
The CKY Parsing Algorithm and

PCFGs

COMP-550

Oct 12, 2017

Announcements
I’m out of town next week:

• Tuesday lecture: Lexical semantics, by TA Jad Kabbara

• Thursday lecture: Guest lecture by Prof. Timothy
O’Donnell (Linguistics)

Corollary: no office hours on Tuesday

• TA office hours about A2 will be announced

2

Outline
CYK parsing

PCFGs

Probabilistic CYK parsing

Markovization

3

Parsing
Input sentence, grammar  output parse tree

Parsing into a CFG: constituent parsing

Parsing into a dependency representation: dependency
parsing

Difficulty: need an efficient way to search through
plausible parse trees for the input sentence

4

Parsing into a CFG
Given:

1. CFG

2. A sentence made up of words that are in the terminal
vocabulary of the CFG

Task: Recover all possible parses of the sentence.

Why all possible parses?

5

Syntactic Ambiguity
I shot the elephant in my pyjamas.

6

S

NP VP

I

V

shot

VP

NP

the elephant

PP

in NP

my pyjamas

S

NP VP

I V

shot

NP

PP

in NP

my pyjamas

NP

the elephant

Types of Parsing Algorithms
Top-down

Start at the top of the tree, and expand downwards by using
rewrite rules of the CFG to match the tokens in the input
string

e.g., Earley parser

Bottom-up

Start from the input words, and build ever-bigger subtrees,
until a tree that spans the whole sentence is found

e.g., CYK algorithm, shift-reduce parser

Key to efficiency is to have an efficient search strategy
that avoids redundant computation

7

CYK Algorithm
Cocke-Younger-Kasami algorithm

• A dynamic programming algorithm – partial solutions are
stored and efficiently reused to find all possible parses for
the entire sentence.

• Also known as the CKY algorithm

Steps:

1. Convert CFG to an appropriate form

2. Set up a table of possible constituents

3. Fill in table

4. Read table to recover all possible parses

8

CFGs and Constituent Trees
Rules/productions:

S  NP VP NP  this

VP  V V  is | rules| jumps | rocks

Trees:

9

S

NP VP

this

S

NP VP

this V

rocks

V

rules

Non-terminals

Terminals

CYK Algorithm
Cocke-Younger-Kasami algorithm

• A dynamic programming algorithm – partial solutions are
stored and efficiently reused to find all possible parses for
the entire sentence.

• Also known as the CKY algorithm

Steps:

1. Convert CFG to an appropriate form

2. Set up a table of possible constituents

3. Fill in table

4. Read table to recover all possible parses

10

Chomsky Normal Form
To make things easier later, need all productions to be
in one of these forms:

1. A  B C, where A, B, C are nonterminals

2. A  s, where A is a non-terminal s is a terminal

This is actually not a big problem.

11

Converting to CNF (1)
Rule of type A  B C D …

• Rewrite into: A  X1 D … and X1  B C

Rule of type A  s B

• Rewrite into: A  X2 B and X2  s

Rule of type A  B

• Everywhere in which we see B on the LHS, replace it with
A

12

Examples of Conversion
Let’s convert the following grammar fragment into CNF:

S  NP VP N  I | elephant | pyjamas

VP  V NP PP V  shot

VP  V NP Detmy | the

NP  N

NP  Det N

NP  Det N PP

PP  in NP

13

Next: Set Up a Table
This table will store all of the constituents that can be
built from contiguous spans within the sentence.

Let sentence have N words. w[0], w[1], … w[N-1]

Create table, such that a cell in row i column j corresponds to
the span from w[i:j+1], zero-indexed.

• Since i < j, we really just need half the table.

The entry at each cell is a list of non-terminals that can span
those words according to the grammar.

