Morphology: Word Formation, FSAs and FSTs

COMP-550
Sept 7, 2017
Textbook

An e-book of Jurafsky and Martin 1e is available through the McGill library.

One copy of Jurafsky and Martin 2e is available for 24h reserve loan, and physical copies are available at the bookstore.

Draft chapters of Jurafsky and Martin 3e are freely available online.

Reading assignments and practice problems will be assigned from 2e, and 1e/3e if possible (though not guaranteed). Any assignment that requires a reading from a text will have that section made available.
Next Week

Install Python 2.7 if you don’t already have it
Install NLTK and scikit-learn packages
 • Course outline has more links

Class on Sept 12 will include a tutorial on Python basics
<table>
<thead>
<tr>
<th>Term</th>
<th>Object of Study</th>
</tr>
</thead>
<tbody>
<tr>
<td>Semantics</td>
<td>Sound patterns</td>
</tr>
<tr>
<td>Pragmatics</td>
<td>Passage structure</td>
</tr>
<tr>
<td>Discourse</td>
<td>Word structure</td>
</tr>
<tr>
<td>Syntax</td>
<td>Implied meaning</td>
</tr>
<tr>
<td>Phonology</td>
<td>Speech sounds</td>
</tr>
<tr>
<td>Phonetics</td>
<td>Sentence structure</td>
</tr>
<tr>
<td>Morphology</td>
<td>Literal meaning</td>
</tr>
</tbody>
</table>
Review

Match the following terms to their object of study

<table>
<thead>
<tr>
<th>Term</th>
<th>Object of Study</th>
</tr>
</thead>
<tbody>
<tr>
<td>Semantics</td>
<td>Sound patterns</td>
</tr>
<tr>
<td>Pragmatics</td>
<td>Passage structure</td>
</tr>
<tr>
<td>Discourse</td>
<td>Word structure</td>
</tr>
<tr>
<td>Syntax</td>
<td>Implied meaning</td>
</tr>
<tr>
<td>Phonology</td>
<td>Speech sounds</td>
</tr>
<tr>
<td>Phonetics</td>
<td>Sentence structure</td>
</tr>
<tr>
<td>Morphology</td>
<td>Literal meaning</td>
</tr>
</tbody>
</table>
Review

Match the following terms to their object of study

- Semantics: Sound patterns
- Pragmatics: Passage structure
- Discourse: Word structure
- Syntax: Implied meaning
- Phonology: Speech sounds
- Phonetics: Sentence structure
- Morphology: Literal meaning
Match the following terms to their object of study:

- Semantics: Sound patterns
- Pragmatics: Passage structure
- Discourse: Word structure
- Syntax: Implied meaning
- Phonology: Speech sounds
- Phonetics: Sentence structure
- Morphology: Literal meaning
Review

Match the following terms to their object of study

<table>
<thead>
<tr>
<th>Semantics</th>
<th>Sound patterns</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pragmatics</td>
<td>Passage structure</td>
</tr>
<tr>
<td>Discourse</td>
<td>Word structure</td>
</tr>
<tr>
<td>Syntax</td>
<td>Implied meaning</td>
</tr>
<tr>
<td>Phonology</td>
<td>Speech sounds</td>
</tr>
<tr>
<td>Phonetics</td>
<td>Sentence structure</td>
</tr>
<tr>
<td>Morphology</td>
<td>Literal meaning</td>
</tr>
</tbody>
</table>
Match the following terms to their object of study:

- Semantics: Sound patterns
- Pragmatics: Passage structure
- Discourse: Word structure
- Syntax: Implied meaning
- Phonology: Speech sounds
- Phonetics: Sentence structure
- Morphology: Literal meaning
Match the following terms to their object of study

- Semantics
- Pragmatics
- Discourse
- Syntax
- Phonology
- Phonetics
- Morphology
- Sound patterns
- Passage structure
- Word structure
- Implied meaning
- Speech sounds
- Sentence structure
- Literal meaning
Today’s Topics

English morphology
 Inflectional and derivational morphology
Lemmatization vs. stemming
Formalization as FSA, FST
Starting Small

We begin by starting from the smallest level of grammatical unit in language, the morpheme.

anti- dis- establish -ment -arian -ism

Six morphemes in one word

cat -s

Two morphemes in one word

of

One morpheme in one word
Types of Morphemes

Free morphemes

May occur on their own as words (*happy, the, robot*)

Bound morphemes

Must occur with other morphemes as parts of words

Most bound morphemes are **affixes**, which attach to other morphemes to form new words.

