
Language Modelling: Smoothing and

Model Complexity

COMP-599

Sept 14, 2016

Announcements
A1 has been released

• Due on Wednesday, September 28th

Start code for Question 4:

• Includes some of the package import statements that
you’ll need.

• Includes code to read the files (and deal with annoying
Unicode issues)

2

Outline
Review of last class

Justification of MLE probabilistically

Overfitting and unseen data

Dealing with unseen data: smoothing and
regularization

3

Language Modelling
Predict the next word given some context

Mary had a little _____

• lamb GOOD

• accident GOOD?

• very BAD

• up BAD

4

N-grams
Make a conditional independence assumption to make
the job of learning the probability distribution easier.

• Context = the previous N-1 words

Common choices: N is between 1 and 3

Unigram model
𝑃 𝑤𝑁 𝐶 = 𝑃(𝑤𝑁)

Bigram model
𝑃 𝑤𝑁 𝐶 = 𝑃(𝑤𝑁|𝑤𝑁−1)

Trigram model
𝑃 𝑤𝑁 𝐶 = 𝑃(𝑤𝑁|𝑤𝑁−1,𝑤𝑁−2)

5

Deriving Parameters from Counts
Simplest method: count N-gram frequencies, then
divide by the total count

e.g.,

Unigram: P(cats) = Count(cats) / Count(all words in corpus)

Bigram: P(cats | the) = Count(the cats) / Count(the)

Trigram: P(cats | feed the) = ?

These are the maximum likelihood estimates (MLE).

6

Basic Information Theory
Consider some random variable X, distributed
according to some probability distribution.

We can define information in terms of how much
certainty we gain from knowing the value of X.

Rank the following in terms of how much information
we gain by knowing its value:

Fair coin flip

An unfair coin flip where we get tails ¾ of the time

A very unfair coin that always comes up heads

7

Likely vs Unlikely Outcomes
Observing a likely outcome – less information gained

Intuition: you kinda knew it would happen anyway

• e.g., observing the word the

Observing a rare outcome: more information gained!

Intuition: it’s a bit surprising to see something unusual!

• e.g., observing the word armadillo

Formal definition of information in bits:

𝐼(𝑥) = log2(
1

𝑃(𝑥)
)

Minimum number of bits needed to communicate some
outcome x

8

Entropy
The expected amount of information we get from
observing a random variable.

Let a discrete random variable be drawn from
distribution p take on one of k possible values with
probabilities 𝑝1 … 𝑝𝑘

𝐻 𝑝 = 𝑖=1
𝑘 𝑝𝑖𝐼 𝑥𝑖

= 𝑖=1
𝑘 𝑝𝑖 log2

1

𝑝𝑖

= − 𝑖=1
𝑘 𝑝𝑖 log2 𝑝𝑖

9

Entropy Example
Plot of entropy vs. coin toss “fairness”

Image source: Wikipedia, by Brona and Alessio Damato

10

Maximum fairness =
maximum entropy

Completely biased =
minimum entropy

Cross Entropy
Entropy is the minimum number of bits needed to
communicate some message, if we know what
probability distribution the message is drawn from.

Cross entropy is for when we don’t know.

e.g., language is drawn from some true distribution, the
language model we train is an approximation of it

𝐻 𝑝, 𝑞 = − 𝑖=1
𝑘 𝑝𝑖 log2 𝑞𝑖

p: “true” distribution

q: model distribution

11

Estimating Cross Entropy
When evaluating our LM, we assume the test data is a
good representative of language drawn from p.

Original:

𝐻 𝑝, 𝑞 = − 𝑖=1
𝑘 𝑝𝑖 log2 𝑞𝑖

Estimate:

𝐻(𝑝, 𝑞) = −
1

𝑁
log2 𝑞(𝑤1 …𝑤𝑁)

12

True language
distribution, which
we don’t have
access to.

Language model
under evaluation

Size of test corpus
in number of tokens

The words in the
test corpus

Perplexity
Cross entropy gives us a number in bits, which is
sometimes hard to read. Perplexity makes this easier.

Perplexity(𝑝, 𝑞) = 2𝐻 𝑝,𝑞

13

Warm-Up Exercise
Evaluate the given unigram language models using
perplexity:

A B C B B

Model 1 Model 2

P(A) = 0.3 P(A) = 0.4

P(B) = 0.4 P(B) = 0.5

P(C) = 0.3 P(C) = 0.1

Perplexity(𝑝, 𝑞) = 2𝐻 𝑝,𝑞

𝐻(𝑝, 𝑞) = −
1

𝑁
log2 𝑞(𝑤1 …𝑤𝑁)

14

What is Maximum Likelihood?
This way of computing the model parameters
corresponds to maximizing the likelihood of (i.e., the
probability of generating) the training corpus.

