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Announcements
A1 has been released

• Due on Wednesday, September 28th

Start code for Question 4:

• Includes some of the package import statements that 
you’ll need.

• Includes code to read the files (and deal with annoying 
Unicode issues)
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Outline
Review of last class

Justification of MLE probabilistically

Overfitting and unseen data

Dealing with unseen data: smoothing and 
regularization
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Language Modelling
Predict the next word given some context

Mary had a little _____

• lamb GOOD

• accident GOOD?

• very BAD

• up BAD
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N-grams
Make a conditional independence assumption to make 
the job of learning the probability distribution easier.

• Context = the previous N-1 words

Common choices: N is between 1 and 3

Unigram model
𝑃 𝑤𝑁 𝐶 = 𝑃(𝑤𝑁)

Bigram model
𝑃 𝑤𝑁 𝐶 = 𝑃(𝑤𝑁|𝑤𝑁−1)

Trigram model
𝑃 𝑤𝑁 𝐶 = 𝑃(𝑤𝑁|𝑤𝑁−1,𝑤𝑁−2)
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Deriving Parameters from Counts
Simplest method: count N-gram frequencies, then 
divide by the total count

e.g.,

Unigram: P(cats) = Count(cats) / Count(all words in corpus)

Bigram: P(cats | the) = Count(the cats) / Count(the)

Trigram: P(cats | feed the) = ?

These are the maximum likelihood estimates (MLE).
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Basic Information Theory
Consider some random variable X, distributed 
according to some probability distribution.

We can define information in terms of how much 
certainty we gain from knowing the value of X.

Rank the following in terms of how much information 
we gain by knowing its value:

Fair coin flip

An unfair coin flip where we get tails ¾ of the time

A very unfair coin that always comes up heads
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Likely vs Unlikely Outcomes
Observing a likely outcome – less information gained

Intuition: you kinda knew it would happen anyway

• e.g., observing the word the

Observing a rare outcome: more information gained!

Intuition: it’s a bit surprising to see something unusual!

• e.g., observing the word armadillo

Formal definition of information in bits:

𝐼(𝑥) = log2(
1

𝑃(𝑥)
)

Minimum number of bits needed to communicate some 
outcome x
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Entropy
The expected amount of information we get from 
observing a random variable.

Let a discrete random variable be drawn from 
distribution p take on one of k possible values with 
probabilities 𝑝1 … 𝑝𝑘

𝐻 𝑝 =  𝑖=1
𝑘 𝑝𝑖𝐼 𝑥𝑖

=  𝑖=1
𝑘 𝑝𝑖 log2

1

𝑝𝑖

= − 𝑖=1
𝑘 𝑝𝑖 log2 𝑝𝑖
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Entropy Example
Plot of entropy vs. coin toss “fairness”

Image source: Wikipedia, by Brona and Alessio Damato
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Maximum fairness =
maximum entropy

Completely biased =
minimum entropy



Cross Entropy
Entropy is the minimum number of bits needed to 
communicate some message, if we know what 
probability distribution the message is drawn from.

Cross entropy is for when we don’t know.

e.g., language is drawn from some true distribution, the 
language model we train is an approximation of it

𝐻 𝑝, 𝑞 = − 𝑖=1
𝑘 𝑝𝑖 log2 𝑞𝑖

p: “true” distribution

q: model distribution
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Estimating Cross Entropy
When evaluating our LM, we assume the test data is a 
good representative of language drawn from p.

Original:

𝐻 𝑝, 𝑞 = − 𝑖=1
𝑘 𝑝𝑖 log2 𝑞𝑖

Estimate:

𝐻(𝑝, 𝑞) = −
1

𝑁
log2 𝑞(𝑤1 …𝑤𝑁)
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True language
distribution, which
we don’t have
access to.

Language model
under evaluation

Size of test corpus
in number of tokens

The words in the
test corpus



Perplexity
Cross entropy gives us a number in bits, which is 
sometimes hard to read. Perplexity makes this easier.

Perplexity(𝑝, 𝑞) = 2𝐻 𝑝,𝑞
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Warm-Up Exercise
Evaluate the given unigram language models using 
perplexity:

A B C B B

Model 1 Model 2

P(A) = 0.3 P(A) = 0.4

P(B) = 0.4 P(B) = 0.5

P(C) = 0.3 P(C) = 0.1

Perplexity(𝑝, 𝑞) = 2𝐻 𝑝,𝑞

𝐻(𝑝, 𝑞) = −
1

𝑁
log2 𝑞(𝑤1 …𝑤𝑁)
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What is Maximum Likelihood?
This way of computing the model parameters 
corresponds to maximizing the likelihood of (i.e., the 
probability of generating) the training corpus.