- **Prefixes** come before the **stem**: *un-* as in *unhappy*
- **Suffixes** come after the stem: *-s*, as in *robots*
- **Infixes** go inside: *-f**king-* as in *abso-f**king-lutely*
 (Not really an infix, but as close as we get in English)
- **Circumfixes** go around: *em-* *-en*, as in *em**bolden*
Derivation vs. Inflection

Inflectional morphology is used to express some kind of grammatical function required by the language

- \textit{go} \rightarrow \textit{goes} \hspace{1cm} \textit{think} \rightarrow \textit{thought}

Derivational morphology is used to derive a new word, possibly of a different part of speech

- \textit{happy} \rightarrow \textit{happily} \hspace{1cm} \textit{establish} \rightarrow \textit{establishment}

Exercise: come up with three prefixes and suffixes in English. Make sure to include at least one derivational and one inflectional affix.
Example

Label each the type of morphemes present in the below words

antidisestablishmentarianism
 anti- dis- establish -ment -arian -ism

established
 establish -ed

establishments
 establish -ment -s
Cross-linguistic Variation

Languages across the world vary by their morpheme-to-word ratio.

Isolating languages: low morpheme-to-word ratio

Synthetic languages: high morpheme-to-word ratio

<table>
<thead>
<tr>
<th>Language</th>
<th>Isolating</th>
<th>Synthetic</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vietnamese</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chinese (of various kinds)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>English</td>
<td></td>
<td></td>
</tr>
<tr>
<td>French</td>
<td></td>
<td></td>
</tr>
<tr>
<td>German</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Russian</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Basque</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Navajo</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Finnish</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Inuktitut</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note: this chart is only a rough guide, not a precise ranking!
Compare

English
I can’t hear very well. 6 morphemes/5 (or 6) words = 1.2

Cantonese
我听得分好
ngo5 teng1 dak1 m4 hai6 hou2 hou2
I hear able NEG be very good

French
Je ne peux pas entendre très bien. 9 / 7 = 1.29
I NEG can-1SG NEG hear-INF very well

Inuktitut
tusaa-tsia-runna-nngit-tu-alu-u-junga
hear-able-NEG-NOM-very-be-1SG
English morphology is relatively boring!

(And this is why we’re only spending one class on it.)
But It Still Matters!

Recognize whether a word is actually English

foxes vs. *foxs

Abstract away details that don’t matter for an application

The campers saw a bear.
The campers see a bear.
The camper saw a bear.

• In all cases, a bear was seen!

Generate the correct form of a word

see +PRESENT +3SG -> sees
see +PAST +2PL -> saw
Computational Tasks

Morphological recognition

Is this a well formed word?

Stemming

Cut affixes off to find the stem

• airliner -> airlin

Morphological analysis

Lemmatization – remove inflectional morphology and recover lemma (the form you’d look up in a dictionary)

• foxes -> fox

Full morphological analysis – recover full structure

• foxes -> fox +N +PL
Morphological Recognition

Are these valid English words?

friendship, unship, defriender, friendes

Relevant issues:

What prefixes and suffixes can go with a word?

- -ship, un-, de-, -s

Different forms of an affix

- fox -> foxes
- friend -> friends
- fly -> flies

Exceptions

- goose -> geese
Lexicon

A list of all words, affixes and their behaviours. Entries are often called **lexical items** (a.k.a., lexical entries, lexical units).

- e.g., Noun declensions (Jurafksy and Martin, p. 54)

<table>
<thead>
<tr>
<th>reg-noun</th>
<th>irreg-pl-noun</th>
<th>irreg-sg-noun</th>
<th>plural</th>
</tr>
</thead>
<tbody>
<tr>
<td>fox</td>
<td>geese</td>
<td>goose</td>
<td>-s</td>
</tr>
<tr>
<td>cat</td>
<td>sheep</td>
<td>sheep</td>
<td></td>
</tr>
<tr>
<td>aardvark</td>
<td>mice</td>
<td>mouse</td>
<td></td>
</tr>
</tbody>
</table>
Morphotactics

Tells us the sequence in which morphemes may be combined.

- e.g., English nouns:

 - reg-noun
 - reg-noun + -s
 - irregular-singular
 - irregular-plural

Nodes with outline represent an **accepting state**. (This is a word)

This is a representation of a **finite state automaton (FSA)**.
Finite State Automata

A model of computation that takes in some input string, processes them one symbol at a time, and either accepts or rejects the string.

- e.g., we write a FSA to accept only valid English words.

A particular FSA defines a language (a set of strings that it would accept).

- e.g., the language in the FSA we are writing is the set of strings that are valid English words.

Regular languages are languages that can be described by an FSA (i.e., the FSA accepts exactly those strings that are in the language).
Definition of FSA

A FSA consists of:

- Q finite set of states
- Σ set of input symbols
- $q_0 \in Q$ starting state
- $\delta : Q \times \Sigma \rightarrow P(Q)$ transition function from current state and input symbol to possible next states
 - $P(Q)$ is the power set of Q.
- $F \subseteq Q$ set of accepting, final states
Exercises

1. Identify the components of an FSA in:

![Diagram of an FSA with states labeled as follows:]

- q_0: reg-noun
- q_1: plural
- q_2: irreg-pl-noun
- Irreg-sg-noun

2. Use lexicon to expand the morphotactic FSA into a character-level FSA
Exercise

Extend the previous FSA to account for regular orthographic variations of the plural suffix.