Assumption: words (or N-grams) are random variables
that are drawn from a categorical probability
distribution i.i.d. (independently, and identically
distributed)

15

Categorical Random Variables
1-of-K discrete outcomes, each with some probability

e.g., coin flip, die roll, draw a word from a language model

Probability of a training corpus, 𝐶 = 𝑥1, 𝑥2, … 𝑥𝑁 :

K = 2: 𝑃 𝐶; 𝜃 = 𝑛=1
𝑁 𝑃 𝑥𝑛; 𝜃

= 𝜃𝑁1 1 − 𝜃 𝑁0

Can similarly extend for K > 2

Notes:

• When K=2, it is called a Bernoulli distribution

• Sometimes incorrectly called a multinomial distribution,
which is something else

16

Maximizing Quantities
Calculus to the rescue!

Take derivative and set to 0.

Trick: maximize the log likelihood instead (math works
out better)

17

MLE Derivation for a Bernoulli
Maximize the log likelihood:

log 𝑃 𝐶; 𝜃 = log(𝜃𝑁1 1 − 𝜃 𝑁0)

= 𝑁1 log 𝜃 + 𝑁0 log(1 − 𝜃)

𝑑

𝑑𝜃
log 𝑃 𝐶; 𝜃 =

𝑁1

𝜃
−

𝑁0

1 −𝜃
= 0

𝑁1

𝜃
=

𝑁0

1 − 𝜃
Solve this to get:

𝜃 =
𝑁1

𝑁0 + 𝑁1

Or,

𝜃 =
𝑁1

𝑁

18

MLE Derivation for a Categorical
The above generalizes to the case where K > 2.

Do the derivation!

Parameters are now 𝜃0, 𝜃1, 𝜃2, … , 𝜃𝐾−1

Counts are now 𝑁0, 𝑁1, 𝑁2, … , 𝑁𝐾−1

Note: Need to add a constraint that 𝑖=0
𝐾−1𝜃𝑖 = 1 to ensure

that the parameters specify a probability distribution.

Use the method of Lagrange multipliers

19

Steps
1. Gather a large, representative training corpus

2. Learn the parameters from the corpus to build the
model

3. Once the model is fixed, use the model to evaluate
on testing data

20

Overfitting
MLE often gives us a model that is too good of a fit to
the training data. This is called overfitting.

• Words that we haven’t seen

• The probabilities of the words and N-grams that we have
seen are not representative of the true distribution.

But when testing, we evaluate the LM on unseen data.
Overfitting lowers performance.

21

Out Of Vocabulary (OOV) Items
Suppose we train a LM on the WSJ corpus, which is
about economic news in 1987 – 1989. What probability
would be assigned to Grexit?

In general, we know that there will be many words in
the test data that are not in the training data, no
matter how large the training corpus is.

• Neologisms, typos, parts of the text in foreign languages,
etc.

• Remember Zipf’s law and the long tail

22

Smoothing
Training corpus does not have all the words

• Add a special UNK symbol for unknown words

Estimates for infrequent words are unreliable

• Modify our probability distributions

Smoothe the probability distributions to shift
probability mass to cases that we haven’t seen before
or are unsure about

23

MAP Estimation
Smoothing means we are no longer doing MLE. We
now have some prior belief about what the parameters
should be like: maximum a posteriori inference

MLE:

Find 𝜃𝑀𝐿𝐸 s.t. 𝑃(𝑋; 𝜃𝑀𝐿𝐸) is maximized

MAP:

Find 𝜃𝑀𝐴𝑃 s.t. 𝑃 𝑋; 𝜃𝑀𝐴𝑃 𝑃(𝜃𝑀𝐴𝑃) is maximized

24

Add-𝛿 Smoothing
Modify our estimates by adding a certain amount to
the frequency of each word. (sometimes called
pseudocounts)

e.g., unigram model

𝑃(𝑤) =
Count(𝑤) + 𝛿

|𝐿𝑒𝑥𝑖𝑐𝑜𝑛| ∗ 𝛿 + |𝐶𝑜𝑟𝑝𝑢𝑠|

Pros: simple

Cons: not the best approach; how to pick 𝛿? Depends on
sizes of lexicon and corpus

When 𝛿 = 1, this is called Laplace discounting

25

Exercise
Suppose we have a LM with a vocabulary of 20,000
items.

