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Review of CYK
Describe the general process of the CYK algorithm

• Is it top-down or bottom-up? What does this mean?

• What is the chart used for? What are the entries in the 
cells?

• What did those arrows that we drew mean?

3



Vanilla PCFGs
Estimate of rule probabilities:

• MLE estimates:

Pr 𝛼 → 𝛽 =
#(𝛼 → 𝛽)

#𝛼
• e.g., Pr(S -> NP VP) = #(S -> NP VP) / #(S)

• Recall: these distributions are normalized by LHS symbol 

Even with smoothing, doesn’t work very well:

• Not enough context

• Rules are too sparse
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Subject vs Object NPs
NPs in subject and object positions are not identically 
distributed:

• Obvious cases – pronouns (I vs me)

• But both appear as NP -> PRP -> I/me

• Less obvious: certain classes of nouns are more likely to 
appear in subject than object position, and vice versa.

• For example, subjects tend to be animate (usually, humans, 
animals, other moving objects)

Many other cases of obvious dependencies between 
distant parts of the syntactic tree.
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Sparsity
Consider subcategorization of verbs, with modifiers

• ate VP -> VBD

• ate quickly VP -> VBD AdvP

• ate with a fork VP -> VBD PP

• ate a sandwich VP -> VBD NP

• ate a sandwich quickly VP -> VBD NP AdvP

• ate a sandwich with a fork VP -> VBD NP PP

• quickly ate a sandwich with a fork VP -> AdvP VBD NP PP

We should be able to factorize the probabilities:

• of having an adverbial modifier, of having a PP modifier, 
etc.
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Wrong Independence Assumptions
Vanilla PCFGs make independence assumptions that 
are too strong AND too weak.

Too strong: vertically, up and down the syntax tree

Too weak: horizontally, across the RHS of a production
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Adding Context
Add more context vertically to the PCFG

• Annotate with the parent category

Before: NP -> PRP, NP -> Det NN, etc.

Now:

Subjects:

NP^S -> PRP, NP^S -> Det NN, etc.

Objects:

NP^VP -> PRP, NP^VP -> Det NN, etc.

Learn the probabilities of the rules separately (though 
they may influence each other through 
interpolation/smoothing)
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Example
Let’s help Pierre Vinken find his ancestors.
( (S

(NP

(NP (NNP Pierre) (NNP Vinken) )

(, ,)

(ADJP

(NP (CD 61) (NNS years) )

(JJ old) )

(, ,) )

(VP (MD will)

(VP (VB join)

(NP (DT the) (NN board) )

(PP (IN as)

(NP (DT a) (JJ nonexecutive) (NN director) ))

(NP (NNP Nov.) (CD 29) )))

(. .) ))
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Note that the tree here is given in bracket parse format,
rather than drawn out as a graph.



Removing Context
Conversely, we break down the RHS of the rule when 
estimating its probability.

Before: Pr(VP -> START AdvP VBD NP PP END) as a unit

Now: Pr(VP -> START AdvP) *

Pr(VP -> AdvP VBD) *

Pr(VP -> VBD NP) *

Pr(VP -> NP PP) *

Pr(VP -> PP END)

• In other words, we’re making the same N-gram 
assumption as in language modelling, only over non-
terminal categories rather than words.

• Learn probability of factors separately
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Example
Let’s help Pierre Vinken find his children.
( (S

(NP

(NP (NNP Pierre) (NNP Vinken) )

(, ,)

(ADJP

(NP (CD 61) (NNS years) )

(JJ old) )

(, ,) )

(VP (MD will)

(VP (VB join)

(NP (DT the) (NN board) )

(PP (IN as)

(NP (DT a) (JJ nonexecutive) (NN director) ))

(NP (NNP Nov.) (CD 29) )))

(. .) ))
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Markovization
Vertical markovization: adding ancestors as context

• Zeroth order – vanilla PCFGs

• First order – the scheme we just described

• Can go further:

• e.g., Second order: NP^VP^S -> …

Horizontal markovization: breaking RHS into parts

• Infinite order – vanilla PCFGs

• First order – the scheme we just described

• Can choose any other order, do interpolation, etc.
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Evaluating Parsers
How well does this work in practice?

First need a measure of the performance of a parser!

