
Recurrent Neural Networks

COMP-550

Oct 5, 2017

Outline
Introduction to neural networks and deep learning

Feedforward neural networks

Recurrent neural networks

2

Classification Review
𝑦 = 𝑓(𝑥)

Represent input 𝑥 as a list of features

3

output label

input

classifier

Lorem ipsum dolor sit amet, consectetur
adipiscing elit, sed do eiusmod tempor
incididunt ut labore et dolore magna aliqua. Ut
enim ad minim veniam, quis nostrud
exercitation ullamco laboris nisi ut aliquip ex
ea commodo consequat. Duis aute irure dolor
in reprehenderit in voluptate velit esse cillum
dolore eu fugiat nulla pariatur. Excepteur sint
occaecat cupidatat non proident, sunt in culpa
qui officia deserunt mollit anim id est laborum.

1.0, 0.0, 1.0, 1.0, 0.0, 0.0, 0.0, 1.0 …

𝑥1 𝑥2 𝑥3 𝑥4 𝑥5 𝑥6 𝑥7 𝑥8 …

Logistic Regression
Linear regression:

𝑦 = 𝑎1𝑥1 + 𝑎2𝑥2 + … + 𝑎𝑛𝑥𝑛 + 𝑏

Intuition: Linear regression gives as continuous values
in [-∞, ∞] —let’s squish the values to be in [0, 1]!

Function that does this: logit function

𝑃(𝑦| 𝑥) =
1

𝑍
𝑒𝑎1𝑥1 + 𝑎2𝑥2 + … + 𝑎𝑛𝑥𝑛 + 𝑏

(a.k.a., maximum entropy or MaxEnt classifier)

N.B.: Don’t be confused by name—this method is most often used to solve
classification problems.

4

This 𝑍 is a normalizing constant to ensure
this is a probability distribution.

Linear Model
Logistic regression, support vector machines, etc. are
examples of linear models.

𝑃(𝑦| 𝑥) =
1

𝑍
𝑒𝑎1𝑥1 + 𝑎2𝑥2 + … + 𝑎𝑛𝑥𝑛 + 𝑏

Cannot learn complex, non-linear functions from input
features to output labels (without adding features)

e.g., Starts with a capital AND not at beginning of sentence ->
proper noun

5

Linear combination of feature
weights and values

(Artificial) Neural Networks
A kind of learning model which automatically learns
non-linear functions from input to output

Biologically inspired metaphor:

• Network of computational units called neurons

• Each neuron takes scalar inputs, and produces a scalar
output, very much like a logistic regression model

Neuron(𝑥) = 𝑔(𝑎1𝑥1 + 𝑎2𝑥2 + … + 𝑎𝑛𝑥𝑛 + 𝑏)

As a whole, the network can theoretically compute any
computable function, given enough neurons. (These
notions can be formalized.)

6

Responsible For:
AlphaGo (Google) (2015)

• Beat Go champion Lee Sedol in a series of 5 matches, 4-1

Atari game-playing bot (Google) (2015)

Above results use NNs in conjunction with
reinforcement learning

State of the art in:

• Speech recognition

• Machine translation

• Object detection

• Other NLP tasks

7

Feedforward Neural Networks
All connections flow forward (no loops); each layer of
hidden units is fully connected to the next.

8

Figure from Goldberg (2015)

Inference in a FF Neural Network
Perform computations forwads

through the graph:

𝐡𝟏 = 𝑔1(𝐱𝐖𝟏 + 𝐛𝟏)
𝐡𝟐 = 𝑔2(𝐡𝟏𝐖𝟐 + 𝐛𝟐)
𝐲 = 𝐡𝟐𝐖𝟑

Note that we are now representing each layer as a
vector; combining all of the weights in a layer across
the units into a weight matrix

9

Activation Function
In one unit:

Linear combination of inputs and weight values  non-
linearity

𝐡𝟏 = 𝑔1(𝐱𝐖𝟏 + 𝐛𝟏)

Popular choices:

Sigmoid function (just like logistic regression!)

tanh function

Rectifier/ramp function: 𝑔 𝑥 = max(0, 𝑥)

Why do we need the non-linearity?

