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Announcements
I’m out of town next week:

• Tuesday lecture: Lexical semantics, by TA Jad Kabbara

• Thursday lecture: Guest lecture by Prof. Timothy 
O’Donnell (Linguistics)

Corollary: no office hours on Tuesday

• TA office hours about A2 will be announced
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Outline
CYK parsing

PCFGs

Probabilistic CYK parsing

Markovization
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Parsing
Input sentence, grammar   output parse tree

Parsing into a CFG: constituent parsing

Parsing into a dependency representation: dependency 
parsing

Difficulty: need an efficient way to search through 
plausible parse trees for the input sentence
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Parsing into a CFG
Given:

1. CFG

2. A sentence made up of words that are in the terminal 
vocabulary of the CFG

Task: Recover all possible parses of the sentence.

Why all possible parses?
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Syntactic Ambiguity
I shot the elephant in my pyjamas.
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Types of Parsing Algorithms
Top-down

Start at the top of the tree, and expand downwards by using 
rewrite rules of the CFG to match the tokens in the input 
string

e.g., Earley parser

Bottom-up

Start from the input words, and build ever-bigger subtrees, 
until a tree that spans the whole sentence is found

e.g., CYK algorithm, shift-reduce parser

Key to efficiency is to have an efficient search strategy 
that avoids redundant computation
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CYK Algorithm
Cocke-Younger-Kasami algorithm

• A dynamic programming algorithm – partial solutions are 
stored and efficiently reused to find all possible parses for 
the entire sentence.

• Also known as the CKY algorithm

Steps:

1. Convert CFG to an appropriate form

2. Set up a table of possible constituents

3. Fill in table

4. Read table to recover all possible parses
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CFGs and Constituent Trees
Rules/productions:

S  NP VP NP  this

VP  V V  is | rules| jumps | rocks

Trees:
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CYK Algorithm
Cocke-Younger-Kasami algorithm

• A dynamic programming algorithm – partial solutions are 
stored and efficiently reused to find all possible parses for 
the entire sentence.

• Also known as the CKY algorithm

Steps:

1. Convert CFG to an appropriate form

2. Set up a table of possible constituents

3. Fill in table

4. Read table to recover all possible parses
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Chomsky Normal Form
To make things easier later, need all productions to be 
in one of these forms:

1. A  B C, where A, B, C are nonterminals

2. A  s, where A is a non-terminal s is a terminal

This is actually not a big problem.
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Converting to CNF (1)
Rule of type A  B C D …

• Rewrite into: A  X1 D …  and   X1  B C

Rule of type A  s B

• Rewrite into: A  X2 B   and   X2  s

Rule of type A  B

• Everywhere in which we see B on the LHS, replace it with 
A
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Examples of Conversion
Let’s convert the following grammar fragment into CNF:

S  NP VP N  I | elephant | pyjamas

VP  V NP PP V  shot

VP  V NP Detmy | the

NP  N

NP  Det N

NP  Det N PP

PP  in NP
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Next: Set Up a Table
This table will store all of the constituents that can be 
built from contiguous spans within the sentence.

Let sentence have N words. w[0], w[1], … w[N-1]

Create table, such that a cell in row i column j corresponds to 
the span from w[i:j+1], zero-indexed.

• Since i < j, we really just need half the table.

The entry at each cell is a list of non-terminals that can span 
those words according to the grammar.
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Parse Table
I0 shot1 the2 elephant3 in4 my5 pyjamas6

[0:1] [0:2] [0:3] [0:4] [0:5] [0:6] [0:7]

[1:2] [1:3] [1:4] [1:5] [1:6] [1:7]

[2:3] [2:4] [2:5] [2:6] [2:7]

[3:4] [3:5] [3:6] [3:7]

[4:5] [4:6] [4:7]

[5:6] [5:7]

[6:7]
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S  NP VP
VP  X1 PP X1     V NP
VP  V NP
NP  Det N
NP  X2 PP X2     Det N
PP  P NP
P  in
NP  I | elephant | pyjamas
N  I | elephant | pyjamas
V  shot
Det my | the



