
Comp 251: Assignment 3

Instructor: Jérôme Waldispühl

Due on March 26th at 11h59

• Your solution must be returned electronically on MyCourse.
• Written answers and programming questions must be returned in separate submission folders

on MyCourse.
• The only format accepted for written answers are PDF or text files (e.g. .txt or .rtf).

PDF files must open on SOCS computers. Any additional files (e.g. images) must be in-
cluded in the PDF.
• Do not submit a compressed files (e.g. zip files). Upload instead each PDF or text file

individually.
• The solution of programming questions must be written in java. Submit the Java source

file only (i.e. .java). Your program should compile and execute of SOCS computers in a
terminal. Java files that do not compile or execute properly on SOCS computer will not be
graded.
• To some extent, collaborations are allowed. These collaborations should not go as far as

sharing code or giving away the answer. You must indicate on your assignments the names
of the persons with who you collaborated or discussed your assignments (including members
of the course staff). If you did not collaborate with anyone, you write “No collaborators” at
the beginning of your document. If asked, you should be able to orally explain your solution
to a member of the course staff.
• Unless specified, all answers must be justified.
• When applicable, your pseudo-code should be commented and indented.
• The clarity and presentation of your answers is part of the grading. Be neat!
• Violation of all rules above may result in penalties or even absence of grading (Please, refer

to the course webpage for a full description of the policy).
• Partial answers will receive credits.
• The course staff will answer questions about the assignment during office hours or in the

online forum at https://osqa.cs.mcgill.ca/. We urge you to ask your questions
as early as possible. We cannot guarantee that questions asked less than 24h before the
submission deadline will be answered in time.

1



1. (40 points) We will implement the Ford-Fulkerson algorithm to calculate the Maximum Flow
of a directed weighted graph. Here, you will use the files WGraph.java and FordFulker-
son.java, which are available on the course website. Your role will be to complete two methods
in the template FordFulkerson.java.
The file WGraph.java is the similar to the file that you used in your previous assignment to
build graphs. The only differences are the addition of setters and getters methods for the
Edges and the addition of the parameters “source” and “destination”. There is also an addi-
tional constructor that will allow the creation of a graph cloning a WGraph object. Graphs are
also encoded using a similar format than the one used in the previous assignment. The only
difference is that now the first line corresponds to two integers, separated by one space, that
represent the “source” and the “destination” nodes. An example of such file can be found on
the course website with the file ff2.txt. These files will be used as an input in the program
FordFulkerson.java to initialize the graphs. This graph corresponds to the same graph
depicted in [CLRS2009] page 727.
Your task will be to complete the two static methods fordfulkerson(Integer source,
Integer destination, WGraph graph, String filePath) and pathDFS(
Integer source, Integer destination, WGraph graph). The second method
pathDFS finds a path through a Depth First Search (DFS) between the nodes “source” and
“destination” in the “graph”. You must return an ArrayList of Integers with the list of unique
nodes belonging to the path found by the DFS. The first element in the list must correspond to
the “source” node, the second element in the list must be the second node in the path, and so on
until the last element (i.e., the “destination” node) is stored. The method fordfulkerson
must compute an integer corresponding to the max flow of the “graph” and the graph itself.
The method fordfulkerson has a variable called myMcGillID, which must be initial-
ized with your McGill ID number.
Once completed, compile all the java files and run the command line java FordFulkerson
ff2.txt. Your program must use the function writeAnswer to save your output in a file. An
example of the expected output file is available in the file ff226000000.txt. This output
keeps the same format than the file used to build the graph; the only difference is that the first
line represents now the maximum flow (instead of the “source” and “destination” nodes). The
other lines represent the same graph with the weights updated with the values that represent the
maximum flow. The file ff226000000.txt represent the answer of the example showed
in [CLRS2009] Pag 727. You are invited to run other examples of your own to verify that your
program is correct.

2. (40 points) We want to implement the Bellman-Ford algorithm for finding the shortest path in
a graph where edge can have negative weights. This question extends the previous question on
the implementation of the Dijkstra’s algorithm done in the assignment 2. You will need to ex-
ecute this program to use the same auxiliary class Wgraph used in question 1. Your task is to
fill the method BellmanFord(WGraph g, int source) and shortestPath(int
destination) in the file BellmanFord.java.
The method BellmanFord takes a object WGraph named g as an input (See Assignment
2) and an integer that indicates the source of the paths. If the input graph g contains a neg-
ative cycle, then the method should through an exception. Otherwise, it will return an ob-

COMP 251 - HW3 Page 2 of 3 Winter 2017



ject BellmanFord that contains the shortest path estimates (the private array of integers
distances), and for each node its predecessor in the shortest path from the source (the pri-
vate array of integers predecessors).
The method shortestPath will return the list of nodes as an array of integers along the
shortest path from the source to the node destination. If this path does not exists, the method
should throw an exception.
Input graphs are available on the course webpage to test your program. Nonetheless, we invite
you to also make your own graphs to test your program.

3. (10 points) Give an O(n lg n) time algorithm to find the longest monotonically increasing
subsequence of a sequence of n numbers. (Hint: Observe that the last element of a candidate
subsequence of length i is at least as large as the last element of a candidate subsequence of
length i− 1. Maintain candidate subsequences by linking them through the input sequence.)
We do not ask you to prove your algorithm, but a complete exact proof will receive a bonus.

4. (10 points) Apply the Neddleman-Wunch algorithm to find the optimal sequence alignment
between the sequences ω1 = AACT and ω1 = GAT . We set all the substitution, deletion
and insertion costs at 1, and the match score to -1. Here, your goal will be to compute the
alignment with the minimum score. Show the complete dynamic programming table filled by
the algorithm, and show the path(s) corresponding to the optimal sequence alignment. Write
down the alignment and its cost. (Note: Alternatively, you can choose to use the edit scores
used in class and maximize the score.)

COMP 251 - HW3 Page 3 of 3 Winter 2017


