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Assignment 1, Project Description
A1 is out now!

Due Sept 29 on myCourses at 12:59pm/on paper in 
class

The description of the final project is also out! Read it 
and start thinking about your final project. 
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Outline
Review of last class

How words are distributed: Zipf’s law

Language modelling

Word sequences: N-grams

MLE by relative frequencies

Evaluation by cross entropy and perplexity
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Last Class
FSAs and FSTs for modelling English morphology
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𝑞0 𝑞1 𝑞2
reg-noun plural

irreg-pl-noun

irreg-sg-noun



Dealing with Regular Variations
What should be the output of the first FST that maps from 
the surface form to the intermediate level?

jump jump#
jumps jump^s#
jumped jump^ed#
jumping ?
chat ?
chats ?
chatted ?
chatting ?
hope ?
hopes ?
hoped ?
hoping ?
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What is a Word?
• Smallest unit that can appear in isolation

Actually not so clear cut:

Football One word, or two?

Peanut butter One word, or two?

Languages that don’t separate words with spaces in writing 
(e.g., Chinese) – even less clear cut

• e.g.,分手信

[分][手][信] 3 words: Distribute + hand + letter ???

[分][手信] 2 words: Distribute + souvenirs

[分手][信] 2 words: Breakup + letter

[分手信] 1 word: Breakup letter

• Word segmentation a major problem in Chinese NLP
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Orthographic Word, Types vs. Tokens
Convenient assumption: spaces delimit words

• Exceptions: apostrophe (e.g., ’s), punctuation 

Still ambiguous to ask, “How many words are there?”

e.g., the cat sat on the mat

Word tokens

6: cat, mat, on, sat, the, the

• Instances of occurrences

Word types

5: cat, mat, on, sat, the

• Kinds of words
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Fuzzy Cases
Do these count as the same word type?

run, runs

happy, happily

frágment (n.), fragmént (v.)

realize, realise

We, we

srsly, seriously

Which of the above cases would be normalized by 
stemming? By lemmatization?
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Word Frequencies
First thing we can do with words? Count them!

Term frequency:

𝑇𝐹 𝑤, 𝑆 = #𝑤 in corpus 𝑆

• e.g., 𝑇𝐹 𝑐𝑎𝑡, the cat sat on the mat = 1

Relative frequency:

𝑅𝐹 𝑤, 𝑆 =
𝑇𝐹(𝑤, 𝑆)

|𝑆|

• e.g., 𝑅𝐹 𝑐𝑎𝑡, the cat sat on the mat =
1

6
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Corpus (n. sing.)
We need a corpus (pl.: corpora) of text to count.

Some well-known English text corpora:

Brown corpus

British National Corpus (BNC)

Wall Street Journal corpus

English Gigaword
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Zipf’s Law
When counting word frequencies in corpora, this is one 
striking effect that you’ll notice:

𝑓 ∝
1

𝑟
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Frequency of word type Rank of word type (by frequency)



Some Empirical Counts
Rank Word Frequency

1 the 228,257,001

2 to 96,247,620

3 of 93,917,643

10 for 34,180,099

100 most 3,499,587

1,000 work 1,999,899

10,000 planning 299,996
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Word counts from the English Gigaword corpus

Zipf’s Law is (very) roughly true



Zipf-Mandelbrot Law
To get a better fit to the word counts we see, we can 
add parameters to the equation:

𝑓 ∝
1

𝑟
means 𝑓 =

𝑃

𝑟
for some 𝑃

Add additional parameters 𝜌, 𝐵:

𝑓 =
𝑃

(𝑟 + 𝜌)𝐵

Or equivalently:
log 𝑓 = log 𝑃 − 𝐵 log(𝑟 + 𝜌)
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“The Long Tail”
Practical implications:

• Most word (types) are very rare!

• A small number of word (types) make up the 
majority of word (tokens) that you see in any corpus.

• These issues will cause problems for us in terms of 
designing models and evaluating their performance, 
as we will see.
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Cross-linguistically Speaking
The parameters in the Zip-Mandelbrot equation will 
differ by language

English: top handful of word types will account for most 
tokens. ~40% of words appear once in a corpus.