10

Softmax Layer
In NLP, we often care about discrete outcomes

• e.g., words, POS tags, topic label

Output layer can be constructed such that the output
values sum to one:

Let 𝐱 = 𝑥1…𝑥𝑘

𝑠𝑜𝑓𝑡𝑚𝑎𝑥 𝑥𝑖 =
exp(𝑥𝑖)

 𝑗
𝑘 exp(𝑥𝑗)

Interpretation: unit 𝑥𝑖 represents probability that
outcome is 𝑖.

Essentially, the last layer is like a multinomial logistic
regression

11

Loss Function
A neural network is optimized with respect to a loss
function, which measures how much error it is making
on predictions:

𝐲: correct, gold-standard distribution over class labels

 𝐲: system predicted distribution over class labels

𝐿(𝐲, 𝐲): loss function between the two

Popular choice for classification (usually with a softmax
output layer) – cross entropy:

𝐿𝑐𝑒 𝐲, 𝐲 = −

𝑖

𝑦𝑖 log(𝑦𝑖)

12

Training Neural Networks
Typically done by stochastic gradient descent

• For one training example, find gradient of loss function
wrt parameters of the network (i.e., the weights of each
layer); “travel along in that direction”.

Network has very many parameters!

Efficient algorithm to compute the gradient with
respect to all parameters: backpropagation (Rumelhart
et al., 1986)

• Boils down to an efficient way to use the chain rule of
derivatives to propagate the error signal from the loss
function backwards through the network back to the
inputs

13

SGD Overview
Inputs:

• Function computed by neural network, 𝑓(𝐱; 𝜃)

• Training samples {𝐱𝐤, 𝐲𝐤}

• Loss function 𝐿

Repeat for a while:

Sample a training case, 𝐱𝐤, 𝐲𝐤

Compute loss 𝐿(𝑓 𝐱𝐤; 𝜃 , 𝐲𝐤)

Compute gradient 𝛻𝐿(𝐱𝐤) wrt the parameters 𝜃

Update 𝜃 ← 𝜃 − 𝜂𝛻𝐿(𝐱𝐤)

Return 𝜃

14

By backpropagation

Forward pass

Example: Forward Pass
𝐡𝟏 = 𝑔1(𝐱𝐖𝟏 + 𝐛𝟏)
𝐡𝟐 = 𝑔2(𝐡𝟏𝐖𝟐 + 𝐛𝟐)

𝑓 𝐱 = 𝐲 = 𝑔3 𝐡𝟐 = 𝐡𝟐𝐖𝟑

Loss function: 𝐿(𝐲, 𝐲𝑔𝑜𝑙𝑑)

Save the values for 𝐡𝟏, 𝐡𝟐, 𝐲 too!

15

Example Cont’d: Backpropagation
𝑓 𝐱 = 𝑔3(𝑔2(𝑔1 𝐱)

Need to compute:
𝜕𝐿

𝜕𝐖3,
𝜕𝐿

𝜕𝐖2,
𝜕𝐿

𝜕𝐖1

By calculus and chain rule:

•
𝜕𝐿

𝜕𝐖3 =
𝜕𝐿

𝜕𝑔3
𝜕𝑔3

𝜕𝐖3

•
𝜕𝐿

𝜕𝐖2 =
𝜕𝐿

𝜕𝑔3
𝜕𝑔3

𝜕𝑔2
𝜕𝑔2

𝜕𝐖2

•
𝜕𝐿

𝜕𝐖1 =
𝜕𝐿

𝜕𝑔3
𝜕𝑔3

𝜕𝑔2
𝜕𝑔2

𝜕𝑔1
𝜕𝑔1

𝜕𝐖1

Notice the overlapping computations? Be sure to do
this in a smart order to avoid redundant computations!

16

Example: Time Delay Neural Network
Let’s draw a neural network architecture for POS
tagging using a feedforward neural network.

We’ll construct a context window around each word,
and predict the POS tag of that word as the output.

Limitations of this approach?

