The CKY Parsing Algorithm and PCFGs

COMP-599

Oct 12, 2016

Outline

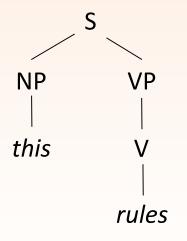
CYK parsing

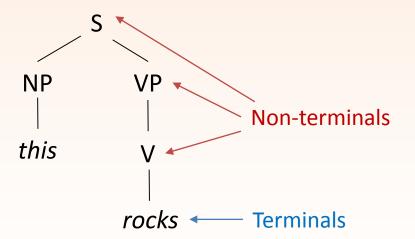
PCFGs

Probabilistic CYK parsing

CFGs and Constituent Trees

Rules/productions:


$$S \rightarrow NP VP$$


$$VP \rightarrow V$$

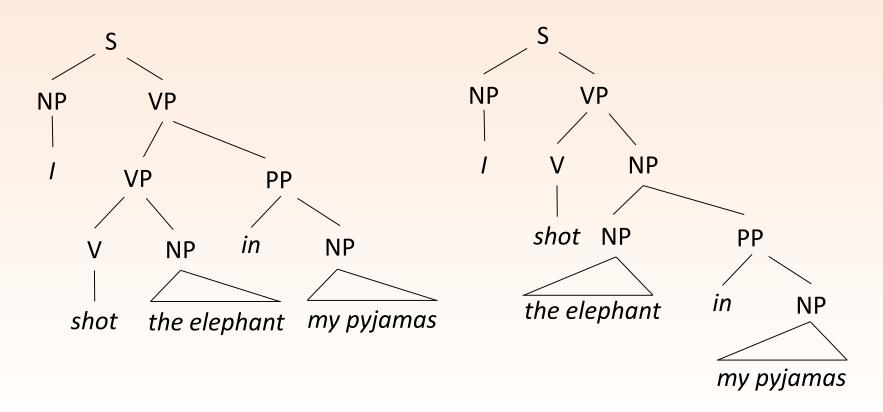
$$NP \rightarrow this$$

$$V \rightarrow is \mid rules \mid jumps \mid rocks$$

Trees:

Parsing into a CFG

Given:


- 1. CFG
- 2. A sentence made up of words that are in the terminal vocabulary of the CFG

Task: Recover all possible parses of the sentence.

Why *all* possible parses?

Syntactic Ambiguity

I shot the elephant in my pyjamas.

CYK Algorithm

Cocke-Younger-Kasami algorithm

- A dynamic programming algorithm partial solutions are stored and efficiently reused to find all possible parses for the entire sentence.
- Also known as the CKY algorithm

Steps:

- 1. Convert CFG to an appropriate form
- 2. Set up a table of possible constituents
- 3. Fill in table
- 4. Read table to recover all possible parses

Chomsky Normal Form

To make things easier later, need all productions to be in one of these forms:

- 1. A \rightarrow B C, where A, B, C are nonterminals
- 2. A \rightarrow s, where A is a non-terminal s is a terminal

This is actually not a big problem.

Converting to CNF (1)

Rule of type A \rightarrow B C D ...

• Rewrite into: A \rightarrow X1 D ... and X1 \rightarrow B C

Rule of type A \rightarrow s B

• Rewrite into: A \rightarrow X2 B and X2 \rightarrow s

Rule of type A \rightarrow B

 Everywhere in which we see B on the LHS, replace it with A

Examples of Conversion

Let's convert the following grammar fragment into CNF:

$$S \rightarrow NP VP$$

$$VP \rightarrow V NP PP$$

$$VP \rightarrow VNP$$

$$NP \rightarrow N$$

$$NP \rightarrow Det N$$

$$PP \rightarrow in NP$$

$$N \rightarrow I \mid elephant \mid pyjamas$$

$$V \rightarrow shot$$

Det
$$\rightarrow my \mid the$$

Next: Set Up a Table

This table will store all of the constituents that can be built from contiguous spans within the sentence.

Let sentence have N words. w[0], w[1], ... w[N-1]

Create table, such that a cell in row i column j corresponds to the span from w[i:j+1], zero-indexed.

Since i < j, we really just need half the table.