Usually measure at the level of constituents
(VP (VB join) (NP (DT the) (NN board)))

• Constituents here are the VP, and the NP

• We shouldn’t really count the leaf nodes (VB, DT, NN), as 
these are the POS tags, but common measures often do!

• Two things to consider:

• Gold standard – the correct parse

• System prediction – the output of our parser
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Recall
Of the constituents in the gold standard, what 
percentage of them were correctly recovered?

e.g., Gold standard:

[A [B C [D E]] [F G]]

System prediction:

[A B [C [D E]] [F G]]
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Precision
Of the constituents in the system prediction, what 
percentage of them are actually correct?

e.g., Gold standard:

[A [B C [D E]] [F G]]

System prediction:

[A B [C [D E]] [F G]]
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Game the Measure
How can we get near-100% precision or near-100% 
recall without doing any real work?

Recall?

Precision?
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F1-measure
Take a harmonic mean between Recall and Precision:

𝐹1 =
2 ∗ 𝑃 ∗ 𝑅

𝑃 + 𝑅
• Can only do well on F1 if system does well on both recall 

and precision

• F1 suffers if P and R are highly imbalanced
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Effect of Category Splitting

WSJ results by Klein and Manning (2003)

• With additional heuristics from linguistic insights, they got 
up to 87.04 F1
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Can We Learn These Distinctions?
Above: human linguistic insights to make splits

• NP split into NP^S and NP^VP for subjects and objects

We are in AI! Let’s automate this too!
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Prepare for 
your syntactic 
categories to 

be split.



Petrov and Klein (2006)
Basic idea:

• Introduce a latent variable associated with each 
nonterminal

• NP becomes NP-1, NP-2, NP-3, … NP-k

• Adaptively increase and decrease k for each non-terminal 
category to maximize training corpus likelihood

• Called the split-merge algorithm
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Annotated Rules
Rules are now in the following form:

𝐴𝑥 → 𝐵𝑦𝐶𝑧

e.g., 𝑆3 → 𝑁𝑃1 𝑉𝑃4
or 𝐷𝑇2 → 𝑡ℎ𝑒

And we need to learn the probabilities of each of these 
rules
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Split-Merge Algorithm
Overall algorithm:

Start off with the original, initial grammar, deriving 
probability estimates in the usual way

Do for a n iterations:

Split the grammar by duplicating each non-terminal symbol

Get latent annotations over the training corpus in order to 
update the probabilities of the rules

Merge by merging together some of the subsymbols back into 
one subsymbol
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Splitting
Suppose we currently have n states in the grammar for 
a non-terminal 𝐴. After splitting, we’ll have 2n states.

Split 𝐴𝑥 into 𝐴𝑥′ and 𝐴𝑥′′:

Case 1: 𝐴𝑥 on LHS. i.e., 𝑃(𝐴𝑥 → 𝐵𝑦 𝐶𝑧):

Copy probabilities 

• Set 𝑃 𝐴𝑥′ → 𝐵𝑦 𝐶𝑧 to  𝑃(𝐴𝑥 → 𝐵𝑦 𝐶𝑧)

• Set 𝑃 𝐴𝑥′′ → 𝐵𝑦 𝐶𝑧 to 𝑃(𝐴𝑥 → 𝐵𝑦 𝐶𝑧)

Case 2: 𝐴𝑥 on RHS. i.e., 𝑃(𝐷𝑟 → 𝐴𝑥 𝐸𝑠):

Halve the probabilities

• Set 𝑃(𝐷𝑟 → 𝐴𝑥′ 𝐸𝑠) to 𝑃 𝐷𝑟 → 𝐴𝑥 𝐸𝑠 / 2

• Set 𝑃(𝐷𝑟 → 𝐴𝑥′′ 𝐸𝑠) to 𝑃(𝐷𝑟 → 𝐴𝑥 𝐸𝑠)/ 2
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Randomness
To make the two new states different from each other, 
we’ll also add a little bit of randomness to the 
probabilities.

e.g., Copy 0.46 to be 0.452 and 0.464

Halve 0.5 to 0.2501 and 0.2449

Just make sure to renormalize the distributions properly.

We’ll see why this is important.
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Learning New Grammar 
Now that we have latent variables, we can’t use simple 
MLE or MAP estimates for the rule probabilities.

If we did have the latent variable annotations, we could do 
this, but we don’t.

