Bayesian Models of Lexicon Learning

Timothy J. O'Donnell McGill Linguistics

Language Learning and the Lexicon

Language learning consists mostly (entirely?) of learning the lexicon (words, morphemes, etc.)?

How do learners identify the lexical units in their language?

The Problem	of Lexica	al
Uncertainty		
Attach to adjectives (Adj)	Suffix	
Mean abstract quality or state		
circuitousness, grandness, orderliness, business, goodness,	-ness	
	-th	
	-ity	

The Problem	of Lexic	al
Uncertaintv		
Nouns (N)		
Attach to adjectives (Adj)	Suffix	
Mean abstract quality or state		
gooaness, cheapness, forgiveness, circuitousness, grandness, orderliness, business, goodness,	-ness	
truth, warmth, width, depth, filth, sloth, strength, death, dearth, wealth, length, youth,	-th	
	-ity	

The Problem	of Lexic	al
Uncertaintv		
Nouns (N)		
Attach to adjectives (Adj)	Suffix	
Mean abstract quality or state		
gooaness, cheapness, jorgiveness, circuitousness, grandness, orderliness, business, goodness,	-ness	
truth, warmth, width, depth, filth, sloth, strength, death, dearth, wealth, length, youth,	-th	
verticality, tractability, severity, seniority, inanity, electricity, parity, scarcity, reality, 	-ity	

	Suffix
Productive	-ness
Unproductive	-th
Productive in Combination	-ity

	Suffix
Productive	-ness

pine-scented pine-scentedness

goodness, cheapness, forgiveness, circuitousness, grandness, orderliness, pretentiousness, business, goodness, greenness, ...

goodness, cheapness, forgiveness, circuitousness, grandness, orderliness, pretentiousness, business, greenness, ...

Phonological Morpho-Syntactic Semantic Regularities Regularities Regularities

	Suffix
Productive	-ness

Т

	Suffix
Productive	-ness
Unproductive	-th

cool *coolth

	Suffix
Productive	-ness
Unproductive	-th

truth, warmth, width, depth, filth, sloth, strength, death, dearth, wealth, length, youth, ...

Т

	Suffix
Productive	-ness
Unproductive	-th

truth, warmth, width, depth, filth, sloth, strength, death, dearth, wealth, length, youth, ...

	Suffix
Productive	-ness
Unproductive	-th
Productive in Combination	-ity

pine-scented cool *pine-scentedity *coolity

	Suffix
Productive	-ness
Unproductive	-th
Productive in Combination	-ity

	Suffix
Productive	-ness
Unproductive	-th
Productive in Combination	-ity

-ile, -al, -able, -ic, -(i)an

	Suffix
Productive	-ness
Unproductive	-th
Productive in Combination	-ity

sequentiable sequentiability

-ability

	Suffix
Productive	-ness
Unproductive	-th
Productive in Combination	-ity

T

What principles can the learner use to distinguish real lexical units like - <i>n</i> ess from		
false lexical units like -th?		
Productive	-ness	
Unproductive	-th	
Productive in Combination	-ity	

Overview

Part I: An approach to lexical uncertainty.

Part II: Detailed case study in morphology.

Part III: Unsupervised models of language learning.

Overview

Part I: An approach to lexical uncertainty.

Part II: Detailed case study in morphology.

Part III: Unsupervised models of language learning.

Bayesian Approach

- Use probabilistic models to define prior distribution over possible lexicons.
- Find posterior distribution over lexicons given actual data using probabilistic conditioning.

$P(L \mid D) \propto P(D \mid L) P(L)$

The Framework

- I. An underlying computational system that defines space of possible structures.
- 2. Manage uncertainty over the ways in which forms can be analyzed with a probabilistic model implementing a **tradeoff** between storage and computation (prior and likelihood).
- 3. Use probabilistic inference to derive languagespecific predictions.

The Framework

- . An underlying computational system that defines space of possible structures.
- 2. Manage uncertainty over the ways in which forms can be analyzed with a probabilistic model implementing a **tradeoff** between storage and computation (prior and likelihood).
- 3. Use probabilistic inference to derive languagespecific predictions.

Underlying Computational System

- I. Inventory of structured units (lexicon).
- 2. Structure-building operations.

Stems, suffixes, prefixes with combinatorial restrictions.

Structure Building

Structure Building

Structure Building

The Framework

- An underlying computational system that defines space of possible structures.
- 2. Manage uncertainty over the ways in which forms can be analyzed with a probabilistic model implementing a **tradeoff** between storage and computation (prior and likelihood).
 - 3. Use probabilistic inference to derive languagespecific predictions.

