

e

d

f h

g

i

10		

12

9

8																

7

3 3

1

8

5

6

2

11

9

• It	has	|V	|	−	1	edges.
• It	has	no	cycles.
• It	might	not	be	unique.

Generic	Algorithm

A	ßÆ;
while A	is	not	a	spanning	tree	do

find	a	edge	(u,	v)	that	is	safe	for	A;
A	ß A	È {(u,	v)}

return	A

• Initialization:	The	empty	set	trivially	satisfies	the	loop	invariant.
• Maintenance:	We	add	only	safe	edges,	A	remains	a	subset	of	

some	MST.
• Termination:	All	edges	added	to	A	are	in	an	MST,	so	when	we	

stop,	A	is	a	spanning	tree	that	is	also	an	MST.

• Initially,	A	has	no	edges.
• Add	edges	to	A and	maintain	the	loop	invariant:	

“A	is	a	subset	of	some	MST”.

Definitions

a

b

c

e

d

f h

g

i

10

12

9

8

7

3 3

1

8

5

6

2

11

9

cut partitions	vertices	into
disjoint	sets,	S and	V – S.

S V	- S

This	edge	crosses the	cut.
(one	endpoint	is	in	S and	
the	other	is	in	V	– S.)

A	light edge	crossing	
cut	(may	not	be	unique)

A	cut	respects A	if	
and	only	if	no	
edge	in	A	crosses	
the	cut.

b

a

c

e

What	is	a	safe	edge?

a

b

c

e

d

f h

g

i

10

12

9

8

7

3 3

1

8

5

6

2

11

9

Intuitively:	Is	(c,f)	safe	when	A=Æ?
• Let	S	be	any	set	of	vertices	including	c	but	not	f.
• There	has	to	be	one	edge	(at	least)	that	connects	S	with	V	−	S.
• Why	not	choosing	the	one	with	the	minimum	weight?	

S V	- S

Proof:
Let	T	be	a	MST	that	includes	A.
Case	1: (u,	v)	in	T.	We’re	done.
Case	2: (u,	v)	not	in	T.		We	have	the	following:	

u y

x

v

edge	in	A

cut

We	show	
edges	in	T

Safe	edge
Theorem	1: Let	(S,	V-S)	be	any	cut	that	respects	A,	and	let	(u,	v)	 be	
a	light	edge	crossing	(S,	V-S).	Then,	(u,	v)	is	safe	for	A.

(x,	y)	crosses	cut.
Let	T´ =	T	- {(x,	y)}	È {(u,	v)}.
Because	(u,	v)	is	light	for	cut,
w(u,	v)	£ w(x,	y).	Thus,	
w(T´)	=	w(T)-w(x,	y)+w(u,	v)£w(T).
Hence,	T´ is	also	a	MST.	
So,	(u,	v)	is	safe	for	A.

In	general,	A	will	consist	of	several	connected	components.

Corollary

Corollary: If	(u,	v)	is	a	light	edge	connecting	one	CC	in	(V,	A)	to	
another	CC	in	(V,	A),	then	(u,	v)	is	safe	for	A.

Kruskal’s	Algorithm

1. Starts	with	each	vertex	in	its	own	component.
2. Repeatedly	merges	two	components	into	one	by	choosing	a	

light	edge	that	connects	them	(i.e.,	a	light	edge	crossing	the	
cut	between	them).

3. Scans	the	set	of	edges	in	monotonically	increasing	order	by	
weight.

4. Uses	a	disjoint-set	data	structure	to	determine	whether	an	
edge	connects	vertices	in	different	components.

Example

a

b

c

e

d

f h

g

i

10

12

9

8

7

3 3

1

8

5

6

2

11

9

Example

a

b

c

e

d

f h

g

i

10

12

9

8

7

3 3

1

8

5

6

2

11

9

Example

a

b

c

e

d

f h

g

i

10

12

9

8

7

3 3

1

8

5

6

2

11

9

Example

a

b

c

e

d

f h

g

i

10

12

9

8

7

3 3

1

8

5

6

2

11

9

Example

a

b

c

e

d

f h

g

i

10

12

9

8

7

3 3

1

8

5

6

2

11

9

Reject!

Example

a

b

c

e

d

f h

g

i

10

12

9

8

7

3 3

1

8

5

6

2

11

9

Example

a

b

c

e

d

f h

g

i

10

12

9

8

7

3 3

1

8

5

6

2

11

9

Example

a

b

c

e

d

f h

g

i

10

12

9

8

7

3 3

1

8

5

6

2

11

9

Example

a

b

c

e

d

f h

g

i

10

12

9

8

7

3 3

1

8

5

6

2

11

9

Example

a

b

c

e

d

f h

g

i

10

12

9

8

7

3 3

1

8

5

6

2

11

9

Example

a

b

c

e

d

f h

g

i

10

12

9

8

7

3 3

1

8

5

6

2

11

9

Example

a

b

c

e

d

f h

g

i

10

12

9

8

7

3 3

1

8

5

6

2

11

9

Example

a

b

c

e

d

f h

g

i

10

12

9

8

7

3 3

1

8

5

6

2

11

9

Example

a

b

c

e

d

f h

g

i

10

12

9

8

7

3 3

1

8

5

6

2

11

9

Kruskal’s complexity
• Initialize	A:	O(1)
• First	for	loop:	|V	|	MAKE-SETs
• Sort	E:	O(E	lg E)
• Second	for	loop:	O(E)	FIND-SETs	and	UNIONs

Assuming	union	by	rank	and	path	compression:
O((V	+E)α(V))+O(E lg E)

• Since	G	is	connected,	|E|	≥	|V|	−	1	⇒ O(E	α(V))	+	O(E	lg E).
• α(|V|)=	O(lgV)=	O(lgE).
• Therefore,	total	time	is	O(E	lg E).
• |E|≤|V|2⇒lg|E|=O(2lgV)=O(lgV).	