Assumption: words (or N-grams) are random variables 
that are drawn from a categorical probability 
distribution i.i.d. (independently, and identically 
distributed)
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Categorical Random Variables
1-of-K discrete outcomes, each with some probability

e.g., coin flip, die roll, draw a word from a language model

Probability of a training corpus, 𝐶 = 𝑥1, 𝑥2, … 𝑥𝑁 :

K = 2: 𝑃 𝐶; 𝜃 =  𝑛=1
𝑁 𝑃 𝑥𝑛; 𝜃

= 𝜃𝑁1 1 − 𝜃 𝑁0

Can similarly extend for K > 2

Notes:

• When K=2, it is called a Bernoulli distribution

• Sometimes incorrectly called a multinomial distribution, 
which is something else
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Maximizing Quantities
Calculus to the rescue!

Take derivative and set to 0.

Trick: maximize the log likelihood instead (math works 
out better)
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MLE Derivation for a Bernoulli
Maximize the log likelihood:

log 𝑃 𝐶; 𝜃 = log(𝜃𝑁1 1 − 𝜃 𝑁0 )

= 𝑁1 log 𝜃 + 𝑁0 log(1 − 𝜃)

𝑑

𝑑𝜃
log 𝑃 𝐶; 𝜃 =

𝑁1

𝜃
−

𝑁0

1 −𝜃
= 0

𝑁1

𝜃
=

𝑁0

1 − 𝜃
Solve this to get:

𝜃 =
𝑁1

𝑁0 + 𝑁1

Or,

𝜃 =
𝑁1

𝑁
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MLE Derivation for a Categorical
The above generalizes to the case where K > 2.

Do the derivation! 

Parameters are now 𝜃0, 𝜃1, 𝜃2, … , 𝜃𝐾−1

Counts are now 𝑁0, 𝑁1, 𝑁2, … , 𝑁𝐾−1

Note: Need to add a constraint that  𝑖=0
𝐾−1𝜃𝑖 = 1 to ensure 

that the parameters specify a probability distribution.

Use the method of Lagrange multipliers
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Steps
1. Gather a large, representative training corpus

2. Learn the parameters from the corpus to build the 
model

3. Once the model is fixed, use the model to evaluate 
on testing data
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Overfitting
MLE often gives us a model that is too good of a fit to 
the training data. This is called overfitting.

• Words that we haven’t seen

• The probabilities of the words and N-grams that we have 
seen are not representative of the true distribution.

But when testing, we evaluate the LM on unseen data. 
Overfitting lowers performance.
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Out Of Vocabulary (OOV) Items
Suppose we train a LM on the WSJ corpus, which is 
about economic news in 1987 – 1989. What probability 
would be assigned to Grexit?

In general, we know that there will be many words in 
the test data that are not in the training data, no 
matter how large the training corpus is.

• Neologisms, typos, parts of the text in foreign languages, 
etc.

• Remember Zipf’s law and the long tail
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Smoothing
Training corpus does not have all the words

• Add a special UNK symbol for unknown words

Estimates for infrequent words are unreliable

• Modify our probability distributions

Smoothe the probability distributions to shift 
probability mass to cases that we haven’t seen before 
or are unsure about
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MAP Estimation
Smoothing means we are no longer doing MLE. We 
now have some prior belief about what the parameters 
should be like: maximum a posteriori inference

MLE:

Find 𝜃𝑀𝐿𝐸 s.t. 𝑃(𝑋; 𝜃𝑀𝐿𝐸) is maximized

MAP:

Find 𝜃𝑀𝐴𝑃 s.t. 𝑃 𝑋; 𝜃𝑀𝐴𝑃 𝑃(𝜃𝑀𝐴𝑃) is maximized
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Add-𝛿 Smoothing
Modify our estimates by adding a certain amount to 
the frequency of each word. (sometimes called 
pseudocounts)

e.g., unigram model

𝑃(𝑤) =
Count(𝑤) + 𝛿

|𝐿𝑒𝑥𝑖𝑐𝑜𝑛| ∗ 𝛿 + |𝐶𝑜𝑟𝑝𝑢𝑠|

Pros: simple

Cons: not the best approach; how to pick 𝛿? Depends on 
sizes of lexicon and corpus

When 𝛿 = 1, this is called Laplace discounting
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Exercise
Suppose we have a LM with a vocabulary of 20,000 
items.

