COMP251: Minimum Spanning
Trees

Jérome Waldispuhl
School of Computer Science
McGill University
Based on (Cormen et al., 2002)

Based on slides from D. Plaisted (UNC)

Recap: Edge Classification

Forward edge Tree edge

Cross edge

Back edge

Recap: Topological Sort

Want to “sort” a directed acyclic graph (DAG).

D
|
TGO OO

Think of original DAG as a partial order.

Want a total order that extends this partial order.

Recap: Strongly Connected
Components

Recap: G>*“is a DAG

Lemma 2

Let Cand C' be distinct SCC'sinG,letu,ve C, u', v € C, and
suppose there is a path u ~~=u’ in G. Then there cannot also be a path
V' A~vin G.

Proof:
* Suppose there is a path vi~~vin G.
 Then there are paths u~r~u~~v' and V' ~~v~~uin G.

 Therefore, u and v’ are reachable from each other, so
they are not in separate SCC’ s.

Recap: SCCs and DFS finishing times

Lemma 3
Let C and C' be distinct SCC" s in G = (V, E). Suppose there is an edge
(u, v) € Esuchthatu € Candv €C'. Then f(C) > f(C).

Proof:
e Casel:d(C) <dlC)
— Let x be the first vertex discovered

in C. C
— At time d[x], all vertices in Cand C’

are white. Thus, there exist paths of

white vertices from x to all vertices in

Cand C'. —0

— By the white-path theorem, all
vertices in C and C' are descendants
of x in depth-first tree.

— By the parenthesis theorem,

fix]=£(6) > f(C).

Recap: SCCs and DFS finishing times

Lemma 3
Let C and C' be distinct SCC" s in G = (V, E). Suppose there is an edge
(u, v) € Esuchthatu € Candv €C’. Then f(C) > f(C).

Proof:
e Case2:d(C)>dC)

— Let y be the first vertex discovered in C'.

— At d]y], all vertices in C’' are white and there
is a white path from y to each vertexin C' =
all vertices in C' become descendants of y.

Again, f [y] = f(C').
— At d[y], all vertices in C are also white.

— By lemma 2, since there is an edge (u, v), we
cannot have a path from C' to C.

— So no vertexin Cis reachable from y.

— Therefore, at time f[y], all vertices in C are
still white.

— Therefore, forallw € C, f [w] > f[y], which
implies that f (C) > f(C).

Recap: SCCs and DFS finishing times

Corollary 1
Let C and C’ be distinct SCC" s in G = (V, E). Suppose there is an
edge (u, v) € E, whereu € Cand v € C'. Then f(C) < (C).

Proof:
* (uv)eE'= (v u) ekE.
e SCC’s of Gand G" are the same = f(C') > f(C), by Lemma 2.

Recap: Correctness of SCC

* When we do the second DFS, on G', start with
SCC C such that f(C) is maximum.

— The second DFS starts from some x € C, and it
visits all vertices in C.

— Corollary 1 says that since f(C) > f(C') for all C #
C', there are no edges from Cto C' in G".

— Therefore, DFS will visit only vertices in C.

— Which means that the depth-first tree rooted at x
contains exactly the vertices of C.

Recap: Correctness of SCC

e The next root chosen in the second DFS is in SCC

C' such that f(C') is maximum over all SCC’s other
than C.

— DFS visits all vertices in C', but the only edges out of
C' go to C, which we’ve already visited.

— Therefore, the only tree edges will be to vertices in C'.
 We can continue the process.

 Each time we choose a root for the second DFS, it
can reach only

— vertices in its SCC—get tree edges to these,

— vertices in SCC’ s already visited in second DFS—get
no tree edges to these.

Let G be a directed graph. After DFS, we found that G has a back
edge.