14

Parse Table
I0 shot1 the2 elephant3 in4 my5 pyjamas6

[0:1] [0:2] [0:3] [0:4] [0:5] [0:6] [0:7]

[1:2] [1:3] [1:4] [1:5] [1:6] [1:7]

[2:3] [2:4] [2:5] [2:6] [2:7]

[3:4] [3:5] [3:6] [3:7]

[4:5] [4:6] [4:7]

[5:6] [5:7]

[6:7]

15

S  NP VP
VP  X1 PP X1  V NP
VP  V NP
NP  Det N
NP  X2 PP X2  Det N
PP  P NP
P  in
NP  I | elephant | pyjamas
N  I | elephant | pyjamas
V  shot
Det my | the

Filling in Table: Base Case
One word (e.g., cell [0:1])

• Easy – add all the lexical rules that can generate that word

16

Base Case Examples (First 3 Words)
I0 shot1 the2 elephant3 in4 my5 pyjamas6

[0:1] [0:2] [0:3] [0:4] [0:5] [0:6] [0:7]

[1:2] [1:3] [1:4] [1:5] [1:6] [1:7]

[2:3] [2:4] [2:5] [2:6] [2:7]

[3:4] [3:5] [3:6] [3:7]

[4:5] [4:6] [4:7]

[5:6] [5:7]

[6:7]

17

NP
N

V

Det

S  NP VP
VP  X1 PP X1  V NP
VP  V NP
NP  Det N
NP  X2 PP X2  Det N
PP  P NP
P  in
NP  I | elephant | pyjamas
N  I | elephant | pyjamas
V  shot
Det my | the

Filling in Table: Recursive Step
Cell corresponding to multiple words

• eg., cell for span [0:3] I shot the

• Key idea: all rules that produce phrases are of the form

A  B C

• So, check all the possible break points m in between the
start i and the end j, and see if we can build a constituent
with a rule in the form, A [i:j]  B [i:m] C [m:j]

18

Recurrent Step Example 1

19

I0 shot1 the2 elephant3 in4 my5 pyjamas6

[0:1] [0:2] [0:3] [0:4] [0:5] [0:6] [0:7]

[1:2] [1:3] [1:4] [1:5] [1:6] [1:7]

[2:3] [2:4] [2:5] [2:6] [2:7]

[3:4] [3:5] [3:6] [3:7]

[4:5] [4:6] [4:7]

[5:6] [5:7]

[6:7]

NP
N

V

?

S  NP VP
VP  X1 PP X1  V NP
VP  V NP
NP  Det N
NP  X2 PP X2  Det N
PP  P NP
P  in
NP  I | elephant | pyjamas
N  I | elephant | pyjamas
V  shot
Det my | the

Recurrent Step Example 2

20

I0 shot1 the2 elephant3 in4 my5 pyjamas6

[0:1] [0:2] [0:3] [0:4] [0:5] [0:6] [0:7]

[1:2] [1:3] [1:4] [1:5] [1:6] [1:7]

[2:3] [2:4] [2:5] [2:6] [2:7]

[3:4] [3:5] [3:6] [3:7]

[4:5] [4:6] [4:7]

[5:6] [5:7]

[6:7]

NP
N

V

?

S  NP VP
VP  X1 PP X1  V NP
VP  V NP
NP  Det N
NP  X2 PP X2  Det N
PP  P NP
P  in
NP  I | elephant | pyjamas
N  I | elephant | pyjamas
V  shot
Det my | the

Det

NP
N

Backpointers

21

I0 shot1 the2 elephant3 in4 my5 pyjamas6

[0:1] [0:2] [0:3] [0:4] [0:5] [0:6] [0:7]

[1:2] [1:3] [1:4] [1:5] [1:6] [1:7]

[2:3] [2:4] [2:5] [2:6] [2:7]

[3:4] [3:5] [3:6] [3:7]

[4:5] [4:6] [4:7]

[5:6] [5:7]

[6:7]

NP
N

V

NP

S  NP VP
VP  X1 PP X1  V NP
VP  V NP
NP  Det N
NP  X2 PP X2  Det N
PP  P NP
P  in
NP  I | elephant | pyjamas
N  I | elephant | pyjamas
V  shot
Det my | the

Det

NP
N

Store where you came from!

Putting It Together

22

I0 shot1 the2 elephant3 in4 my5 pyjamas6

[0:1] [0:2] [0:3] [0:4] [0:5] [0:6] [0:7]

[1:2] [1:3] [1:4] [1:5] [1:6] [1:7]

[2:3] [2:4] [2:5] [2:6] [2:7]

[3:4] [3:5] [3:6] [3:7]

[4:5] [4:6] [4:7]

[5:6] [5:7]

[6:7]

NP
N

V

NP (Det 2:3 ,N 3:4)Det

NP
N

S  NP VP
VP  X1 PP X1  V NP
VP  V NP
NP  Det N
NP  X2 PP X2  Det N
PP  P NP
P  in
NP  I | elephant | pyjamas
N  I | elephant | pyjamas
V  shot
Det my | the

Fill the table in the correct order!