The entry at each cell is a list of non-terminals that can span those words according to the grammar.

Parse Table

	I_0	$shot_1$	the_2	elephant ₃	in ₄	my_5	pyjamas ₆			
[0:1]		[0:2]	[0:3]	[0:4]	[0:5]	[0:6]	[0:7]			
		[1:2]	[1:3]	[1:4]	[1:5]	[1:6]	[1:7]			
			[2:3]	[2:4]	[2:5]	[2:6]	[2:7]			
				[3:4]	[3:5]	[3:6]	[3:7]			
S VP	→ NP ' → X1 F	рP	X1 → V NF)	[4:5]	[4:6]	[4:7]			
VP NP	\rightarrow V N \rightarrow Det					[5:6]	[5:7]			
NP PP	\rightarrow X2 F \rightarrow P N	рP	$X2 \rightarrow Det$	N			[6:7]			
P	\rightarrow in	•								
NP	-	→ I elephant pyjamas								
N	•	elephant py	rjamas							
V	\rightarrow sho	t								
Det	\rightarrow my	the								

Filling in Table: Base Case

One word (e.g., cell [0:1])

Easy – add all the lexical rules that can generate that word

Base Case Examples (First 3 Words)

	I_0	$shot_1$	the ₂	elephant ₃	in ₄	my_5	pyjamas ₆		
[0:1]	NP N	[0:2]	[0:3]	[0:4]	[0:5]	[0:6]	[0:7]		
		V [1:2]	[1:3]	[1:4]	[1:5]	[1:6]	[1:7]		
			Det [2:3]	[2:4]	[2:5]	[2:6]	[2:7]		
				[3:4]	[3:5]	[3:6]	[3:7]		
S VP	\rightarrow NP \rightarrow X1 F		X1 → V NP		[4:5]	[4:6]	[4:7]		
VP	\rightarrow V N	Р	XI / VINE	[5:			[5:7]		
NP NP	→ Det→ X2 F	PP	X2 → Det I	N			[6:7]		
PP P	→ P NP → in								
NP	→ I elephant pyjamas								
Ν	→ I elephant pyjamas								
V	→ shot								
Det	et $\rightarrow my \mid the$								

Filling in Table: Recursive Step

Cell corresponding to multiple words

- eg., cell for span [0:3] I shot the
- Key idea: all rules that produce phrases are of the form
 A → B C
- So, check all the possible break points m in between the start i and the end j, and see if we can build a constituent with a rule in the form, A $[i:j] \rightarrow B$ [i:m] C [m:j]

Recurrent Step Example 1

	I_0	$shot_1$	the ₂	elephant ₃	in ₄	my ₅	pyjamas ₆		
[0:1]	NP N	?	[0:3]	[0:4]	[0:5]	[0:6]	[0:7]		
		V [1:2]	[1:3]	[1:4]	[1:5]	[1:6]	[1:7]		
			[2:3]	[2:4]	[2:5]	[2:6]	[2:7]		
				[3:4]	[3:5]	[3:6]	[3:7]		
S VP	→ NP ' → X1 F		X1 → V NF)	[4:5]	[4:7]			
VP NP	\rightarrow V N \rightarrow Det			[5:6]	[5:7]				
NP	→ X2 F	рP	X2 → Det	N		[6:7]			
PP P	\rightarrow P NI \rightarrow in								
NP	→ I elephant pyjamas								
N	→ I elephant pyjamas								
V	\rightarrow sho	t							
Det	$\rightarrow mv$	l the							

Recurrent Step Example 2

	<i>I</i> ₀	$shot_1$	the_2	ele	ohant ₃	in ₄	my ₅	pyjamas ₆		
[0:1]	NP N	[0:2]	[0:3]	[0:4]		[0:5]	[0:6]	[0:7]		
[[0.12]			[e.e]	[0]		[6:6]	[6.0]	[677]		
		V [1:2]	[1:3]	[1:4]		[1:5]	[1:6]	[1:7]		
			Det [2:3]	[2:4]	?	[2:5]	[2:6]	[2:7]		
				[3:4]	NP N	[3:5]	[3:6]	[3:7]		
S	\rightarrow NP	VP								
VP	\rightarrow X1 F	PР	$X1 \rightarrow V NF$	V NP [4:5]			[4:6]	[4:7]		
VP	\rightarrow V N						[5:6]	[5:7]		
NP	→ Det	→ Det N						[577]		
NP	→ X2 F		$X2 \rightarrow Det$	N				[6:7]		
PP		→ P NP								
Р	→ in									
NP	$\rightarrow 1 \mid \epsilon$	→ I elephant pyjamas								
Ν	→ I elephant pyjamas									
V	\rightarrow sho	t								
Det	$\rightarrow my$	l the								