Hungarian:same number of word types account for fewer 
tokens

Inuktitut: ~80% of words appear only once (Langlais and 
Patry, 2006)

Why the disparity?
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Why Count Words?
Word frequencies turn out to be very useful:

• Text classification (for genre, sentiment, authorship, …)

• Information retrieval

• Many, many, other applications

Task we will be considering: language modelling
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Language Modelling
Predict the next word given some context

Mary had a little _____

• lamb GOOD

• accident GOOD?

• very BAD

• up BAD
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Viewed Probabilistically
Learn a probability distribution

• 𝑃(𝑊 = 𝑤 |𝐶)

e.g.,
𝑃(𝑊 = "lamb" | 𝐶 = “Mary had a little”) = 0.6

People are often lazy:
𝑃("lamb" | “Mary had a little”)

If any of this notation is not obvious, go review basics of 
probability theory now! (As in, right after class.)
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Random variable
𝑊 takes on a value 
which is a word in the
lexicon

𝑤 represents that
value

𝐶 is the context that
we are conditioning
on



Equivalently
Learn probability distribution over sequences of words

Let the context be all of the previous words. Then,

𝑃 𝑤1𝑤2…𝑤𝑘
= 𝑃 𝑤𝑘|𝑤1…𝑤𝑘−1 𝑃 𝑤1…𝑤𝑘−1
= 𝑃 𝑤𝑘|𝑤1…𝑤𝑘−1 𝑃 𝑤𝑘−1|𝑤1…𝑤𝑘−2 𝑃 𝑤1…𝑤𝑘−2

Keep decomposing further…

= 𝑃 𝑤𝑘|𝑤1…𝑤𝑘−1 …𝑃 𝑤2|𝑤1 𝑃 𝑤1
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By the chain rule



Example
A good language model should assign:

• higher probability to a grammatical string of English

You are wearing a fancy hat.

• lower probability to ungrammatical strings

Fancy you are hat a wearing.

Your waring a fency haat.
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Note
The absolute probability from a language model isn’t a 
good indicator of grammaticality.

• e.g., P(artichokes intimidate zippers)

• Likely low probability, but grammatical

Also, the length of the sentence and the rarity of the 
words in the sentences affect the probability

• e.g., P(I ate the) > P(I ate the cake) in most language 
models, but the former is clearly not a well formed 
sentence!
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Applications
• Text prediction for mobile devices

• Automatic speech recognition (ASR)

• Machine translation

Typically, find the solution that maximizes a 
combination of:

1. Task-specific quality

ASR: acoustic model quality

MT: word/phrase alignment probability

2. Language model probability
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Building Models
Given lots of data from the real world, we can build a 
model, which is a set of parameters that describes the 
data, and can be used to predict or infer future or 
unseen data.

e.g.,

Task: language modelling

Model: a probability distribution, 𝑃(𝑊 = 𝑤 |𝐶)

Parameters: the parameters to this probability distribution

Application: tell us how likely it is to observe 𝑤𝑁 given its 
context
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Steps
1. Gather a large, representative training corpus

2. Learn the parameters from the corpus to build the 
model

3. Once the model is fixed, use the model to evaluate 
on testing data
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Steps
1. Gather a large, representative training corpus

2. Learn the parameters from the corpus to build the 
model

3. Once the model is fixed, use the model to evaluate 
on testing data
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Learning the Model
How do we actually learn the parameters to          
𝑃(𝑊 = 𝑤 |𝐶) given training data?

Need to:

• Specify exactly what the context of a word is

• Use corpus counts to derive the parameter values
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N-grams
Make a conditional independence assumption to make 
the job of learning the probability distribution easier.

• Context = the previous N-1 words

Common choices: N is between 1 and 3

Unigram model
𝑃 𝑤𝑁 𝐶 = 𝑃(𝑤𝑁)

Bigram model
𝑃 𝑤𝑁 𝐶 = 𝑃(𝑤𝑁|𝑤𝑁−1)

Trigram model
𝑃 𝑤𝑁 𝐶 = 𝑃(𝑤𝑁|𝑤𝑁−1,𝑤𝑁−2)

27



Deriving Parameters from Counts
Simplest method: count N-gram frequencies, then 
divide by the total count

e.g.,

Unigram: P(cats) = Count(cats) / Count(all words in corpus)

Bigram: P(the cats) = Count(the cats) / Count(the)

Trigram: P(feed the cats) = ?