Filling in Table: Base Case
One word (e.g., cell [0:1])

• Easy – add all the lexical rules that can generate that word
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Base Case Examples (First 3 Words)
I0 shot1 the2 elephant3 in4 my5 pyjamas6

[0:1] [0:2] [0:3] [0:4] [0:5] [0:6] [0:7]

[1:2] [1:3] [1:4] [1:5] [1:6] [1:7]

[2:3] [2:4] [2:5] [2:6] [2:7]

[3:4] [3:5] [3:6] [3:7]

[4:5] [4:6] [4:7]

[5:6] [5:7]

[6:7]
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Filling in Table: Recursive Step
Cell corresponding to multiple words

• eg., cell for span [0:3] I shot the

• Key idea: all rules that produce phrases are of the form 

A  B C

• So, check all the possible break points m in between the 
start i and the end j, and see if we can build a constituent 
with a rule in the form, A [i:j]  B [i:m] C [m:j]
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Recurrent Step Example 1
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I0 shot1 the2 elephant3 in4 my5 pyjamas6

[0:1] [0:2] [0:3] [0:4] [0:5] [0:6] [0:7]

[1:2] [1:3] [1:4] [1:5] [1:6] [1:7]

[2:3] [2:4] [2:5] [2:6] [2:7]

[3:4] [3:5] [3:6] [3:7]

[4:5] [4:6] [4:7]

[5:6] [5:7]

[6:7]
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S  NP VP
VP  X1 PP X1     V NP
VP  V NP
NP  Det N
NP  X2 PP X2     Det N
PP  P NP
P  in
NP  I | elephant | pyjamas
N  I | elephant | pyjamas
V  shot
Det my | the



Recurrent Step Example 2
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I0 shot1 the2 elephant3 in4 my5 pyjamas6

[0:1] [0:2] [0:3] [0:4] [0:5] [0:6] [0:7]

[1:2] [1:3] [1:4] [1:5] [1:6] [1:7]

[2:3] [2:4] [2:5] [2:6] [2:7]

[3:4] [3:5] [3:6] [3:7]

[4:5] [4:6] [4:7]

[5:6] [5:7]

[6:7]

NP
N

V

?

S  NP VP
VP  X1 PP X1     V NP
VP  V NP
NP  Det N
NP  X2 PP X2     Det N
PP  P NP
P  in
NP  I | elephant | pyjamas
N  I | elephant | pyjamas
V  shot
Det my | the

Det

NP
N



Backpointers
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I0 shot1 the2 elephant3 in4 my5 pyjamas6

[0:1] [0:2] [0:3] [0:4] [0:5] [0:6] [0:7]

[1:2] [1:3] [1:4] [1:5] [1:6] [1:7]

[2:3] [2:4] [2:5] [2:6] [2:7]

[3:4] [3:5] [3:6] [3:7]

[4:5] [4:6] [4:7]

[5:6] [5:7]

[6:7]

NP
N

V

NP

S  NP VP
VP  X1 PP X1     V NP
VP  V NP
NP  Det N
NP  X2 PP X2     Det N
PP  P NP
P  in
NP  I | elephant | pyjamas
N  I | elephant | pyjamas
V  shot
Det my | the

Det

NP
N

Store where you came from!



Putting It Together
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I0 shot1 the2 elephant3 in4 my5 pyjamas6

[0:1] [0:2] [0:3] [0:4] [0:5] [0:6] [0:7]

[1:2] [1:3] [1:4] [1:5] [1:6] [1:7]

[2:3] [2:4] [2:5] [2:6] [2:7]

[3:4] [3:5] [3:6] [3:7]

[4:5] [4:6] [4:7]

[5:6] [5:7]

[6:7]

NP
N

V

NP (Det 2:3 ,N 3:4)Det

NP
N

S  NP VP
VP  X1 PP X1     V NP
VP  V NP
NP  Det N
NP  X2 PP X2     Det N
PP  P NP
P  in
NP  I | elephant | pyjamas
N  I | elephant | pyjamas
V  shot
Det my | the

Fill the table in the correct order!



