
Sequence Modelling with Features:

Linear-Chain Conditional Random

Fields

COMP-550

Oct 3, 2017

Outline
Hidden Markov models: shortcomings

Generative vs. discriminative models

Linear-chain CRFs

• Inference and learning algorithms with linear-chain CRFs

2

Hidden Markov Model
Graph specifies how join probability decomposes

𝑃(𝑶,𝑸) = 𝑃 𝑄1

𝑡=1

𝑇−1

𝑃(𝑄𝑡+1|𝑄𝑡)

𝑡=1

𝑇

𝑃(𝑂𝑡|𝑄𝑡)

3

𝑄1

𝑂1

𝑄2

𝑂2

𝑄3

𝑂3

𝑄4

𝑂4

𝑄5

𝑂5

Initial state probability

State transition probabilities

Emission probabilities

Shortcomings of Standard HMMs
How do we add more features to HMMs?

Might be useful for POS tagging:

• Word position within sentence (1st, 2nd, last…)

• Capitalization

• Word prefix and suffixes (-tion, -ed, -ly, -er, re-, de-)

• Features that depend on more than the current word or
the previous words.

4

Possible to Do with HMMs
Add more emissions at each timestep

Clunky

Is there a better way to do this?

5

𝑄1

𝑂12𝑂11 𝑂13 𝑂14

Word identity Capitalization Prefix feature Word position

Discriminative Models
HMMs are generative models

• Build a model of the joint probability distribution 𝑃(𝑶,𝑸),

• Let’s rename the variables

• Generative models specify 𝑃(𝑋, 𝑌; 𝜃gen)

If we are only interested in POS tagging, we can instead
train a discriminative model

• Model specifies 𝑃(𝑌|𝑋; 𝜃disc)

• Now a task-specific model for sequence labelling; cannot
use it for generating new samples of word and POS
sequences

6

Generative or Discriminative?
Naive Bayes

𝑃 𝑦 𝑥 = 𝑃 𝑦 𝑖 𝑃 𝑥𝑖 𝑦 / 𝑃(𝑥)

Logistic regression

𝑃(𝑦| 𝑥) =
1

𝑍
𝑒𝑎1𝑥1 + 𝑎2𝑥2 +… + 𝑎𝑛𝑥𝑛 + 𝑏

7

Discriminative Sequence Model
The parallel to an HMM in the discriminative case:
linear-chain conditional random fields (linear-chain
CRFs) (Lafferty et al., 2001)

𝑃 𝑌 𝑋 =
1

𝑍 𝑋
exp

𝑡

𝑘

𝜃𝑘𝑓𝑘(𝑦𝑡 , 𝑦𝑡−1, 𝑥𝑡)

Z(X) is a normalization constant:

𝑍 𝑋 =

𝒚

exp

𝑡

𝑘

𝜃𝑘𝑓𝑘(𝑦𝑡, 𝑦𝑡−1, 𝑥𝑡)

8

sum over all features

sum over all time-steps

sum over all possible sequences of hidden states

Intuition
Standard HMM: product of probabilities; these
probabilities are defined over the identity of the states
and words

• Transition from state DT to NN: 𝑃(𝑦𝑡+1 = 𝑁𝑁|𝑦𝑡 = 𝐷𝑇)

• Emit word the from state DT: 𝑃(𝑥𝑡 = 𝑡ℎ𝑒|𝑦𝑡 = 𝐷𝑇)

Linear-chain CRF: replace the products by numbers
that are NOT probabilities, but linear combinations of
weights and feature values.

9

Features in CRFs
Standard HMM probabilities as CRF features:

• Transition from state DT to state NN
𝑓𝐷𝑇→𝑁𝑁(𝑦𝑡 , 𝑦𝑡−1, 𝑥𝑡) = 𝟏(𝑦𝑡−1 = 𝐷𝑇) 𝟏(𝑦𝑡 = 𝑁𝑁)

• Emit the from state DT
𝑓𝐷𝑇→𝑡ℎ𝑒(𝑦𝑡 , 𝑦𝑡−1, 𝑥𝑡) = 𝟏(𝑦𝑡 = 𝐷𝑇) 𝟏(𝑥𝑡 = 𝑡ℎ𝑒)