In the training corpus, we see donkey 10 times.

• Of these, in 5 times it was followed by the word kong.

• In the other 5 times, it was followed by another word.

What is the MLE estimate of P(kong|donkey)?

What is the Laplace estimate of P(kong|donkey)?
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Interpolation
In an N-gram model, as N increases, data sparsity (i.e., 
unseen or rarely seen events) becomes a bigger 
problem.

In an interpolation, use a lower N to mitigate the 
problem.
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Simple Interpolation
e.g., combine trigram, bigram, unigram models

 𝑃 𝑤𝑡 𝑤𝑡−2, 𝑤𝑡−1 = 𝜆1𝑃
𝑀𝐿𝐸 𝑤𝑡 𝑤𝑡−2, 𝑤𝑡−1

+𝜆2𝑃
𝑀𝐿𝐸 𝑤𝑡 𝑤𝑡−1

+𝜆3𝑃
𝑀𝐿𝐸(𝑤𝑡)

Need to set  𝑖 𝜆𝑖 = 1 so that the overall sum is a probability 
distribution

How to select 𝜆𝑖? We will see shortly…
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Good-Turing Smoothing
A more sophisticated method of modelling OOV items

Remember Zipf’s lessons

• We shouldn’t adjust all words uniformly.

• The frequency of a word type is related to its rank—we 
should be able to model this!

• Unseen words should behave a lot like words that only 
occur once in a corpus (hapax legomenon; pl., hapax 
legomena)

• Words that occur a lot should behave like other words 
that occur a lot.
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Count of Counts
Let’s build a histogram to count how many word-types 
occur a certain number of times in the corpus.

• For some word in bin 𝑓𝑐 , that word occurred c times in the 
corpus; c is the numerator in the MLE.

• Idea: re-estimate c using 𝑓𝑐+1
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Word frequency # word-types with that 
frequency

1 𝑓1 = 3993

2 𝑓2 = 1292

3 𝑓3 = 664

… …



Good-Turing Smoothing Defined
Let 𝑁 be total number of observed word-tokens, 𝑤𝑐be 
a word that occurs 𝑐 times in the training corpus.

𝑁 =  𝑖 𝑓𝑖 × 𝑖 𝑃(𝑈𝑁𝐾) = 𝑓1 / 𝑁

Then: 𝑐∗ =
𝑐+1 𝑓𝑐+1

𝑓𝑐
𝑃 𝑤𝑐 = 𝑐∗/ 𝑁

Example:

Let N be 100,000.
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Word frequency # word-types

1 𝑓1 = 3,993

2 𝑓2 = 1,292

3 𝑓3 = 664

… …

P(UNK) =  3993 / 100000
= 0.03993
(for all unknown words)

𝑐1
∗ = 2 * 1292 / 3993

= 0.647
𝑐2
∗ = 3 * 664 / 1292

= 1.542

Note that this is for
all OOV words

Note that this is for
one word that occurs
c times



Good-Turing Refinement
In practice, we need to do something a little more:

At higher values of 𝑐, 𝑓𝑐+1 is often 0.

Solution: Estimate 𝑓𝑐 as a function of 𝑐

• We’ll assume that a linear relationship exists between 
log 𝑐 and log 𝑓𝑐

• Use linear regression to learn this relationship:

log 𝑓𝑐
𝐿𝑅 = a log 𝑐 + b

• For lower values of 𝑐, we continue to use 𝑓𝑐; for higher 
values of 𝑐 , we use our new estimate 𝑓𝑐

𝐿𝑅 .
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Exercises
Suppose we have the following counts:

Give the MLE and Good-Turing estimates for the 
probabilities of:

• any unknown word

• soccer

• camp
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Word ship pass camp frock soccer mother tops

Freq 8 7 3 2 1 1 1



Model Selection
We now have very many slightly different versions of 
the model (with different hyperparameters). How to 
decide between them?

Use a development / validation set

Procedure:

1. Train one or more models on the training set

2. Test (repeatedly, if necessary) on the dev/val set; choose 
a final hyperparameter setting/model

3. Test the final model on the final testing set (once only)

Steps 1 and 2 can be structured using cross-validation
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Model Complexity Trade-Offs
In general, there is a trade-off between:

• model expressivity; i.e., what trends you could capture 
about your data with your model

• how well it generalizes to data

If you use a highly expressive model (e.g., high values of 
N in N-gram modelling), it is much easier to overfit, and 
you need to do smoothing. OTOH, if your model is too 
weak, your performance will suffer as well.
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