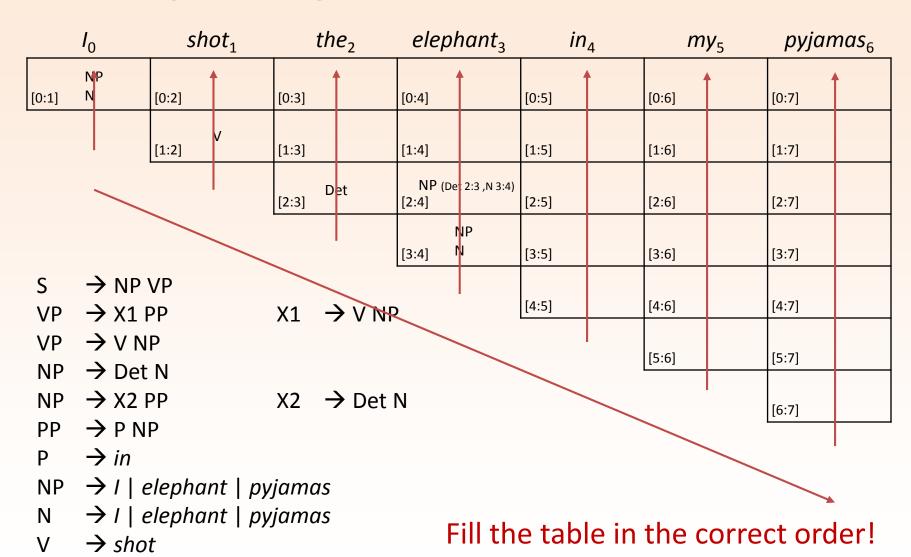
Backpointers

	<i>I</i> ₀	$shot_1$	the ₂	elephant ₃	in ₄	my ₅	pyjamas ₆
[0:1]	NP N	[0:2]	[0:3]	[0:4]	[0:5]	[0:6]	[0:7]
		V [1:2]	[1:3]	[1:4]	[1:5]	[1:6]	[1:7]
			Det •	[2:4] NP	[2:5]	[2:6]	[2:7]
				NP [3:4] N	[3:5]	[3:6]	[3:7]
S VP	\rightarrow NP \rightarrow X1 F		X1 → V NF)	[4:5]	[4:6]	[4:7]
VP NP	→ V NP → Det N					[5:6]	[5:7]
NP PP							[6:7]

 $P \rightarrow in$

NP \rightarrow I | elephant | pyjamas

→ I | elephant | pyjamas

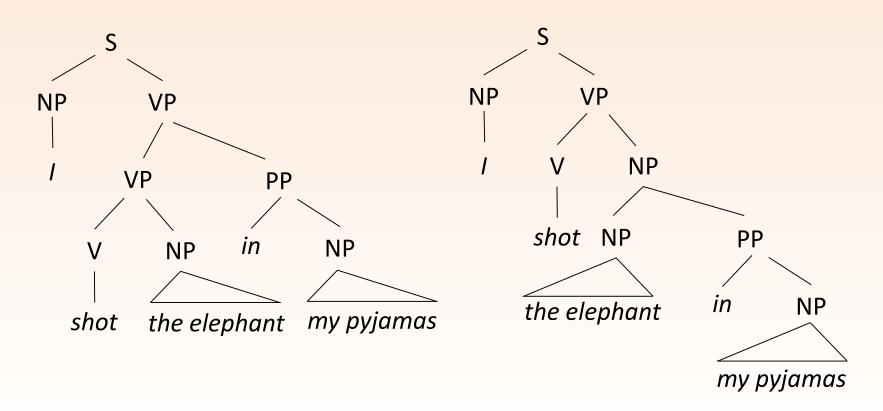

 \rightarrow shot

Det $\rightarrow my \mid the$

Store where you came from!