- Ends with consonant + y: replace y with ies
 - e.g., pony, sky but not boy
- Ends with -s, -z, -x, -ch, -sh -> add -es
 - e.g., kiss, dish, witch

Check your FSA by seeing whether it correctly accepts English words that you model and rejects those that are not
An ordered list of rewrite rules to approximately recover the stem of a word (Porter, 1980)

- Basic idea: chop stuff off and glue some endings back on
- Not perfect, but sometimes results in a slight improvement in downstream tasks
- Advantage: no need for lexicon
Examples of Porter Stemmer Rules

ies -> i
- ponies -> poni

ational -> ate
- relational -> relate

If word is long enough (# of syllables, roughly speaking),

al -> ε
- revival -> reviv
Morphological Parsing

Recover an analysis of the word structure

- *foxes* -> *fox +N +PL*
- *foxes* -> *fox +V +3SG.PR*

In fact, we will add an intermediate layer for convenience:

<table>
<thead>
<tr>
<th>Surface</th>
<th>foxes</th>
<th>cats</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intermediate</td>
<td>fox^s#</td>
<td>cat^s#</td>
</tr>
<tr>
<td>Underlying</td>
<td>fox +N +PL</td>
<td>cat +N + PL</td>
</tr>
</tbody>
</table>

- Lets us not have to deal with intricacies in the orthographic rules at the same time as the rest
- Irregular nouns handled by intermediate->underlying step
Expanded Lexicon

Basic idea: add more annotations to the lexicon

Map surface to intermediate level:

<table>
<thead>
<tr>
<th>reg-noun</th>
<th>irreg-pl-noun</th>
<th>irreg-sg-noun</th>
<th>plural</th>
</tr>
</thead>
<tbody>
<tr>
<td>fox</td>
<td>ge:o e:o se</td>
<td>goose</td>
<td>s:^s</td>
</tr>
<tr>
<td>cat</td>
<td>sheep</td>
<td>sheep</td>
<td></td>
</tr>
<tr>
<td>aardvark</td>
<td></td>
<td></td>
<td>mouse</td>
</tr>
</tbody>
</table>

Notation:

- Single letter: map a letter to itself
- Implicit ε:# transition at ends of words
- Note: in J&M p. 62, they wrote the table for generation, so the letters are flipped
Finite State Transducers

Next step: Intermediate to underlying level

- Need to expand parts like “reg-noun” below with lexicon

Question: what happens with sheep?
Exercise

Change our previous character-level FSA:

• add outputs
• add states for the necessary adjustments as necessary
• i.e., this should map from the surface to the intermediate level

Now that we have added outputs, the machine is no longer a FSA. It is a Finite State Transducer.
Definition of FST

A FST consists of:

- \(Q \) finite set of states
- \(\Sigma, \Delta \) sets of input symbols, output symbols
- \(q_0 \in Q \) starting state
- \(\delta \subseteq Q \times (\Sigma \cup \{\varepsilon\}) \times (\Delta \cup \{\varepsilon\}) \times Q \) transition relation that specifies, for current state and input symbol, the possible pairs of output symbol and next state
- \(F \subseteq Q \) set of accepting, final states

Identify the above components in the previous FST
Composing FSTs

We have two FSTs:

1. Surface to intermediate
 FST1 \textit{fox} \rightarrow \textit{fox#}

2. Intermediate to underlying
 FST2 \textit{fox#} \rightarrow \textit{fox} +N +SG

Compose them to make full morphological parser

- surface \rightarrow \textit{FST1} \rightarrow \textit{intermediate} \rightarrow \textit{FST2} \rightarrow \textit{underlying}

The composed machine is also a FST.
Inverting FSTs

We now have a FST for morphological parsing. What about morphological generation?

- Simply flip input and output symbol!
 \[^s#:+PL\] becomes \[+PL:^s#\]

- underlying -> FST^{-1}2 -> intermediate -> FST^{-1}1 -> surface
Build a lexicon of the words you care about

- Handle regular orthographic variations using this intermediate representation – write some rules or FSTs to describe them
- Handle irregular words by building exception lists

The multiple FSTs that you write will be combined in various ways to produce the final morphological analyzer/generator:

- Composition, intersection, ...

In general, FSAs and FSTs are very useful models that pop up in many areas of NLP!
Exercise

Write a (surface to intermediate) transducer to segment monosyllabic verbs. Deal with the -ed and -ing suffixes.

- e.g., $\text{jump} \rightarrow \text{jump}^\#$
 $\text{jumped} \rightarrow \text{jump}^{\text{ed}}^\#$
 $\text{jumping} \rightarrow \text{jump}^{\text{ing}}^\#$

- Include some irregular verbs (e.g., see, hit)
- Deal with verbs that end in e (e.g., hope, hate)
- Deal with consonant doubling – when in a CVC pattern
 - e.g., $\text{chat} \rightarrow \text{chatted, chatting}$
 $\text{bat} \rightarrow \text{batted, batting}$
 [just handle the case of t]

Then, write the template of the intermediate to underlying transducer as in slide 31.