Uncertainty

Phonological, semantic, and morphosyntactic processes generate candidate analyses. -ity Adj -able ree aqr

Probabilistic Model

- **Goal**: Define a probability distribution that quantifies uncertainty about likely and unlikely lexical units.
- Prior and likelihood lead to a **tradeoff** between storage and computation.
 - I. Prior over lexicon: P(L).
 - Likelihood over derivations of individual forms: P(D | L).

Prior on Lexicon

- Prefer a small number of highly reusable (i.e., generalizable) units.
- Dirichlet Process (Ferguson, 1973; Aldous, 1983; Sethuraman, 1994; Pitman 1995).
 - Allows unbounded number of stored units (nonparametric).
 - Prefers fewer units.
 - Prefers more reusable units.

 $P(unit) \propto frequency of use$

Likelihood of Derived Forms

- Simple observed forms with few parts.
- Probability of derivation: Product of probability of individual units.
 - Probabilities between 0 and 1.
 - Geometric decrease in probability.
 - Prefers fewer lexical items per derivation.
 - Prefers to store more complex units.

The Framework

- I. An underlying computational system that defines space of possible structures.
- 2. Manage uncertainty over the ways in which forms can be analyzed with a probabilistic implementing a **tradeoff** between storage and computation.
- 3. Use probabilistic inference to derive languagespecific predictions.

The Mathematical Model: Fragment Grammars

Generalization of <u>Adaptor Grammars</u> (Johnson et al., 2007).

-ity

Adj

-able

- Allows storing of partial trees.
- Can be generalized with stochastic variants of *memoization* and *order of evaluation*.

Inference Problem

Search for sets of stored units and derivations of individual forms which best explain the input taking into account preferences for a small inventory of highly reusable units and simple derivations of individual forms.

Example Input

Maximal Decomposition

No Decomposition

Intermediate Decomposition

Builds on both of classic and recent work in non-parametric Bayesian and minimum description length framework.s

Has connections to theory of programming languages, Kolmogorov complexity, and other areas, via probabilistic programming and program induction frameworks.

Overview

Part I: An approach to lexical uncertainty.

Part II: Detailed case study in morphology.

Part III: Unsupervised models of language learning.

English Derivational Morphology

	Suffix
Productive	-ness
Unproductive	-th
Productive in Combination	-ity

Morphological Productivity

- I. Background
- 2. **Productivity and frequency**
- 3. Affix ordering

Morphological Productivity

- I. Background
- 2. **Productivity and frequency**
- 3. Affix ordering

Idealized Learner Study

- Not intended to correspond to a particular stage of development or learning procedure used by children.
- Question: Does the computation/storage tradeoff provide an effective way of distinguishing between productive units like -ness and false generalizations like -th?

Input Representations

Phonologically, semantically, and morphosyntactically plausible candidate analyses, erring on the side of shareable structure (decomposition).

Models

Models

Full-Parsing

(MAP Dirichlet-Multinomial Context-Free Grammars: DMPCFG)

Johnson, Griffiths, & Goldwater (2007a)

- <u>Storage Strategy</u>: Maximally Decompose.
- Implements radical version of decompositional theories from psychology (e.g., Taft, 1988) and linguistics (e.g., Halle & Marantz, 1983).

Full-Parsing

(MAP Dirichlet-Multinomial Context-Free Grammars: DMPCFG)

Johnson, Griffiths, & Goldwater (2007a)

- <u>Storage Strategy</u>: Maximally Decompose.
- Best thought of as a baseline system for morphology.

Full-Parsing

(MAP Dirichlet-Multinomial Context-Free Grammars: DMPCFG)

Johnson, Griffiths, & Goldwater (2007a)

• <u>Storage Strategy</u>: Maximally Decompose.

Models

(MAP All-Adapted Adaptor Grammars: MAG)

Johnson, Griffiths, & Goldwater (2007)

(MAP All-Adapted Adaptor Grammars: MAG)

Johnson, Griffiths, & Goldwater (2007)

(MAP All-Adapted Adaptor Grammars: MAG)

Johnson, Griffiths, & Goldwater (2007)

(MAP All-Adapted Adaptor Grammars: MAG)

Johnson, Griffiths, & Goldwater (2007)

(MAP All-Adapted Adaptor Grammars: MAG)

Johnson, Griffiths, & Goldwater (2007)

• <u>Storage Strategy</u>: Store structures in their entirety after first time generated.

All full sub-trees are stored recursively.