• Initial state is DT
𝑓𝐷𝑇 𝑦1, 𝑥1 = 𝟏 𝑦1 = 𝐷𝑇

Indicator function:

Let 𝟏 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛 =
1 if 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛 is true
0 otherwise

10

Features in CRFs
Additional features that may be useful

• Word is capitalized
𝑓𝑐𝑎𝑝(𝑦𝑡 , 𝑦𝑡−1, 𝑥𝑡) = 𝟏(𝑦𝑡 = ?)𝟏(𝑥𝑡 is capitalized)

• Word ends in –ed
𝑓−𝑒𝑑(𝑦𝑡 , 𝑦𝑡−1, 𝑥𝑡) = 𝟏(𝑦𝑡 = ?)𝟏(𝑥𝑡 ends with 𝑒𝑑)

• Exercise: propose more features

11

Inference with LC-CRFs
Dynamic programming still works – modify the forward
and the Viterbi algorithms to work with the weight-
feature products.

12

HMM LC-CRF

Forward algorithm 𝑃 𝑋 𝜃 𝑍(𝑋)

Viterbi algorithm argmax
𝑌

𝑃(𝑋, 𝑌|𝜃) argmax
𝑌

𝑃(𝑌|𝑋, 𝜃)

Forward Algorithm for HMMs
Create trellis 𝛼𝑖(𝑡) for 𝑖 = 1…𝑁, 𝑡 = 1…𝑇

𝛼𝑗 1 = 𝜋𝑗𝑏𝑗(𝑂1) for j = 1 … N

for t = 2 … T:

for j = 1 … N:

𝛼𝑗 𝑡 =

𝑖=1

𝑁

𝛼𝑖 𝑡 − 1 𝑎𝑖𝑗𝑏𝑗(𝑂𝑡)

𝑃 𝑶 𝜃 =

𝑗=1

𝑁

𝛼𝑗(𝑇)

Runtime: O(𝑁2𝑇)

13

Forward Algorithm for LC-CRFs
Create trellis 𝛼𝑖(𝑡) for 𝑖 = 1…𝑁, 𝑡 = 1…𝑇

𝛼𝑗 1 = exp 𝑘 𝜃𝑘
𝑖𝑛𝑖𝑡𝑓𝑘

𝑖𝑛𝑖𝑡(𝑦1 = 𝑗, 𝑥1) for j = 1 … N

for t = 2 … T:

for j = 1 … N:

𝛼𝑗 𝑡 =

𝑖=1

𝑁

𝛼𝑖 𝑡 − 1 exp

𝑘

𝜃𝑘𝑓𝑘(𝑦𝑡 = 𝑗, 𝑦𝑡−1, 𝑥𝑡)

𝑍(𝑋) =

𝑗=1

𝑁

𝛼𝑗(𝑇)

Runtime: O(𝑁2𝑇)

Having 𝑍(𝑋) allows us to compute 𝑃(𝑌|𝑋)

14

Transition and emission probabilities replaced
by exponent of weighted sums of features.

Viterbi Algorithm for HMMs
Create trellis 𝛿𝑖(𝑡) for 𝑖 = 1…𝑁, 𝑡 = 1…𝑇

𝛿𝑗 1 = 𝜋𝑗𝑏𝑗(𝑂1) for j = 1 … N

for t = 2 … T:

for j = 1 … N:
𝛿𝑗 𝑡 = max

𝑖
𝛿𝑖 𝑡 − 1 𝑎𝑖𝑗𝑏𝑗(𝑂𝑡)

Take max
𝑖

𝛿𝑖 𝑇

Runtime: O(𝑁2𝑇)

15

Viterbi Algorithm for LC-CRFs
Create trellis 𝛿𝑖(𝑡) for 𝑖 = 1…𝑁, 𝑡 = 1…𝑇

𝛿𝑗 1 = exp 𝑘 𝜃𝑘
𝑖𝑛𝑖𝑡𝑓𝑘

𝑖𝑛𝑖𝑡(𝑦1 = 𝑗, 𝑥1)for j = 1 … N

for t = 2 … T:

for j = 1 … N:

𝛿𝑗 𝑡 = max
𝑖

𝛿𝑖 𝑡 − 1 exp

𝑘

𝜃𝑘𝑓𝑘(𝑦𝑡 = 𝑗, 𝑦𝑡−1, 𝑥𝑡)

Take max
𝑖

𝛿𝑖 𝑇

Runtime: O(𝑁2𝑇)

Remember that we need backpointers.