These are the maximum likelihood estimates (MLE).
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Exercise
Come up with the MLE estimate of a unigram and a 
bigram language model using the following sentence as 
training data:

A statistical language model is a probability distribution 
over sequences of words.
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N-grams as Linguistic Knowledge
N-grams can crudely capture some linguistic knowledge 
and even facts about the world

• e.g., P(English|want) = 0.0011

P(Chinese|want) = 0.0065

P(to|want) = 0.66

P(eat|to) = 0.28

P(food|to) = 0

P(I|<start-of-sentence>) = 0.25
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World knowledge:
culinary preferences?

Syntax

Discourse



Steps
1. Gather a large, representative training corpus

2. Learn the parameters from the corpus to build the 
model

3. Once the model is fixed, use the model to evaluate 
on testing data
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Training and Testing Data
After training a model, we need to evaluate it on 
unseen data that the model has not been exposed to.

• We are testing the model’s ability to generalize.

• More on this topic next class

Given a corpus, how is the data usually split?

Training data: often 60-90% of the available data

Testing data: often 10-20% of the available data

There is often also a development or validation data 
set, for deciding between different versions of a model.
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Cross Validation
k-fold cross validation: splitting data into k partitions 
or folds; iteratively test on each after training on the 
rest

e.g., 3-fold CV: dataset1 dataset2 dataset3

train on {2,3}, test on 1

train on {1,3}, test on 2

train on {1,2}, test on 3

Average results from above folds

• CV is often used if the corpus is small
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Evaluation Measures
Likelihood of generating the test corpus

i.e., P(test_corpus; 𝜃), where 𝜃 represents the parameters 
learned by training our LM on the training data

Intuition: a good language model should give a high 
probability of generating some new, valid English text.

Absolute number is not very meaningful—this can only be 
used to compare the quality of different language models!

Unwieldy because of small values, so not actually used 
in the literature. Alternatives to likelihood:

Cross-entropy

Perplexity
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Basic Information Theory
Consider some random variable X, distributed 
according to some probability distribution.

We can define information in terms of how much 
certainty we gain from knowing the value of X.

Rank the following in terms of how much information 
we gain by knowing its value:

Fair coin flip

An unfair coin flip where we get tails ¾ of the time

A very unfair coin that always comes up heads
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Likely vs Unlikely Outcomes
Observing a likely outcome – less information gained

Intuition: you kinda knew it would happen anyway

• e.g., observing the word the

Observing a rare outcome: more information gained!

Intuition: it’s a bit surprising to see something unusual!

• e.g., observing the word armadillo

Formal definition of information in bits:

𝐼(𝑥) = log2(
1

𝑃(𝑥)
)

Minimum number of bits needed to communicate some 
outcome x
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Entropy
The expected amount of information we get from 
observing a random variable.

Let a discrete random variable be drawn from 
distribution p take on one of k possible values with 
probabilities 𝑝1 … 𝑝𝑘

𝐻 𝑝 =  𝑖=1
𝑘 𝑝𝑖𝐼 𝑥𝑖

=  𝑖=1
𝑘 𝑝𝑖 log2

1

𝑝𝑖

= − 𝑖=1
𝑘 𝑝𝑖 log2 𝑝𝑖

37



Entropy Example
Plot of entropy vs. coin toss “fairness”

Image source: Wikipedia, by Brona and Alessio Damato
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Maximum fairness =
maximum entropy

Completely biased =
minimum entropy



Cross Entropy
Entropy is the minimum number of bits needed to 
communicate some message, if we know what 
probability distribution the message is drawn from.

Cross entropy is for when we don’t know.

e.g., language is drawn from some true distribution, the 
language model we train is an approximation of it

𝐻 𝑝, 𝑞 = − 𝑖=1
𝑘 𝑝𝑖 log2 𝑞𝑖

p: “true” distribution

q: model distribution
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Estimating Cross Entropy
When evaluating our LM, we assume the test data is a 
good representative of language drawn from p.

So, we estimate cross entropy to be:

𝐻(𝑝, 𝑞) = −
1

𝑁
log2 𝑞(𝑤1 …𝑤𝑁)
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True language
distribution, which
we don’t have
access to.

Language model
under evaluation

Size of test corpus
in number of tokens

The words in the
test corpus



Perplexity
Cross entropy gives us a number in bits, which is 
sometimes hard to read. Perplexity makes this easier.

Perplexity(𝑝, 𝑞) = 2𝐻 𝑝,𝑞

41