What algorithm did we discuss before that solved this same 
problem?
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Expectation Maximization Again
Use a version of EM to predict the label annotations in 
the trees in the training set

Starting with the probabilistic grammar after splitting:

• “Guess” the labels of the trees (E-step)

• Improve the grammar based on the guesses (M-step)

Without randomness:

Everything would be symmetric

The two subsymbols would be equally likely in all cases in E-
step.

Since everything is tied, estimates never improve in M-step!
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Merging
We have n subsymbols, and want to merge two of them 
together (result, n-1 subsumbols).

Try merging each pair – see how much training corpus 
likelihood suffers.

Merge the pair with the lowest loss

How to calculate training corpus likelihood loss?

See paper for more details
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Results
After six split-merge-smooth cycles, P/R results improve 
to 89.8/89.6.

This is despite not have any manual linguistic 
annotations or complex feature extraction!

Interesting hierarchies can also be observed over the 
course of training:
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Hierarchical Learning
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Lessons Learned
We have seen a method that seems to partially 
automate the job of a linguist!

Results in improved parsing performance

EM can be applied in many settings with latent 
variables, such as with tree structures.

30



31

What About Dependency Parsing?

subjectdet pp arg prep. obj

det

The student studied for     the exam.



Eisner’s Algorithm (1997)
A 𝑂(𝑁3) dynamic programming algorithm for 
dependency parsing:

Find
argmax
𝑡∈𝜏(sent)

S(𝑡)

Assumptions

Trees are projective (no crossing dependencies)

Score of tree is equal to the sum of the score of each of edge 
in the tree

S 𝑡 =  

(𝑎,𝑏)∈𝑡

𝑆(𝑎, 𝑏)
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Learning S(a, b)
𝑆(𝑎, 𝑏) represents the “goodness” of an edge headed 
by word 𝑎 with dependent word 𝑏.

How do we learn this?

• Define some heuristics (Eisner, 1997)

• e.g., learn how often these words are in a dependency 
relation in a training corpus

• As part of parsing (McDonald et al., ACL 2005) 
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General Idea
Just as in CKY parsing, start by parsing subspans, then 
combine them in order to form larger spans.
for k : 1 … n

for s : 1 … n

# find substructures in [s, s + k]

Distinguish left and right subtrees

Distinguish complete and incomplete subtrees
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Complete Subtrees
Left complete subtree

s              …             t

Right complete subtree

s              …             t

35

• headed by t
• words [s, t) have no more 

dependents
• t may have more dependents

• headed by s
• words (s, t] have no more 

dependents
• s may have more dependents



Incomplete Subtrees
Left incomplete subtree

s              …             t

Right incomplete subtree

s              …             t
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• headed by t
• words [s, t) may have more 

dependents
• edge (t, s) exists

• headed by s
• words (s, t] may have more 

dependents
• edge (s, t) exists



Defining the Chart
Let 𝐶[𝑠][𝑡][𝑥][𝑦] be the score of the best possible 
subtree such that:

• it spans words [s, t]

• 𝑥 ∈ {←,→} (left or right subtree)

• 𝑦 ∈ {0, 1} (incomplete or complete)
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Recurrence Relations
𝐶 𝑠 𝑡 ← 0
= max
𝑠≤𝑟<𝑡
𝐶 𝑠 𝑟 → 1 + 𝐶 𝑟 + 1 𝑡 ← 1 + 𝑆(𝑡, 𝑠)

𝐶 𝑠 𝑡 → 0
= max
𝑠≤𝑟<𝑡
𝐶 𝑠 𝑟 → 1 + 𝐶 𝑟 + 1 𝑡 ← 1 + 𝑆(𝑠, 𝑡)

𝐶 𝑠 𝑡 ← 1 = max
𝑠≤𝑟<𝑡
𝐶 𝑠 𝑟 ← 1 + 𝐶 𝑟 𝑡 ← 0

𝐶 𝑠 𝑡 → 1 = max
𝑠<𝑟≤𝑡
𝐶 𝑠 𝑟 → 0 + 𝐶 𝑟 𝑡 → 1
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Notes
Base case of 𝐶[𝑠][𝑠][∗][∗] = 0

Notice that in the recurrence, chart cells only depend 
on cells with a shorter span.

Thus, the recurrence (and the algorithm) works.

Let’s do an example, graphically, to understand the 
algorithm in more detail.
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