(MAP All-Adapted Adaptor Grammars: MAG)

Johnson, Griffiths, & Goldwater (2007)

- <u>Storage Strategy</u>: Store structures in their entirety after first time generated.
- Modern probabilistic implementation of classical lexical redundancy rules (e.g., Jackendoff, 1975; Aronoff, 1976).

(MAP All-Adapted Adaptor Grammars: MAG)

Johnson, Griffiths, & Goldwater (2007)

• <u>Storage Strategy</u>: Store structures in their entirety after first time generated.

Productivity $P(\underbrace{N}_{Adj - ness}) \propto Type frequency$

Models

Inference-Based

 <u>Storage Strategy</u>: Store set of units that best explains data (only inference-based storage proposal).

Inference-Based

- <u>Storage Strategy</u>: Store set of units that best explains data (only inference-based storage proposal).
- Generalization of *Full-Storage* (AG) model (Johnson et al., 2007).

Models

Morphological Productivity

- I. Background
- 2. **Productivity and frequency**
- 3. Affix ordering

Productivity and the Distribution of Forms

What aspects of the distribution of words and part-words signal that some structure is an independent, productive lexical unit?

Five Most Productive Suffixes (Predicted)

Full-Parsing (MDPCFG)

Suffix	Example
ion: V > N	regression
$\mathit{ly}: \texttt{Adj} > \texttt{Adv}$	quickly
ate:BND>V	segregate
ment: V > N	development
er:V>N	talker

Inference-Based (FG)

Suffix	Example
ly:Adj $>$ Adv	quickly
er:V>N	talker
$\mathit{ness}:\texttt{Adj}\!>\!\texttt{N}$	tallness
$y: \mathtt{N} > \mathtt{Adj}$	mousey
er:N>N	prisoner

Full-Storage (MAG)

Suffix	Example
ly:Adj $>$ Adv	quickly
ion:V>N	regression
er:V>N	talker
ly:V>Adv	bitingly
$y: \mathtt{N} > \mathtt{Adj}$	mousey

Five Most Productive Suffixes (Predicted)

-ness

Full-Parsin	g (MDPCFG)
Suffix	Example
ion:V>N	regression
ly:Adj $>$ Adv	quickly
ate:BND>V	segregate
ment: V > N	development
er:V>N	talker

Inference-Based (FG)

Suffix	Example	
ly:Adj $>$ Adv	quickly	
er:V>N	talker	
$\mathit{ness}:\texttt{Adj}\!>\!\texttt{N}$	tallness	
y:N>Adj	mousey	
er:N>N	prisoner	

Full-Storage (MAG)

Suffix	Example
<i>ly</i> :Adj>Adv	quickly
ion:V>N	regression
er:V>N	talker
ly:V>Adv	bitingly
$y: \mathtt{N} > \mathtt{Adj}$	mousey

Five Most Productive Suffixes (Predicted)

-ion

Full-Parsing (MDPCFG)

Suffix	Example
ion:V>N	regression
<i>ly</i> :Adj>Adv	quickly
ate:BND>V	segregate
ment: V > N	development
er:V>N	talker

Inference-Based (FG)

Suffix	Example
ly:Adj $>$ Adv	quickly
er:V>N	talker
$\mathit{ness}:\texttt{Adj}\!>\!\texttt{N}$	tallness
$y: \mathtt{N} \! > \! \mathtt{Adj}$	mousey
er:N>N	prisoner

Full-Storage (MAG)

Suffix	Example	
ly:Adj $>$ Adv	quickly	
ion:V>N	regression	
er:V>N	talker	
<i>ly</i> :V>Adv	bitingly	
$y: \mathtt{N} > \mathtt{Adj}$	mousey	

eat : *eation

Productivity and Frequency Distributions

- Productive suffixes give rise to new forms.
- <u>Distributional consequence</u>: Large proportion of low-frequency forms.
- Large number of rare event distributions (LNRE) investigated mathematically (Khmaladze, 1987; Baayen, 2001).
- Used to develop useful statistical tools to quantify and study productivity in corpus samples (e.g., Baayen, 1992).
 - More below.

Type and Token Frequencies

- The Inference-Based (FG) makes correct use of distributional facts about productivity.
- Why is the model sensitive to the proportion of low-frequency forms?

Ideal Input for Productivity

Ideal Input for Productivity

Ideal Input for Storage

Ideal Input for Storage

Baayen's Hapax-Based Estimators

- Baayen's \mathcal{P} / \mathcal{P}^* (e.g., Baayen, 1992)
- Most well-studied statistical corpus-oriented estimators of productivity.
- Estimators of *single-affix* productivity based on the proportion hapaxes.
- Various mathematical derivations.
 - Rate of vocabulary change.
 - Good-Turing.
- Non-psychological.

