COMP251: Final Review

Jérome Waldispuhl
School of Computer Science
McGill University

Overview of the exam

11 questions.

200 points + 30 bonus

20 point True or False (Warning: -1 penalty for wrong answers!)
20 point for multiple choices answers.

28 points for short answers (no justification)

97 points questions/applications

35 points + 30 bonus problems

Unless specified, all answers must be justified.

Partial answers will receive credits.

The clarity and presentation of your answers is an integral part
of the grading. Be neat!

Books and electronic devices are not allowed.
2 crib sheets (4 pages).

Advices

When practicing, do not look at the solution immediately.

Look at resources from other similar classes (e.g. Mike Langer
COMP 251 web page, OCW at MIT, etc.)

At the exam, do the questions you know the answer to. Do not
spend time on the difficult ones. You will do them after.

Sleep well!

MIDTERM SOLUTIONS

3. (10 points) Insert the key 12 into the AVL tree shown below. If necessary, balance the tree
with rotations to restore the AVL properties of the new tree. Show your work. Show the
tree before/after each operation and write down which operation you are doing (i.e. insertion,
rotation left or right) with all its parameters.

o o o, sl
©
©

/lotation right at node with key 24:

—

@

O.

Rotation left at nod

e with key 10:

Q)

@:)

© ()

P

O
®)

4. We consider an hash function A(k) = k& mod 7 . Draw the content of the table after the
successive insertion of the keys: 20, 8, 7, 3, 27, 15, and 19.

(a) (5 points) Draw the content of the hash table after insertion of the keys when we use
direct addressing (resolve collision by chaining).

0 7
15,8

DN K| W N
(O

19
6 27,20

(b) (5 points) Draw the content of the hash table after insertion of the keys when we use open
addressing and linear probing to resolve collisions.

0 7
8
27
3
15
19
20

NN KW N

5. We consider the flow network G below. Each edge is annotated with its flow followed by the
capacity of the edge.

3/3
u Vv
5/5 3/3
1/4
13 0/3 @
1/3 v Y 3/4

C 2/2

(a) (5 points) Determine its residual graph.

Solution:

(b) (5 points) Find an augmenting path in the residual graph. Write its sequence of vertices
below and indicate the bottleneck § (i.e. the maximum value of the flow that can be
augmented on that path).

Solution:

<87 $7 u7 y7 t)
8=

(c) (5 points) Add the flow of the augmenting path to G, and show the values of the flow .

3/3
@ >V

51/5 3 /3
2 /4

0/3 0/3 @

L/3 Y Y i/4

2 /2
oS

(d) (5 points) Can this resulting flow network be augmented? Justify your answer in one
sentence.

Solution: No. Consider the cut {{s,u,z,v,y}, {t}}, its capacity is 7. After aug-
menting the flow, the total flow in the sink ¢ is equal to 7. But the maximum flow is
lower or equal to the capacity of the minimal cut. Thus, the flow is maximal.

Suppose that we are given a weighted, directed acyclic graph G = (V,E) in which edges
that leave the source vertex s may have negative weights, all other edge weights are
strictly positives.

(a) (4 points) We will show that that d[v] = §(s,v) for every v € V when v is added to S.
First, lets start to argue that this is the case at the beginning of the algorithm.

Solution: At the beginning u = s and d[s] = 0, thus the proposition is satisfied.

(b) (4 points) Then, we address the general case where v € V' — {s}. Let u be the vertex
preceding v on the shortest path s ~» v. By the convergence property, we need to verify
that u € S to guarantee that d[v] = (s, v) after relaxation of u — v. Write the shortest
path estimate d[v] as a function of d[u] and w(u, v).

Solution: d[v| = d[u] + w(u,v).

(c) (4 points) Assume that u ¢ S. What relationship does it imply between d[u] and d[v]?

Solution: Then v and v are in the priority queue (). Since v is extracted before u, we
have d[v] < d[u].

(d) (8 points) Show now that v must already be in S (i.e. show a contradiction with the
hypothesis u & S).

Solution: If u # s, then w(u,v) > 0, which implies that d[v] > d|u| because d[v] =
d|u] + w(u,v). Contradiction with the hypothesis u ¢ S that requires d[v] < d|u].

If ©w = s, then we have a contradiction because s is the first vertex to be added in S
and this is already in S.

MASTER THEOREM

Theorem 1 (Master method) Let a > 1 and b > 1 be two constants, and f(n) a function.
Vn € Nt we define T'(n) as

T(n)= aT(%) + f(n),where % is interpreted as | % | or [}].

Then, we can find asymptotical bounds for T'(n) such that:

If f(n) = O(n'°%2€) with € > 0, then T(n) = O(n'°82),
f(n) O(n'°&+2 . log? n), then T'(n) = O(n'°&2log?*! n).

3. If f(n) = Qn'°®) with e > 0, and a - (%) < cf(n),Yn > ng withc < 1 and
ng > 0. Then T'(n) = ©(f(n)).

e n2 = Q(nlogz 3+(2-logy 3)

n
o T(n):BT(E)+n2 "-. 3.(%)232-712,7120

(case 3) = O(n?)

W m — () log, 1+1
¢ T(n) =T (g) + 2" - n (n) - (case 3) = 0(2™)

. zzsg-zn —n-1 4

* T(Tl) = z. T ik + 1 Theorem does not apply (a<1)
2 2 n

. T(Tl) —4.T (g) 1+ n? n? = 0(n'°82* - (logn)?) (case 2) = O(n? - logn)

DYNAMIC PROGRAMMING

Knapsack problem

Given n objects and a "knapsack."

Iltem i weighs wi >0 and has value v; >0.
Knapsack has capacity of w.

Goal: fill knapsack so as to maximize total value.