Finish the Example
Let’s finish the example together for practice

How do we reconstruct the parse trees from the table?
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Dealing with Syntactic Ambiguity
In practice, one of these is more likely than the other:

How to distinguish them?
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Probabilistic CFGs
Associate each rule with a probability:

e.g.,

NP  NP PP 0.2

NP  Det N 0.4

NP  I 0.1

…

V  shot 0.005

Probability of a parse tree for a sentence is the product 
of the probabilities of the rules in the tree.
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Formally Speaking
For each nonterminal 𝐴 ∈ 𝑁,

 

𝛼→𝛽∈𝑅 𝑠.𝑡.𝛼=𝐴

Pr 𝛼 → 𝛽 = 1

• i.e., rules for each LHS form a probability distribution

If a tree 𝑡 contains rules 𝛼1 → 𝛽1, 𝛼2 → 𝛽2, …,

Pr 𝑡 = 

𝑖

Pr(𝛼𝑖 → 𝛽𝑖)

• Tree probability is product of rule probabilities
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Probabilistic Parsing
Goal: recover the best parse for a sentence, along with 
its probability

For a sentence, sent,

let 𝜏(sent) be the set of possible parses for it,

we want to find
argmax
𝑡∈𝜏(sent)

Pr(𝑡)

Idea: extend CYK to keep track of probabilities in table
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Extending CYK to PCFGs
Previously, cell entries are nonterminals (+ backpointer)

e.g., table[2:4] = {{NP, Det[2:3] N[3:4] }}

table[3:4] = {{NP, } {N, }}

Now, cell entries include the (best) probability of 
generating the constituent with that non-terminal

e.g., table[2:4] = {{NP, Det[2:3] N[3:4], 0.215}}

table[3:4] = {{NP, , 0.022} {N, , 0.04}}

Equivalently, write as 3-dimensional array

table[2, 4, NP] = 0.215 (Det[2:3], N[3:4])

table[3, 4, NP] = 0.022

table[3, 4, N] = 0.04
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New Recursive Step
Filling in dynamic programming table proceeds almost 
as before.

During recursive step, compute probability of new 
constituents to be constructed:

Pr(A[i:j]B[i:m] C[m:j]) =  Pr(ABC)  × table[i,m,B]  × table[m,j,C]

There could be multiple rules that form constituent A for 
span [i:j]. Take max:

table[i,j,A] =
max

𝐴 →𝐵𝐶, break at 𝑚
Pr(𝐴 𝑖: 𝑗 → 𝐵 𝑖:𝑚 𝐶 𝑚: 𝑗 )
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Example
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I0 shot1 the2 elephant3 in4 my5 pyjamas6

[0:1] [0:2] [0:3] [0:4] [0:5] [0:6] [0:7]

[1:2] [1:3] [1:4] [1:5] [1:6] [1:7]

[2:3] [2:4] [2:5] [2:6] [2:7]

[3:4] [3:5] [3:6] [3:7]

[4:5] [4:6] [4:7]

[5:6] [5:7]

[6:7]

NP, 0.25
N, 0.625

V, 1.0

NP, ?Det, 0.6

NP, 0.1
N, 0.25

New value:
0.6 * 0.25 * Pr(NP  Det N)



Bottom-Up vs. Top-Down
CYK algorithm is bottom-up

• Starting from words, build little pieces, then big pieces

Alternative: top-down parsing

• Starting from the start symbol, expand non-terminal 
symbols according to rules in the grammar.

• Doing this efficiently can also get us all the parses of a 
sentence (Earley algorithm)

31



How to Train a PCFG?
Derive from a treebank, such as WSJ.