The Inference-Based Model and Baayen's Measures

• For individual suffixes predictions strongly correlate.

Measure	FG	MDPCFG	MAG
${\cal P}$	0.907	-0.0003	0.692
\mathcal{P}^*	0.662	0.480	0.568

- Inference-Based (FG) model makes no explicit assumption about-low frequency forms.
- Inference-Based (FG) model derives relationship between productivity inferences and distributional facts from storage-computation tradeoff applied to the problem of lexicon learning.

Morphological Productivity

I. Background

2. **Productivity and frequency**

3. Affix ordering

The Affix-Ordering Problem

- Tiny fraction of logically possible affix combinations occur in practice.
- Fabb (1988)
 - 43 suffixes
 - 663 predicted possible.
 - ~50 attested.

The Affix-Ordering Problem

- Numerous accounts (see, O'Donnell, 2015 for review).
 - None entirely successful.
- <u>Main empirical generalization</u>: Ordering correlates with a number of other properties.

Correlated Properties

Earlier Suffixes

Later Suffixes

-ion, -ity, -y, -al, -ic, -ate, -ous, -ive, ... -ness, -less, -hood, -ful, -ly, -y, -like, -ist, ...

- I. Origin (Latin/Germanic)
- 2. Phonological regularity
- 3. Transparency of meaning
- 4. Productivity

Productivity and Ordering Generalization

On average more productive affixes appear outside of less productive affixes (Hay, 2002; Hay & Plag, 2004; Plag et al., 2009).

Productivity and Ordering Generalization

- Follows as a consequence of *Inference-Based* (FG) model's pattern of storage and computation.
- **Crucial point**: By definition, productive affixes are just independent units which can combine freely; unproductive affixes are subparts of other stored forms.

Productivity and Ordering

Simple words

Words with unproductive suffixes

Correlated Properties

- <u>Latinate v. Germanic</u> reflects diachronic fact that Latinate affixes were borrowed as parts of loan words.
- <u>Regularity and Transparency</u> differences are accounted for if stored items can preserve or accrue idiosyncrasies.

Paradoxical Suffix Combinations

- Exceptions to the productivity and ordering generalization and all current theoretical accounts (Hay, 2003).
 - -ability, -ation, -istic
- Idea: -*ability*, -*ation*, and -*istic* are single, stored lexical units.

Predicted Generalizable Units

Sequence	Category	
-ate -ion	N	
-ic -al	А	
-ate -ive	A	
-al -ity	N	
-al -ize	v	
-ology -ist	N	
-ment -al	A	
-able -ity	N	
-ist -ic	A	
-ous -ity	Ν	

-ivity v. -bility

٠

-ivity v. -bility

-ivity v. -bility

-ivity v. -bility

Full-Parsing (DMPCFG)

Full-Storage (MAG)

Inference-Based (FG)

Overview

Part I: An approach to lexical uncertainty.

Part II: Detailed case study in morphology.

Part III: Unsupervised models of language learning.

Morphology Studies

Phonological, morphosyntactic, and semantic processes generate candidate analyses.

Morphology Studies

Unsupervised Learning

Phonological, morphosyntactic, and semantic processes generate candidate analyses.

Unsupervised Learning

- First step in integrating models of phonetic, phonological, and morphological structure learning.
- Completely unsupervised learning of words, and morphemes from speech (acoustic input).
- Uses similar storage-computation tradeoffs in each component.

- I. Model of unsupervised learning of phonological units from acoustic data.
- 2. Model of mapping between underlying (lexical) to surface phonological units.
- 3. Model of morphological structure.
- 4. Model of lexical storage.

- I. Learning Phonemes (Lee & Glass, 2012)
 - Phones are hidden Markov models generating acoustics.
 - Unbounded number of phones.
 - Dirichlet process prior over phone inventory.
 - Fewer more reusable phones.

and MIT's open university

2. Underlying and Surface Phones

- Highly simplified phonetics/phonology.
- Allophony, phonetic variation, coarticulation, noise, etc.

• Highly simplified phonetics/phonology.

ł

 \mathbf{Z}

00

ł

university

 \mathbf{l}

i

- Substitutions.
- Splits.

i

d

3

 \mathbf{m}

a

'IT's

n

• Deletions.

