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Statistical Machine Translation 
Let’s look at a popular direct-transfer approach to 
statistical machine translation: the noisy channel 
model. 
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English    Russian 
   𝑃(𝐸)            𝑃(𝐹|𝐸) 

When I look at an article in Russian, I say:  
‘This is really written in English, but it has been coded  
in some strange symbols. I will now proceed to decode.’ 

Warren Weaver, 1955 



IBM Model 1 
IBM developed a series of five influential models that 
make increasingly powerful assumptions. 

Model 1 is the most basic: 

• Each source word is aligned to zero or one target word 

• Don’t try to model different distortions of word order 
(e.g., completely flipping word order vs. just swapping the 
orders of one or two words) 

• Don’t try to model likelihood of fertility (some phrases, 
e.g., take a walk, might be translated as one unit) 
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Word Alignment 
E = target sentence 

 

 

 

 

 
F = source sentence 

• NULL node allows words in F to align to nothing in E. 

• Since each source word is aligned to zero or one target 
word, |A| = |F|. 

• Can represent A as indices: {1, 2, 4, 0, 9, 5, 6, 10, 13, 12} 
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NULL  The petitioners are calling for containers to be standardized to the metric system 

Les pétitionnaires demandent l’ uniformisation des contenants au système métrique 

A = alignment 



Word Alignment Probabilities 

𝑃 𝐹 𝐸 =   𝑃 𝐹, 𝐴 𝐸

𝐴

= 𝑃 𝐹 𝐸, 𝐴 × 𝑃(𝐴|𝐸)

𝐴
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Probability of source sentence, 
given the target sentence, and 
knowing which words are 
aligned with which. 

Probability of the 
alignment, given 
the target sentence. 



𝑷(𝑨|𝑬) 
IBM Model 1 makes a very strong simplifying 
assumption: 

• Uniform probability of translation length (i.e., length of A) 

• Uniform probability for each possible alignment 
𝑃 𝐴 𝐸 ∝ 𝐶 

or 

𝑃 𝐴 𝐸 =
𝜖

𝐼 + 1 𝐽
 

, where 𝐼 is the number of target words, 𝐽 is the number of 
source words, 𝜖 is there to make sure things normalize across 
different possible values of 𝐽. 

Why the + 1? 
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𝑷 𝑭 𝑬, 𝑨  
Decompose this into individual word alignments 

𝑃 𝐹 𝐸, 𝐴 =   𝑡(𝑓𝑗|𝑒𝑎𝑗)

𝐽

𝑗=1

 

 

How do we learn 𝑡(𝑓𝑗|𝑒𝑎𝑗)? 

• If we had observed word alignments in the training 
corpus, we could simply do MLE: 

𝑡 𝑓 𝑒 =
Count(𝑓, 𝑒)

Count(𝑒)
 

• We don’t, so it’s time for …? 
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Expectation-Maximization 
1. Initialize the parameters 𝑡(𝑓|𝑒) randomly 

2. Iterate for a while: 

• E-step: Given the current parameters, compute the 
expected value of Count(𝑓, 𝑒) over the training data 

• M-step: Given the current Count(𝑓, 𝑒), compute the new 
MLE 𝜃𝑘 = 𝑡(𝑓|𝑒) 
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Probability of Alignments 
To get the expected counts, what we really need is the 
probability of an alignment: 𝑃(𝐴|𝐸, 𝐹) 

𝑃 𝐴 𝐸, 𝐹 =
𝑃(𝐴, 𝐸, 𝐹)

𝑃 𝐸 𝑃(𝐹|𝐸)
=
𝑃(𝐹, 𝐴|𝐸)

𝑃(𝐹|𝐸)
=
𝑃(𝐹, 𝐴|𝐸)

 𝑃(𝐹, 𝐴|𝐸)𝐴

 

 

Since 𝑃 𝐹, 𝐴 𝐸 =  𝑃 𝐹 𝐸, 𝐴 × 𝑃(𝐴|𝐸), and 𝑃(𝐴|𝐸) is the 
same for all alignments, we get: 

𝑃 𝐴 𝐸, 𝐹 =
𝑃(𝐹|𝐸, 𝐴)

 𝑃(𝐹|𝐸, 𝐴)𝐴

 

Recall that 𝑃 𝐹 𝐸, 𝐴 =   𝑡(𝑓𝑗|𝑒𝑎𝑗)
𝐽
𝑗=1 . 

Thus, we’re set, given some initial model of 𝑡(𝑓|𝑒). 