⇒ O(E	lg V)	time	

Prim’s	Algorithm

1. Builds	one	tree,	so	A	is	always	a	tree.
2. Starts	from	an	arbitrary	“root” r	.
3. At	each	step,	adds	a	light	edge	crossing	cut	(VA, V	- VA) to A.
– Where	VA = vertices	that	A	is	incident	on.

UNC	Chapel	Hill Lin/Foskey/Manocha

Intuition	behind	Prim’s	Algorithm
• Consider	the	set	of	vertices	S currently	part	of	the	tree,	
and	its	complement	(V-S).		We	have	a	cut	of	the	graph	
and	the	current	set	of	tree	edges	A is	respected	by	this	
cut.

• Which	edge	should	we	add	next?		Light	edge!

Finding	a	light	edge

1. Uses	a	priority	queue	Q to	find	a		light	edge	quickly.
2. Each	object	in	Q	is	a	vertex	in	V - VA.
3. Key	of	v has	minimum	weight	of	any	edge	(u, v),	where	u	Î VA.
4. Then	the	vertex	returned	by	Extract-Min	is	v such	that	there	

exists	u	Î VA and	(u, v) is	light	edge	crossing	(VA, V - VA).
5. Key	of	v is	¥ if	v is	not	adjacent	to	any	vertex	in	VA.

UNC	Chapel	Hill Lin/Foskey/Manocha

Basics	of	Prim	’s	Algorithm
• It	works	by	adding	leaves	on	at	a	time	to	the	current	

tree.		
– Start	with	the	root	vertex r (it	can	be	any	vertex). At	any	time,	

the	subset	of	edges	A forms	a	single	tree.		S =	vertices	of	A.
– At	each	step,	a	light	edge	connecting	a	vertex	in	S to	a	vertex	in	

V- S is	added	to	the	tree.
– The	tree	grows	until	it	spans	all	the	vertices	in	V.

• Implementation	Issues:
– How	to	update	the	cut	efficiently?
– How	to	determine	the	light	edge	quickly?

UNC	Chapel	Hill Lin/Foskey/Manocha

Implementation:	Priority	Queue
• Priority	queue	implemented	using	heap	can	support	the	

following	operations	in	O(lg n) time:
– Insert	(Q, u, key):		Insert	u with	the	key	value	key in	Q
– u =	Extract_Min(Q):		Extract	the	item	with	minimum	key	value	in	Q
– Decrease_Key(Q, u, new_key):		Decrease	the	value	of	u’s	key	value	to	

new_key

• All	the	vertices	that	are	not in	the	S (the	vertices	of	the	edges	
in	A)	reside	in	a	priority	queue	Q based	on	a	key field.		When	
the	algorithm	terminates,	Q is	empty.		A = {(v, p[v]): v Î V -
{r}}

Q := V[G];
for each u Î Q do

key[u] := ¥
p[u] := Nil;
Insert(Q,u)

Decrease-Key(Q,r,0);
while Q ¹ Æ do

u := Extract-Min(Q);
for each v ÎAdj[u] do
if v Î Q Ù w(u, v) < key[v] :

p[v] := u;
Decrease-Key(Q,v,w(u,v));

Complexity:
Using	binary	heaps:	O(E	lg V).

Initialization:	O(V).
Building	initial	queue: O(V).
V	Extract-Min:	O(V	lgV).
E	Decrease-Key:	O(E	lg V).

Using	Fibonacci	heaps:
O(E	+	V	lg V).

Prim’s	Algorithm

Notes: (i)	A	=	{(v,	p[v])	:	v	Î v	- {r}	- Q}.	(ii)	r	is	the	root.

Example	of	Prim’s	Algorithm

b/¥ c/¥a/0

d/¥ e/¥ f/¥

5

11

0

3 1

7

-3

2

Q	=	a		b		c		d		e		f
0		¥ ¥ ¥ ¥ ¥

Not	in	tree

Example	of	Prim’s	Algorithm

b/5 c/¥a/0

d/11 e/¥ f/¥

5

11

0

3 1

7

-3

2

Q	=	b		d		c		e		f
5	11	¥ ¥ ¥

Example	of	Prim’s	Algorithm

b/5 c/7a/0

d/11 e/3 f/¥

5

11

0

3 1

7

-3

2

Q	=	e		c		d			f
3		7	11	¥

Example	of	Prim’s	Algorithm

b/5 c/1a/0

d/0 e/3 f/2

5

11

0

3 1

7

-3

2

Q	=	d		c		f
0		1		2

Example	of	Prim’s	Algorithm

b/5 c/1a/0

d/0 e/3 f/2

5

11

0

3 1

7

-3

2

Q	=	c		f
1		2

Example	of	Prim’s	Algorithm

b/5 c/1a/0

d/0 e/3 f/-3

5

11

0

3 1

7

-3

2

Q	=	f
-3

Example	of	Prim’s	Algorithm

b/5 c/1a/0

d/0 e/3 f/-3

5

11

0

3 1

7

-3

2

Q	=	Æ

Example	of	Prim’s	Algorithm

0

b/5 c/1a/0

d/0 e/3 f/-3

5

3 1 -3

UNC	Chapel	Hill Lin/Foskey/Manocha

Correctness	of	Prim

• Again,	show	that	every	edge	added	is	a	safe	edge	for	A
• Assume	(u, v) is	next	edge	to	be	added	to	A.
• Consider	the	cut	(A, V-A).	

– This	cut	respects	A
– and	(u, v) is	the	light	edge	across	the	cut

• Thus,	by	the	Theorem	1,	(u,v) is	safe.		