Putting It Together

Det $\rightarrow my \mid the$



Finish the Example

Let's finish the example together for practice How do we reconstruct the parse trees from the table?

Dealing with Syntactic Ambiguity

In practice, one of these is more like than the other:

How to distinguish them?

Probabilistic CFGs

Associate each rule with a probability:

```
e.g.,

NP \rightarrow NP PP 0.2

NP \rightarrow Det N 0.4

NP \rightarrow I 0.1

...

V \rightarrow shot 0.005
```

Probability of a parse tree for a sentence is the product of the probabilities of the rules in the tree.

Formally Speaking

For each nonterminal $A \in N$,

$$\sum_{\alpha \to \beta \in R \ s.t.\alpha = A} \Pr(\alpha \to \beta) = 1$$

• i.e., rules for each LHS form a probability distribution

If a tree t contains rules $\alpha_1 \to \beta_1$, $\alpha_2 \to \beta_2$, ...,

$$\Pr(t) = \prod_{i} \Pr(\alpha_i \to \beta_i)$$

Tree probability is product of rule probabilities

Probabilistic Parsing

Goal: recover the best parse for a sentence, along with its probability

```
For a sentence, sent, let \tau(\text{sent}) be the set of possible parses for it, we want to find  \underset{t \in \tau(\text{sent})}{\operatorname{argmax}} \Pr(t)
```

Idea: extend CYK to keep track of probabilities in table

Extending CYK to PCFGs

Previously, cell entries are nonterminals (+ backpointer)

```
e.g., table[2:4] = {{NP, Det[2:3] N[3:4] }}
table[3:4] = {{NP, } {N, }}
```

Now, cell entries include the (best) probability of generating the constituent with that non-terminal

```
e.g., table[2:4] = \{\{NP, Det[2:3] N[3:4], 0.215\}\}
table[3:4] = \{\{NP, , 0.022\} \{N, , 0.04\}\}
```

Equivalently, write as 3-dimensional array

```
table[2, 4, NP] = 0.215 (Det[2:3], N[3:4])
table[3, 4, NP] = 0.022
table[3, 4, N] = 0.04
```

New Recursive Step

Filling in dynamic programming table proceeds almost as before.

During recursive step, compute probability of new constituents to be constructed:

$$Pr(A[i:j] \rightarrow B[i:m] C[m:j]) = Pr(A \rightarrow BC) \times table[i,m,B] \times table[m,j,C]$$

From PCFG

From previously

filled cells

There could be multiple rules that form constituent A for span [i:j]. Take max:

table[i,j,A] =
$$\max_{A \to BC, \text{ break at } m} \Pr(A[i:j] \to B[i:m]C[m:j])$$

Example

	I_0	$shot_1$	the ₂	elephant ₃	in ₄	my_5	pyjamas ₆	
[0:1]	NP, 0.25 N, 0.625	[0:2]	[0:3]	[0:4]	[0:5]	[0:6]	[0:7]	
		V, 1.0	[1:3]	[1:4]	[1:5]	[1:6]	[1:7]	
			Det, 0.6 <	[2:4] NP, ?	[2:5]	[2:6]	[2:7]	
				[3:5]	[3:6]	[3:7]		
	[4:6]	[4:7]						
New value:								
0.6 * 0.25 * Pr(NP → Det N)								

Bottom-Up vs. Top-Down

CYK algorithm is **bottom-up**

Starting from words, build little pieces, then big pieces

Alternative: top-down parsing

- Starting from the start symbol, expand non-terminal symbols according to rules in the grammar.
- Doing this efficiently can also get us all the parses of a sentence (Earley algorithm)

How to Train a PCFG?

Derive from a treebank, such as WSJ.

Simplest version:

- each LHS corresponds to a categorical distribution
- outcomes of the distributions are the RHS
- MLE estimates:

$$\Pr(\alpha \to \beta) = \frac{\#(\alpha \to \beta)}{\#\alpha}$$

 Can smooth these estimates in various ways, some of which we've discussed