16

Training LC-CRFs
Unlike for HMMs, no analytic MLE solution

Use iterative method to improve data likelihood

Gradient descent

A version of Newton’s method to find where the gradient is 0

17

Convexity
Fortunately, 𝑙 𝜃 is a concave function (equivalently, its
negation is a convex function). That means that we will
find the global maximum of 𝑙 𝜃 with gradient ascent
(equivalently, the global minimum of −𝑙 𝜃 with
gradient descent).

18

Gradient Ascent
Walk in the direction of the gradient to maximize 𝑙(𝜃)

• a.k.a., gradient descent on a loss function

𝜃new = 𝜃old + 𝛾𝛻𝑙(𝜃)

𝛾is a learning rate that specifies how large a step to take.

There are more sophisticated ways to do this update:

• Conjugate gradient

• L-BFGS (approximates using second derivative)

19

Gradient Descent Summary
Descent vs ascent

Convention: think about the problem as a minimization
problem

Minimize the negative log likelihood

• 𝜃 ← 𝜃 − 𝛾(−𝛻𝑙 𝜃)

Initialize 𝜃 = 𝜃1, 𝜃2, … , 𝜃𝑘 randomly

Do for a while:

Compute 𝛻𝑙(𝜃), which will require dynamic programming
(i.e., forward algorithm)

𝜃 ← 𝜃 + 𝛾𝛻𝑙(𝜃)

20

Gradient of Log-Likelihood
Find the gradient of the log likelihood of the training
corpus:

𝑙 𝜃 = log

𝑖

𝑃(𝑌 𝑖 |𝑋 𝑖)

21

Interpretation of Gradient
Overall gradient is the difference between:

𝑖

𝑡

𝑓𝑘(𝑦𝑡
𝑖
, 𝑦𝑡−1

𝑖
, 𝑥𝑡

𝑖
)

the empirical distribution of feature 𝑓𝑘 in the training corpus

and:

𝑖

𝑡

𝑦,𝑦′

𝑓𝑘 𝑦, 𝑦′, 𝑥𝑡
𝑖

𝑃(𝑦, 𝑦′|𝑋 𝑖)

the expected distribution of 𝑓𝑘 as predicted by the current
model

22

Interpretation of Gradient
When the corpus likelihood is maximized, the gradient
is zero, so the difference is zero.

Intuitively, this means that finding parameter estimate
by gradient descent is equivalent to telling our model
to predict the features in such a way that they are
found in the same distribution as in the gold standard.

23

Regularization
To avoid overfitting, we can encourage the weights to
be close to zero.

Add term to corpus log likelihood:

𝑙∗ 𝜃 = log

𝑖

𝑃(𝑌 𝑖 |𝑋 𝑖) −

𝑘

𝜃𝑘
2

2𝜎2

𝜎 controls the amount of regularization

Results in extra term in gradient:

−
𝜃𝑘
𝜎2

24

Stochastic Gradient Descent (SGD)
In the standard version of the algorithm, the gradient is
computed over the entire training corpus.

• Weight update only once per iteration through training
corpus.

Alternative: calculate gradient over a small mini-batch
of the training corpus and update weights

SGD is when mini-batch size is one.

• Many weight updates per iteration through training
corpus

• Usually results in much faster convergence to final
solution, without loss in performance

25

Stochastic Gradient Descent
Goal: Minimize −𝑙∗(𝜃)

Initialize 𝜃 = 𝜃1, 𝜃2, … , 𝜃𝑘 randomly

Do for a while:

Randomize order of samples in training corpus

For each mini-batch (of size one) in the training corpus:

Compute 𝛻𝑙∗(𝜃) over this mini-batch
𝜃 ← 𝜃 + 𝛾𝛻𝑙∗(𝜃)

26