 

 

 

 

10 



Example 
Let’s do one round of EM training for the following 
mini-corpus: 

red house  the house 

maison rouge la maison 

Initialize the model 𝑡(𝑓|𝑒) uniformly: 

 

11 

𝑡 𝑚𝑎𝑖𝑠𝑜𝑛 𝑟𝑒𝑑 =
1

3
 𝑡 𝑟𝑜𝑢𝑔𝑒 𝑟𝑒𝑑 =

1

3
 𝑡 𝑙𝑎 𝑟𝑒𝑑 =

1

3
 

𝑡 𝑚𝑎𝑖𝑠𝑜𝑛 ℎ𝑜𝑢𝑠𝑒 =
1

3
 𝑡 𝑟𝑜𝑢𝑔𝑒 ℎ𝑜𝑢𝑠𝑒 =

1

3
 𝑡 𝑙𝑎 ℎ𝑜𝑢𝑠𝑒 =

1

3
 

𝑡 𝑚𝑎𝑖𝑠𝑜𝑛 𝑡ℎ𝑒 =
1

3
 𝑡 𝑟𝑜𝑢𝑔𝑒 𝑡ℎ𝑒 =

1

3
 𝑡 𝑙𝑎 𝑡ℎ𝑒 =

1

3
 



Exercise 
Do the second round of EM training. 
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Details, Details 
In practice, don’t initialize 𝑡(𝑓|𝑒) uniformly: 

• Given reasonable sizes of lexicon, too many parameters = 
too much memory and computation! 

• Rather, restrict it to word pairs e’, f’, where e’ and f’ occur 
is some aligned sentence pair in the training set. 

When sentence lengths are high, need to efficiently 
compute probabilities of all possible alignments. 

• Can adapt our algorithm to implicitly sum over all 
alignments 

13 



IBM Model 2 
Does not assume that all possible alignment structures 
are equiprobable. 

• For many language pairs, alignment should proceed 
without much crossing: 

 

And the programme has been implemented. 

 

Le programme a été mis en application. 

 

Can also draw alignment as a table. 
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IBM Model 2 
𝑡(𝑓|𝑒) as before; the probability of source word 𝑓 
  given target word 𝑒 

𝑞(𝑗|𝑖, 𝑙, 𝑚) distortion probability that 𝑎𝑖 = 𝑗, given 
  length of 𝐹 = 𝑚 and length of 𝐸 = 𝑙. 

Recall that in Model 1, 𝑃 𝐴 𝐸 =
𝜖

𝐼+1 𝐽
 

Now: 

𝑃 𝐴 𝐸 = 𝜖 𝑞(𝑎𝑖|𝑖, 𝑙, 𝑚)

𝑚

𝑖=1

 

𝑃 𝐴 𝐸,𝑚 = 𝑞(𝑎𝑖|𝑖, 𝑙, 𝑚)

𝑚

𝑖=1
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, for a given m 



Exercise 
Given the following sentence pair: 

And the programme has been implemented. 

 

Le programme a été mis en application. 

Write down 𝐴, then the expression for 𝑃 𝐹, 𝐴 𝐸,𝑚  in 
terms of factors 𝑡(… ) and 𝑞(… ). 
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𝑃 𝐴 𝐸,𝑚 = 𝑞(𝑎𝑖|𝑖, 𝑙, 𝑚)

𝑚

𝑖=1

 

𝑃 𝐹 𝐸, 𝐴 =   𝑡(𝑓𝑗|𝑒𝑎𝑗)

𝐽

𝑗=1

 



Parameter Estimation in IBM Model 2 
In MLE: 

𝑡 𝑓 𝑒 =
Count(𝑓, 𝑒)

Count(𝑒)
 

𝑞 𝑗 𝑖, 𝑙, 𝑚 =
Count(𝑗, 𝑖, 𝑙, 𝑚)

Count(𝑖, 𝑙, 𝑚)
 

For EM, need probability of a specific edge in the 
alignment 𝛿𝑘(𝑖, 𝑗) of aligning the 𝑖th word of 𝐹 to the 
𝑗th word of 𝐸 in sample 𝑘: 

𝛿𝑘(𝑖, 𝑗) =
𝑞 𝑗 𝑖, 𝑙𝑘 , 𝑚𝑘 𝑡(𝑓𝑖

𝑘|𝑒𝑗
𝑘)

 𝑞 𝑗′ 𝑖, 𝑙𝑘 , 𝑚𝑘 𝑡(𝑓𝑖
𝑘|𝑒𝑗′
𝑘)

𝑙𝑘
𝑗′=0
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Further Notes 
Each iteration of EM increases training corpus 
likelihood. 

EM on IBM Model 2 may converge on local optima; 
different initializations lead to different solutions. 

• So, need a good initialization 

• Trick: initialize with the result of running IBM Model 1 
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Extensions 
Higher IBM models 

Model 3: model fertility—how many words are used to 
translate a word 

HMM alignment 

Cast computation of 𝑃(𝐹, 𝐴|𝐸) as an HMM sequence 
labelling problem 

Use this to prefer alignments that are close to diagonal 
(works for some language pairs like English-French, English-
Spanish) 
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Phrase-Based SMT 
What about dealing with phrases that are better 
translated as a unit? 

coup  blow 

foudre  lightning 

coup de foudre love at first sight 

Non-constituents also benefit: 

Spass am  fun with the 

Phrase-based, rather than word-based SMT can solve 
this problem by adding a little more context. 