1 | |
Ex. {1,2,5} has value 35. 2 6 2
Ex. {3,4} has value 40. 3 18 5
Ex. {3,5} has value 46 (but exceeds weight limit). 4 22 6
D 28 7

knapsack instance
(weight limit W = 11)

Greedy by value. Repeatedly add item with maximum v..
Greedy by weight. Repeatedly add item with minimum w..
Greedy by ratio. Repeatedly add item with maximum ratio vi/ wi.

Observation. None of greedy algorithms is optimal.

24

False start...

Def. OPT(i) = max profit subset of items 1, ..., i.

Case 1. OPT does not select item i.

* OPT selects best of {1,2,...,i—1}.

\ optimal substructure property
(proof via exchange argument)

Case 2. OPT selects item i.
» Selecting item i does not immediately imply that we will have to reject

other items.
* Without knowing what other items were selected before i,

we don't even know if we have enough room for i.

Conclusion. Need more subproblems!

New variable

Def. OPT(i,w) = max profit subset of items 1,i with weight limit w.

Case 1. OPT does not select item .

* OPT selects best of {1.2,....i—1} using weight limit w.
. . \ optimal substructure property
Case 2. OPT selects item i. / T U P T
* New weight limit =w —w;.
* OPT selects best of {1.2,....i—1} using this new weight limit.
[0 if i=0
OPT(i,w)=30PT(i-1,w) if w,>w
‘max{ OPT(i-1,w), v;+ OPT(i-1,w-w;)} otherwise

Dynamic programming algorithm

KNAPSACK (n, W, wi, ..., Wa, V1, ..., Vi)

FOR w=0TO W
M[0, w] < 0.

FOR i=1TOn
FOR w=1TO W
[F (wi>w) M[i,w] «< M[i—1,w].
ELSE Mli,w] « max {M[i—1,w], vi + M[i—1,w—wj]}.

RETURN M[n, W].

Example

—
—
f—

0 if 1i=0
2 6 2 OPT(i,w)={OPT(i-1,w) if w,>w
3 18 5 max{ OPT(i-1,w), v;+ OPT(i-1,w—w;)} otherwise
4 22 6
5 28 7

weight limit w

ol 23] el s]el]elololn
0 0 0 0 0 0 0 0 0 0

0 0
?
0 1 1 1 1 1 1 1 1 1 1 1
?
subset 0 6 7 7 7 7 7 7 7 7 7
of items
0 1 6 7 7 18 24 25 25 25 25

L ...,1

OPT(i, w) = max profit subset of items 1, .., i with weight limit w.

Analysis

Theorem. There exists an algorithm to solve the knapsack problem with n
items and maximum weight W in ©(n W) time and ©(n W) space.
Pf. weights are integers
. between |1 and W
* Takes O(1) time per table entry.

* There are ©(n W) table entries.
« After computing optimal values, can trace back to find solution:

take item i in OPT(i.w)iff M[i.w] < M[i-1,w]. =

Remarks.
* Not polynomial in input size! <— “pseudo-polynomial”
» Decision version of knapsack problem is NP-COMPLETE. [CHAPTER 8 |
« There exists a poly-time algorithm that produces a feasible solution that

has value within 1% of optimum. [SEcTioN 11.8]

AMORTIZED ANALYSIS

Dynamic tables

Scenario

 Have a table - maybe a hash table.

 Don’t know in advance how many objects will be stored in it.

 When it fills, must reallocate with a larger size, copying all
objects into the new, larger table.

* When it gets sufficiently small, might want to reallocate with
a smaller size.

Goals
1. O(1) amortized time per operation.
2. Unused space always < constant fraction of allocated space.

Load factor o = (# items stored) / (allocated size)

Never allow a > 1; Keep a > a constant fraction = Goal 2.

Table expansion

Consider only insertion.

* When the table becomes full, double its size and reinsert all existing items.
* Guarantees that a > .

* Each time we insert an item into the table, it is an elementary insertion.

TABLE-INSERT (T, x)

if size[T 1=0
then allocate table[T] with 1 slot

size[T]<1

if num[T]=size[T] then
allocate new-table with 2 + size[T] slots
insert all items in table[T] into new-table
free table[T]
table[T]<new-table
size[T]<2size[T]

insert x into table[T]

num[T]<num[T] + 1 (Initially, num[T]=size[T]= 0)

Aggregate analysis

* Charge 1 per elementary insertion.
 Count only elementary insertions (other costs = constant).

c; = actual cost of i*" operation

* If not full, ¢, =1.
 If full, have i-1 items in the table at the start of the it" operation.
Have to copy all i — 1 existing items, then insert ith item = ¢, = i.

n operations = c¢; = O(n) = O(n?) time for n operations

<

i if i—-1lis power of 2

C; =+
1 Otherwise
n |logn| . 2llognJ+1 _1
Total cost = Ecisn+22j=n+ S <n+2n=3n
i=1 j=0 -

Amortized cost per operation = 3.

Accounting method

Charge S3 per insertion of x.

e S1 pays for x’s insertion.

« S1 pays for x to be moved in the future.

* S1 pays for some other item to be moved.

Suppose we’ve just expanded, size=m before next expansion,

size=2m after next expansion.

* Assume that the expansion used up all the credit, so that there’s
no credit stored after the expansion.

» Will expand again after another m insertions.

e Each insertion will put $1 on one of the m items that were in the
table just after expansion and will put S1 on the item inserted.

* Have $S2m of credit by next expansion, when there are 2m items
to move. Just enough to pay for the expansion...

The End

Do not focus on grades, what you learned is more important.

Be curious. Get involved in projects. You now have the tools and
knowledge to do interesting things.

Questions? jeromewl@cs.mcgill.ca