Finish the Example
Let’s finish the example together for practice

How do we reconstruct the parse trees from the table?

23

Dealing with Syntactic Ambiguity
In practice, one of these is more likely than the other:

How to distinguish them?

24

S

NP VP

I

V

shot

VP

NP

the elephant

PP

in NP

my pyjamas

S

NP VP

I V

shot

NP

PP

in NP

my pyjamas

NP

the elephant

Probabilistic CFGs
Associate each rule with a probability:

e.g.,

NP  NP PP 0.2

NP  Det N 0.4

NP  I 0.1

…

V  shot 0.005

Probability of a parse tree for a sentence is the product
of the probabilities of the rules in the tree.

25

Formally Speaking
For each nonterminal 𝐴 ∈ 𝑁,

𝛼→𝛽∈𝑅 𝑠.𝑡.𝛼=𝐴

Pr 𝛼 → 𝛽 = 1

• i.e., rules for each LHS form a probability distribution

If a tree 𝑡 contains rules 𝛼1 → 𝛽1, 𝛼2 → 𝛽2, …,

Pr 𝑡 =

𝑖

Pr(𝛼𝑖 → 𝛽𝑖)

• Tree probability is product of rule probabilities

26

Probabilistic Parsing
Goal: recover the best parse for a sentence, along with
its probability

For a sentence, sent,

let 𝜏(sent) be the set of possible parses for it,

we want to find
argmax
𝑡∈𝜏(sent)

Pr(𝑡)

Idea: extend CYK to keep track of probabilities in table

27

Extending CYK to PCFGs
Previously, cell entries are nonterminals (+ backpointer)

e.g., table[2:4] = {{NP, Det[2:3] N[3:4] }}

table[3:4] = {{NP, } {N, }}

Now, cell entries include the (best) probability of
generating the constituent with that non-terminal

e.g., table[2:4] = {{NP, Det[2:3] N[3:4], 0.215}}

table[3:4] = {{NP, , 0.022} {N, , 0.04}}

Equivalently, write as 3-dimensional array

table[2, 4, NP] = 0.215 (Det[2:3], N[3:4])

table[3, 4, NP] = 0.022

table[3, 4, N] = 0.04

28

New Recursive Step
Filling in dynamic programming table proceeds almost
as before.

During recursive step, compute probability of new
constituents to be constructed:

Pr(A[i:j]B[i:m] C[m:j]) = Pr(ABC) × table[i,m,B] × table[m,j,C]

There could be multiple rules that form constituent A for
span [i:j]. Take max:

table[i,j,A] =
max

𝐴 →𝐵𝐶, break at 𝑚
Pr(𝐴 𝑖: 𝑗 → 𝐵 𝑖:𝑚 𝐶 𝑚: 𝑗)

29

From PCFG
From previously

filled cells

Example

30

I0 shot1 the2 elephant3 in4 my5 pyjamas6

[0:1] [0:2] [0:3] [0:4] [0:5] [0:6] [0:7]

[1:2] [1:3] [1:4] [1:5] [1:6] [1:7]

[2:3] [2:4] [2:5] [2:6] [2:7]

[3:4] [3:5] [3:6] [3:7]

[4:5] [4:6] [4:7]

[5:6] [5:7]

[6:7]

NP, 0.25
N, 0.625

V, 1.0

NP, ?Det, 0.6

NP, 0.1
N, 0.25

New value:
0.6 * 0.25 * Pr(NP  Det N)

Bottom-Up vs. Top-Down
CYK algorithm is bottom-up

• Starting from words, build little pieces, then big pieces

Alternative: top-down parsing

• Starting from the start symbol, expand non-terminal
symbols according to rules in the grammar.

• Doing this efficiently can also get us all the parses of a
sentence (Earley algorithm)

31

How to Train a PCFG?
Derive from a treebank, such as WSJ.