Need to learn phrase table 
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A Model of Phrase-based MT 
1. Split sentence into phrases 

𝐸 =  𝑒1𝑒2…𝑒𝐼 = 𝑒𝑝1𝑒𝑝2…𝑒𝑝𝑁 

2. Translate each phrase with phrase translation 
probability 𝑃(𝑓𝑝|𝑒𝑝) 

3. Rearrange phrases with some reordering 
probability 𝑑 𝑑𝑖𝑠𝑡  

• e.g., penalty for changing position 

 

𝑃 𝐹 𝐸 = 𝑃 𝑓𝑝𝑛 𝑒𝑝𝑛 𝑑(𝑑𝑖𝑠𝑡𝑛)

𝑛
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Learning a Phrase Table 
1. Start with word alignment 

• e.g., use an IBM model 

2. Extract phrase pairs 

3. Score phrase pairs 
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Word Alignment 
 

 

 

 

 

 

 

 

 

Example drawn from Koehn, (2009), Ch. 5 
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Extracting Phrase Pairs 
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Note Consistency Constraints 
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Scoring Phrase Translations 
Relatively simple affair: 

 

 

𝑃 𝑓𝑝 𝑒𝑝 =
Count(𝑓𝑝, 𝑒𝑝)

 Count(𝑓𝑝′, 𝑒𝑝)𝑓𝑝′
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MT Decoding 
We still need a decoding algorithm to search for the 
best possible translation predicted by a given model. 

Many search algorithms can be used: 

A* search 

Greedy hill-climbing 

Beam search 

… 

Let’s briefly describe a greedy hill-climbing method 
(Germann et al., 2001) 
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Greedy Hill-Climbing  
Start by creating one complete candidate translation 

• e.g., translate each word separately 
𝑒∗ = argmaxe 𝑃(𝑓|𝑒) 

 

This gives an initial translation: 

Diese Woche ist die gruene Hexe zuhause. 

 

This week is the green witch at home. 
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Hill Climbing 
Then, apply change operators: 

• Change the translation of a word or phrase 

• Combine the translation of two words into a phrase 

• Split up the translation of a phrase into two subphrases 

• Rearrange parts of the translation 

At each point, we evaluate all of the transformations by 
computing 𝑃 𝐸 𝑃(𝐹, 𝐴|𝐸), and select the change the 
maximizes this. 

We iteratively run this process until reaching a local 
optimum. 
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Recent Developments in MT 
Neural network methods have become very popular in 
MT over the past two years. 

e.g., the following paper at ACL 2014: 

 

Devlin et al. Fast and Robust Neural Network Joint Models for 
Statistical Machine Translation. 

http://acl2014.org/acl2014/P14-1/pdf/P14-1129.pdf 
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Neural Network Joint Model 
The model directly predicts the output translation 
given the input translation, and previous translation 
decisions: 

𝑃 𝑇 𝑆 ≈   𝑃(𝑡𝑖|𝑡𝑖−1… , 𝑡𝑖−𝑛+1, Σ𝑖)

|𝑇|

𝑖=1

 

 

Σ𝑖 = 𝜎1𝜎2…𝜎𝑚 is a subsequence within 𝑆 that is predicted 
to be important for translating 𝑡𝑖. 

This is done by an initial word alignment step. 
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Neural Network Model Structure 
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𝑡𝑖−3      𝑡𝑖−2    𝑡𝑖−1    𝜎1    𝜎2   𝜎3 …   𝜎12 

192-dimensional vector representation of each word 

512-dimensional hidden layer 

512-dimensional hidden layer 

𝑡𝑖 

Input words 

Hidden layers 
(tanh activation 

functions) 

Output prediction 
(softmax) 



BLEU Results 
Combined with an 
existing MT decoder, this 
model achieves very 
good BLEU results: 
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Joint Alignment and Translation 
Another method is to jointly train a model to align and 
translate at the same time. 

 

Consider a sequence-to-sequence recurrent neural 
network (Cho, 2014): 

 

 

 

 

• Each block above is an RNN cell, such as a LSTM block 
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Encoder Decoder 



Attention Mechanism 
At decoder step, take a weighted combination of the 
hidden representations in the encoder for use in 
predicting next word (Bahdanau et al., 2015): 

 

𝑐𝑖 =  𝛼𝑖𝑗ℎ𝑗
𝑗

 

𝛼𝑖𝑗 =
exp (𝑒𝑖𝑗)

 𝑒𝑖𝑘𝑘
 

𝑒𝑖𝑗 = 𝑎(𝑠𝑖−1, ℎ𝑗) 

 

where 𝑎 is a feed-forward NN 
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Encoder 

Decoder 
Used in decoding at time i 



Visualization of Attention Weights 
 

 

 

 

 

 

 

 

from (Bahdanau et al., 2015) 

Use of attention now widespread in NLP! 
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