17

Recurrent Neural Networks
A neural network sequence model:

𝑅𝑁𝑁 𝐬𝟎, 𝐱𝟏:𝐧 = 𝐬𝟏:𝐧, 𝐲𝟏:𝐧
𝐬𝐢 = 𝑅(𝐬𝐢−𝟏, 𝐱𝐢) # 𝐬𝐢 : state vector

𝐲𝐢 = 𝑂 𝐬𝐢 # 𝐲𝐢 : output vector

𝑅 and 𝑂 are parts of the neural network that compute the
next state vector and the output vector

18

Long-Term Dependencies in Language
There can be dependencies between words that are
arbitrarily far apart.

• I will look the word that you have described that doesn’t
make sense to her up.

• Can you think of some other examples in English of long-
range dependencies?

Cannot easily model with HMMs or even LC-CRFs, but
can with RNNs

19

Vanishing and Exploding Gradients
If 𝑅 and 𝑂 are simple fully connected layers, we have a
problem. In the unrolled network, the gradient signal
can get lost on its way back to the words far in the past:

• Suppose it is 𝐖1 that we want to modify, and there are N
layers between that and the loss function.

𝜕𝐿

𝜕𝐖1
=

𝜕𝐿

𝜕𝑔𝑁
𝜕𝑔𝑁

𝜕𝑔𝑁−1
…
𝜕𝑔2

𝜕𝑔1
𝜕𝑔1

𝜕𝐖1

• If the gradient norms are small (<1), the gradient will
vanish to near-zero (or explode to near-infinity if >1)

• This happens especially because we have repeated
applications of the same weight matrices in the
recurrence

20

Long Short-Term Memory Networks
Currently one of the most popular RNN architectures
for NLP (Hochreiter and Schmidhuber, 1997)

• Explicitly models a “memory” cell (i.e., a hidden-layer
vector), and how it is updated as a response to the current
input and the previous state of the memory cell.

Visual step-by-step explanation:

http://colah.github.io/posts/2015-08-Understanding-LSTMs/

21

http://colah.github.io/posts/2015-08-Understanding-LSTMs/

Fix for Vanishing Gradients
It is the fact that in the LSTM, we can propagate a cell
state directly that fixed the vanishing gradient problem:

There is no repeated weight application between the
internal states across time!

22

Hardware for NNs
Common operations in inference and learning:

• Matrix multiplication

• Component-wise operations (e.g., activation functions)

This operation is highly parallelizable!

Graphical processing units (GPUs) are specifically
designed to perform this type of computation
efficiently

23

Packages for Implementing NNs
TensorFlow https://www.tensorflow.org/

PyTorch http://pytorch.org/

Caffe http://caffe.berkeleyvision.org/

Theano http://deeplearning.net/software/theano/

• These packages support GPU and CPU computations

• Write interface code in high-level programming
language, like Python

24

Summary: Advantages of NNs
Learn relationships between inputs and outputs:

• Complex features and dependencies between inputs and
states over long ranges with no fixed horizon assumption
(i.e., non-Markovian)

• Reduces need for feature engineering

• More efficient use of input data via weight sharing

Highly flexible, generic architecture

• Multi-task learning: jointly train model that solves
multiple tasks simultaneously

• Transfer learning: Take part of a neural network used for
an initial task, use that as an initialization for a second,
related task

25

Summary: Challenges of NNs
Complex models may need a lot of training data

Many fiddly hyperparameters to tune, little guidance
on how to do so, except empirically or through
experience:

• Learning rate, number of hidden units, number of hidden
layers, how to connect units, non-linearity, loss function,
how to sample data, training procedure, etc.

Can be difficult to interpret the output of a system

• Why did the model predict a certain label? Have to
examine weights in the network.

• Important to convince people to act on the outputs of the
model!

26

NNs for NLP
Neural networks have “taken over” mainstream NLP
since 2014; most empirical work at recent conferences
use them in some way

Lots of interesting open research questions:

• How to use linguistic structure (e.g., word senses, parses,
other resources) with NNs, either as input or output?

• When is linguistic feature engineering a good idea, rather
than just throwing more data with a simple representation
for the NN to learn the features?

• Multitask and transfer learning for NLP

• Defining and solving new, challenging NLP tasks

27