Simplest version:

• each LHS corresponds to a categorical distribution

• outcomes of the distributions are the RHS

• MLE estimates:

Pr 𝛼 → 𝛽 =
#(𝛼 → 𝛽)

#𝛼
• Can smooth these estimates in various ways, some of

which we’ve discussed

32

Vanilla PCFGs
Estimate of rule probabilities:

• MLE estimates:

Pr 𝛼 → 𝛽 =
#(𝛼 → 𝛽)

#𝛼
• e.g., Pr(S -> NP VP) = #(S -> NP VP) / #(S)

• Recall: these distributions are normalized by LHS symbol

Even with smoothing, doesn’t work very well:

• Not enough context

• Rules are too sparse

33

Subject vs Object NPs
NPs in subject and object positions are not identically
distributed:

• Obvious cases – pronouns (I vs me)

• But both appear as NP -> PRP -> I/me

• Less obvious: certain classes of nouns are more likely to
appear in subject than object position, and vice versa.

• For example, subjects tend to be animate (usually, humans,
animals, other moving objects)

Many other cases of obvious dependencies between
distant parts of the syntactic tree.

34

Sparsity
Consider subcategorization of verbs, with modifiers

• ate VP -> VBD

• ate quickly VP -> VBD AdvP

• ate with a fork VP -> VBD PP

• ate a sandwich VP -> VBD NP

• ate a sandwich quickly VP -> VBD NP AdvP

• ate a sandwich with a fork VP -> VBD NP PP

• quickly ate a sandwich with a fork VP -> AdvP VBD NP PP

We should be able to factorize the probabilities:

• of having an adverbial modifier, of having a PP modifier,
etc.

35

Wrong Independence Assumptions
Vanilla PCFGs make independence assumptions that
are too strong AND too weak.

Too strong: vertically, up and down the syntax tree

Too weak: horizontally, across the RHS of a production

36

NP

PRP

I

?

VP

AdvP VBD NP PP

Adding Context
Add more context vertically to the PCFG

• Annotate with the parent category

Before: NP -> PRP, NP -> Det NN, etc.

Now:

Subjects:

NP^S -> PRP, NP^S -> Det NN, etc.

Objects:

NP^VP -> PRP, NP^VP -> Det NN, etc.

Learn the probabilities of the rules separately (though
they may influence each other through
interpolation/smoothing)

37

Example
Let’s help Pierre Vinken find his ancestors.
((S

(NP

(NP (NNP Pierre) (NNP Vinken))

(, ,)

(ADJP

(NP (CD 61) (NNS years))

(JJ old))

(, ,))

(VP (MD will)

(VP (VB join)

(NP (DT the) (NN board))

(PP (IN as)

(NP (DT a) (JJ nonexecutive) (NN director)))

(NP (NNP Nov.) (CD 29))))

(. .)))

38

Note that the tree here is given in bracket parse format,
rather than drawn out as a graph.

Removing Context
Conversely, we break down the RHS of the rule when
estimating its probability.

Before: Pr(VP -> START AdvP VBD NP PP END) as a unit

Now: Pr(VP -> START AdvP) *

Pr(VP -> AdvP VBD) *

Pr(VP -> VBD NP) *

Pr(VP -> NP PP) *

Pr(VP -> PP END)

• In other words, we’re making the same N-gram
assumption as in language modelling, only over non-
terminal categories rather than words.

• Learn probability of factors separately

39

Example
Let’s help Pierre Vinken find his children.
((S

(NP

(NP (NNP Pierre) (NNP Vinken))

(, ,)

(ADJP

(NP (CD 61) (NNS years))

(JJ old))

(, ,))

(VP (MD will)

(VP (VB join)

(NP (DT the) (NN board))

(PP (IN as)

(NP (DT a) (JJ nonexecutive) (NN director)))

(NP (NNP Nov.) (CD 29))))

(. .)))

40

Markovization
Vertical markovization: adding ancestors as context

• Zeroth order – vanilla PCFGs

• First order – the scheme we just described

• Can go further:

• e.g., Second order: NP^VP^S -> …

Horizontal markovization: breaking RHS into parts

• Infinite order – vanilla PCFGs

• First order – the scheme we just described

• Can choose any other order, do interpolation, etc.

41

Effect of Category Splitting

WSJ results by Klein and Manning (2003)

• With additional linguistic insights, they got up to 87.04 F1

• Current best is around 94-95 F1

42