G has one cycle e

Gisatree X

G is a direct acyclic graph (DAG) X
Gis connected X

Ghasonecycle 11 78.6%
Gis atree 0 0%
G is a direct acyclic graph (DAG) 2 14.3%

G is connected 1 7.1%

Let G be a DAG. Let u and v be two vertices of G, such that there
is a path from u to v in G. During the execution of topological
sort algorithm, we discover u before v.

* v appears before u in the total order. X
* v appears after u in the total order. V4
* we cannot say anything about the order of u and v. X

v appears before u in the total order. 3 21.4%
v appears after u in the total order. 7 50%

we cannot say anything about the orderofuandv. 4 28.6%

4

Minimum Spanning Tree (Example)

 Atown has a set of houses and a set of roads.
 Aroad connects 2 and only 2 houses.
* Aroad connecting houses u and v has a repair cost w(u, v).

Goal: Repair enough (and no more) roads such that:

1. everyone stays connected: can reach every house from all
other houses, and

2. total repair cost is minimum.

Model as graph

10

12

 Undirected graph G = (V, E).
 Weight w(u, v) on each edge (u, v) € E.
* Find T & E such that:
1. T connects all vertices (T is a spanning tree),

2. w(l)= E w(u,v) is minimized.

(uv)eT

Minimum Spanning Tree (MST)

 Ithas |V | -1 edges.
* It has no cycles.
* It might not be unique.

Generic Algorithm

* Initially, A has no edges.
* Add edges to A and maintain the loop invariant:
“A is a subset of some MST”.

A& O

while A is not a spanning tree do
find a edge (u, v) that is safe for A;
A< AuU{(u, v)}

return A

Initialization: The empty set trivially satisfies the loop invariant.
Maintenance: We add only safe edges, A remains a subset of
some MST.

Termination: All edges added to A are in an MST, so when we
stop, A is a spanning tree that is also an MST.

A cut respects A if
and only if no

edge in A crosses ‘

Definitions

cut partitions vertices into
disjoint sets, S and V- S.

J

the cut.

A light edge crossing
cut (may not be uniq

This edge crosses the cut.
(one endpointisin S and
ue) the otherisin V-S5.)

What is a safe edge?

Intuitively: Is (c,f) safe when A=?

* Let S be any set of vertices including c but not f.

* There has to be one edge (at least) that connects S with V - S.
* Why not choosing the one with the minimum weight?

Safe edge

Theorem 1: Let (S, V-S) be any cut that respects A, and let (u, v) be
a light edge crossing (S, V-S). Then, (u, v) is safe for A.

Proof:

Let T be a MST that includes A.

Case 1: (u, v) in T. We' re done.

Case 2: (u, v) not in T. We have the following:

(X, y) crosses cut.

Let T" =T-{(x, y)} U {(u, v)}.
Because (u, v) is light for cut,
w(u, v) <w(x, y). Thus,

w(T") = w(T)-w(x, y)+w(u, v)<w(T).
Hence, T is also a MST.
So, (u, v) is safe for A.

We show
edgesinT

Corollary

In general, A will consist of several connected components.

Corollary: If (u, v) is a light edge connecting one CCin (V, A) to
another CCin (V, A), then (u, v) is safe for A.

Kruskal’ s Algorithm

Starts with each vertex in its own component.

Repeatedly merges two components into one by choosing a
light edge that connects them (i.e., a light edge crossing the
cut between them).

Scans the set of edges in monotonically increasing order by
weight.

Uses a disjoint-set data structure to determine whether an
edge connects vertices in different components.

/ —
\\2 / —i
/ 1
/ Vs _
/ Vs
/ y (@) ¥ [
(e]0]
/ P 7 I
el\\ |
|
0 |
7
p ‘Y
7
7

N |
. |
N
~o (@ _
~
00 <AL -t
“ S |
N ~

- \NM S |

/ J/ ~ S
(@) S _
N |

N

~

o (@\|

i el i

Kruskal’s complexity

* |[nitialize A: O(1)

e First for loop: |V | MAKE-SETs

 SortE: O(E|g E)

e Second for loop: O(E) FIND-SETs and UNIONs

Assuming union by rank and path compression:
O((V +E)a(V))+O(E Ig E)

* Since Gis connected, |E| 2 |V| -1= O(E a(V)) + O(E Ig E).
* a(|V])=0(lgV)= O(IgE).