Key Scientific Results

- First unsupervised model of this scope.
- Outperforms state-of-art system for spoken term detection (Zhang, et al. 2013).
- Phone segmentation ~75%, word segmentation less great <20%.
- <u>Lexical units.</u>
- Synergistic Interactions.

Key Scientific Results

- <u>Lexical units.</u>
- <u>Synergistic Interactions</u>.

Lexical Unit Study

Lexical Units

Transcription	Discovered lexical units		Word
/iy l iy/ (really, willy, billion)	[35] [31 4]	/.1./	68
/ey sh ax n/ (innovation, imagination)	[6 7 30] [49]	-/111/-	43
/ax bcl ax l/ (able, cable, incredible)	[34 18] [38 91]		18
discovered	[26] [70 110 3] [9 99] [31]		9
individual	[49 146] [34 99] [154] [54 7] [35 48]		7
powerful	[50 57 145] [145] [81 39 38]		5
open university	[48 91] [4 67] [25 8 99 29] [44	22] [103 4]	4
the arab muslim world	[28 32] [41] [67] [25 35] [1 27]	[13 173] [8 139] [38 91]	2

Lexical Units

Transcription	Discovered lexical units		Word
/iy l iy/ (really, willy, billion)	[35] [31 4]		68
/ey sh ax n/ (innovation, imagination)	[6 7 30] [49]	-ation	43
/ax bcl ax l/ (able, cable, incredible)	[34 18] [38 91]		18
discovered	[26] [70 110 3] [9 99] [31]		9
individual	[49 146] [34 99] [154] [54 7] [35 48]		7
powerful	[50 57 145] [145] [81 39 38]		5
open university	[48 91] [4 67] [25 8 99 29] [44	22] [103 4]	4
the arab muslim world	[28 32] [41] [67] [25 35] [1 27]	[13 173] [8 139] [38 91]	2

Predicted Generalizable Combinations

Sequence	Category
-ate -ion	N
-ic -al	A
-ate -ive	A
-al -ity	N
-al -ize	V
-ology -ist	N
-ment -al	A
-able -ity	N
-ist -ic	A
-ous -ity	N

Lexical Units

Transcription	Discovered lexical units		Word
/iy l iy/ (really, willy, billion)	[35] [31 4]		68
/ey sh ax n/ (innovation, imagination)	[6 7 30] [49]		43
/ax bcl ax l/ (able, cable, incredible)	[34 18] [38 91]	-able	18
discovered	[26] [70 110 3] [9 99] [31]		9
individual	[49 146] [34 99] [154] [54 7] [3	5 48]	7
powerful	[50 57 145] [145] [81 39 38]		5
open university	[48 91] [4 67] [25 8 99 29] [44	22] [103 4]	4
the arab muslim world	[28 32] [41] [67] [25 35] [1 27]	[13 173] [8 139] [38 91]	2

Lexical Units

Transcription	Discovered lexical units	Word
/iy l iy/ (really, willy, billion)	[35] [31 4]	68
/ey sh ax n/ (innovation, imagination)	[6 7 30] [49]	43
/ax bcl ax l/ (able, cable, incredible)	[34 18] [38 91]	18
discovered	[26] [70 110 3] [9 99] [31]	9
individual	[49 146] [34 99] [154] [54 7] [35 48]	7
powerful		5
open university	[48 91] [4] The arab muslim world.	4
the arab muslim world	[28 32] [41] [67] [25 35] [1 27] [13 173] [8 139] [38 91]	2

Key Scientific Results

- Lexical units.
- Synergistic Interactions.

Synergistic Interactions

Integrating multiple components often makes learning better. more accurate than if they were learned independently.

- <u>Lexical units and Phones</u>: Top-down influence of lexical unit learning improves phone unit learning.
- <u>Underlying-to-Surface Mapping and Words</u>: Modeling underlying-to-surface mapping improves ability to find correct words and sub-words.

Lesion Study

- **Lesioned** model components to study importance of difference components.
 - Examined top 20 most important words in each lecture (term frequency inverse-document frequency)

Baseline

Park & Glass, 2008
Baseline term detection system.

Full Model

📕 Park & Glass, 2008 🛛 📕 Full model

Fixed Phones

Joint Model

No Noisy Channel

No Noisy-Channel

Park & Glass, 2008
 Full model
 Fixed Phones
 No noisy-channel

Regularizing phone variations is critical

Overall Conclusion

- Can use tradeoff-based approach to learn lexical units.
- Makes fine-grained predictions for linguistics and psychology.
- Can scale up to more unsupervised settings.

Thanks