Simplest version:

• each LHS corresponds to a categorical distribution

• outcomes of the distributions are the RHS

• MLE estimates:

Pr 𝛼 → 𝛽 =
#(𝛼 → 𝛽)

#𝛼
• Can smooth these estimates in various ways, some of 

which we’ve discussed
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Vanilla PCFGs
Estimate of rule probabilities:

• MLE estimates:

Pr 𝛼 → 𝛽 =
#(𝛼 → 𝛽)

#𝛼
• e.g., Pr(S -> NP VP) = #(S -> NP VP) / #(S)

• Recall: these distributions are normalized by LHS symbol 

Even with smoothing, doesn’t work very well:

• Not enough context

• Rules are too sparse
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Subject vs Object NPs
NPs in subject and object positions are not identically 
distributed:

• Obvious cases – pronouns (I vs me)

• But both appear as NP -> PRP -> I/me

• Less obvious: certain classes of nouns are more likely to 
appear in subject than object position, and vice versa.

• For example, subjects tend to be animate (usually, humans, 
animals, other moving objects)

Many other cases of obvious dependencies between 
distant parts of the syntactic tree.
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Sparsity
Consider subcategorization of verbs, with modifiers

• ate VP -> VBD

• ate quickly VP -> VBD AdvP

• ate with a fork VP -> VBD PP

• ate a sandwich VP -> VBD NP

• ate a sandwich quickly VP -> VBD NP AdvP

• ate a sandwich with a fork VP -> VBD NP PP

• quickly ate a sandwich with a fork VP -> AdvP VBD NP PP

We should be able to factorize the probabilities:

• of having an adverbial modifier, of having a PP modifier, 
etc.
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Wrong Independence Assumptions
Vanilla PCFGs make independence assumptions that 
are too strong AND too weak.

Too strong: vertically, up and down the syntax tree

Too weak: horizontally, across the RHS of a production
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Adding Context
Add more context vertically to the PCFG

• Annotate with the parent category

Before: NP -> PRP, NP -> Det NN, etc.

Now:

Subjects:

NP^S -> PRP, NP^S -> Det NN, etc.

Objects:

NP^VP -> PRP, NP^VP -> Det NN, etc.

Learn the probabilities of the rules separately (though 
they may influence each other through 
interpolation/smoothing)
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Example
Let’s help Pierre Vinken find his ancestors.
( (S

(NP

(NP (NNP Pierre) (NNP Vinken) )

(, ,)

(ADJP

(NP (CD 61) (NNS years) )

(JJ old) )

(, ,) )

(VP (MD will)

(VP (VB join)

(NP (DT the) (NN board) )

(PP (IN as)

(NP (DT a) (JJ nonexecutive) (NN director) ))

(NP (NNP Nov.) (CD 29) )))

(. .) ))
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Note that the tree here is given in bracket parse format,
rather than drawn out as a graph.



Removing Context
Conversely, we break down the RHS of the rule when 
estimating its probability.

Before: Pr(VP -> START AdvP VBD NP PP END) as a unit

Now: Pr(VP -> START AdvP) *

Pr(VP -> AdvP VBD) *

Pr(VP -> VBD NP) *

Pr(VP -> NP PP) *

Pr(VP -> PP END)

• In other words, we’re making the same N-gram 
assumption as in language modelling, only over non-
terminal categories rather than words.

• Learn probability of factors separately
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Example
Let’s help Pierre Vinken find his children.
( (S

(NP

(NP (NNP Pierre) (NNP Vinken) )

(, ,)

(ADJP

(NP (CD 61) (NNS years) )

(JJ old) )

(, ,) )

(VP (MD will)

(VP (VB join)

(NP (DT the) (NN board) )

(PP (IN as)

(NP (DT a) (JJ nonexecutive) (NN director) ))

(NP (NNP Nov.) (CD 29) )))

(. .) ))
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Markovization
Vertical markovization: adding ancestors as context

• Zeroth order – vanilla PCFGs

• First order – the scheme we just described

• Can go further:

• e.g., Second order: NP^VP^S -> …

Horizontal markovization: breaking RHS into parts

• Infinite order – vanilla PCFGs

• First order – the scheme we just described

• Can choose any other order, do interpolation, etc.
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Effect of Category Splitting

WSJ results by Klein and Manning (2003)

• With additional linguistic insights, they got up to 87.04 F1

• Current best is around 94-95 F1
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