* Therefore, total time is O(E Ig E).
 |E|L|V]|?=Ig|E|=0(2lgV)=0(lgV).

= O(E Ig V) time

Prim’ s Algorithm

Builds one tree, so A is always a tree.

Starts from an arbitrary “root” r.
At each step, adds a light edge crossing cut (V,, V- V,) to 4.

— Where V, = vertices that A is incident on.

Intuition behind Prim’s Algorithm

e Consider the set of vertices S currently part of the tree,
and its complement (7-S). We have a cut of the graph
and the current set of tree edges A4 is respected by this
cut.

* Which edge should we add next?

-l A

Finding a light edge

Uses a priority queue Q to find a light edge quickly.
Each objectin Qis a vertexin V - V,.
Key of v has minimum weight of any edge (u, v), where u € V,.

Then the vertex returned by Extract-Min is v such that there
exists u € V,and (u, v) is light edge crossing (V,, V - V,).

Key of v is o if v is not adjacent to any vertex in V,.

Basics of Prim ’s Algorithm

* It works by adding leaves on at a time to the current
tree.

— Start with the root vertex 7 (it can be any vertex). At any time,
the subset of edges 4 forms a single tree. § = vertices of A.

— At each step, a light edge connecting a vertex in S to a vertex in
V- §is added to the tree.

— The tree grows until it spans all the verticesin V.

* Implementation Issues:
— How to update the cut efficiently?
— How to determine the light edge quickly?

Implementation: Priority Queue

* Priority queue implemented using heap can support the
following operations in O(lg n) time:
— Insert (O, u, key): Insert u with the key value key in QO
— u = Extract_Min(Q): Extract the item with minimum key value in O

— Decrease_Key(Q, u, new key): Decrease the value of u’s key value to
new_key

e All the vertices that are not in the S (the vertices of the edges
in A) reside in a priority queue Q based on a key field. When
the algorithm terminates, Qis empty. 4 = {(v, #[v]): ve V-

Uy

Prim’ s Algorithm

Q = V[GI;
for cachu € Q do
key[u] := o0
m[u] := Nil;
Insert(Q,u)
Decrease-Key(Q.,r,0);
while Q = J do
u := Extract-Min(Q);
for each v € Adj[u] do
if v e QAw(,v)<key[v]:
n[v] = u;
Decrease-Key(Q,v,w(u,v));

Complexity:

Using binary heaps: O(E Ig V).
Initialization: O(V).
Building initial queue: O(V).
V Extract-Min: O(V IgV).

E Decrease-Key: O(E Ig V).

Using Fibonacci heaps:
O(E+VIgV).

Notes: (i) A={(v, ®[v]) : v € v-{r} - Q}. (ii) r is the root.

Example of Prim’ s Algorithm

Not in tree
5 7 AN

@11 - \
@ @ @ O 00 00 00 00 OO

0 2

Example of Prim’ s Algorithm

@Y ——er—"—(
11 3 3 |Q=bdcef
511 000000

Example of Prim’ s Algorithm

3711
——(er3——()

Example of Prim’ s Algorithm

Example of Prim’ s Algorithm

(2/0) 2o/ —L—(e/1)
/b

Example of Prim’ s Algorithm

Example of Prim’ s Algorithm

@/ r—"—(/3

Example of Prim’ s Algorithm

Correctness of Prim

Again, show that every edge added is a safe edge for 4
Assume (u, v) is next edge to be added to 4.
Consider the cut (4, V-A).

— This cut respects 4
— and (u, v) is the light edge across the cut

Thus, by the Theorem 1, (u,v) is safe.