In the training corpus, we see donkey 10 times.

• Of these, in 5 times it was followed by the word kong.

• In the other 5 times, it was followed by another word.

What is the MLE estimate of P(kong|donkey)?

What is the Laplace estimate of P(kong|donkey)?

26

Interpolation
In an N-gram model, as N increases, data sparsity (i.e.,
unseen or rarely seen events) becomes a bigger
problem.

In an interpolation, use a lower N to mitigate the
problem.

27

Simple Interpolation
e.g., combine trigram, bigram, unigram models

 𝑃 𝑤𝑡 𝑤𝑡−2, 𝑤𝑡−1 = 𝜆1𝑃
𝑀𝐿𝐸 𝑤𝑡 𝑤𝑡−2, 𝑤𝑡−1

+𝜆2𝑃
𝑀𝐿𝐸 𝑤𝑡 𝑤𝑡−1

+𝜆3𝑃
𝑀𝐿𝐸(𝑤𝑡)

Need to set 𝑖 𝜆𝑖 = 1 so that the overall sum is a probability
distribution

How to select 𝜆𝑖? We will see shortly…

28

Good-Turing Smoothing
A more sophisticated method of modelling OOV items

Remember Zipf’s lessons

• We shouldn’t adjust all words uniformly.

• The frequency of a word type is related to its rank—we
should be able to model this!

• Unseen words should behave a lot like words that only
occur once in a corpus (hapax legomenon; pl., hapax
legomena)

• Words that occur a lot should behave like other words
that occur a lot.

29

Count of Counts
Let’s build a histogram to count how many word-types
occur a certain number of times in the corpus.

• For some word in bin 𝑓𝑐 , that word occurred c times in the
corpus; c is the numerator in the MLE.

• Idea: re-estimate c using 𝑓𝑐+1

30

Word frequency # word-types with that
frequency

1 𝑓1 = 3993

2 𝑓2 = 1292

3 𝑓3 = 664

… …

Good-Turing Smoothing Defined
Let 𝑁 be total number of observed word-tokens, 𝑤𝑐be
a word that occurs 𝑐 times in the training corpus.

𝑁 = 𝑖 𝑓𝑖 × 𝑖 𝑃(𝑈𝑁𝐾) = 𝑓1 / 𝑁

Then: 𝑐∗ =
𝑐+1 𝑓𝑐+1

𝑓𝑐
𝑃 𝑤𝑐 = 𝑐∗/ 𝑁

Example:

Let N be 100,000.

31

Word frequency # word-types

1 𝑓1 = 3,993

2 𝑓2 = 1,292

3 𝑓3 = 664

… …

P(UNK) = 3993 / 100000
= 0.03993
(for all unknown words)

𝑐1
∗ = 2 * 1292 / 3993

= 0.647
𝑐2
∗ = 3 * 664 / 1292

= 1.542

Note that this is for
all OOV words

Note that this is for
one word that occurs
c times

Good-Turing Refinement
In practice, we need to do something a little more:

At higher values of 𝑐, 𝑓𝑐+1 is often 0.

Solution: Estimate 𝑓𝑐 as a function of 𝑐

• We’ll assume that a linear relationship exists between
log 𝑐 and log 𝑓𝑐

• Use linear regression to learn this relationship:

log 𝑓𝑐
𝐿𝑅 = a log 𝑐 + b

• For lower values of 𝑐, we continue to use 𝑓𝑐; for higher
values of 𝑐 , we use our new estimate 𝑓𝑐

𝐿𝑅 .

32

Exercises
Suppose we have the following counts:

Give the MLE and Good-Turing estimates for the
probabilities of:

• any unknown word

• soccer

• camp

33

Word ship pass camp frock soccer mother tops

Freq 8 7 3 2 1 1 1

Model Selection
We now have very many slightly different versions of
the model (with different hyperparameters). How to
decide between them?

Use a development / validation set

Procedure:

1. Train one or more models on the training set

2. Test (repeatedly, if necessary) on the dev/val set; choose
a final hyperparameter setting/model

3. Test the final model on the final testing set (once only)

Steps 1 and 2 can be structured using cross-validation

34

Model Complexity Trade-Offs
In general, there is a trade-off between:

• model expressivity; i.e., what trends you could capture
about your data with your model

• how well it generalizes to data

If you use a highly expressive model (e.g., high values of
N in N-gram modelling), it is much easier to overfit, and
you need to do smoothing. OTOH, if your model is too
weak, your performance will suffer as well.

35

