Introduction to Natural Language Processing

COMP-599

Sept 8, 2015
Preliminaries

Instructor: Jackie Chi Kit Cheung

Times: TR 13:05-14:25

Location: MC103

Office hours: T 14:30-15:30 or by appointment in MC108N

Prerequisites: Probability, algorithms

Optional: AI, linguistics

Evaluation: 4 assignments (40%)
1 midterm (20%)
1 project or paper (40%)
General Policies

Lateness policy for assignments: no late assignments accepted.

Plagiarism: just don’t do it.

Language policy: In accordance with McGill policy, you have the right to write essays and examinations in English or in French.

Course website:

Important announcements given in-class or on course website, not on MyCourses
Assignments

Four assignments (10% each)
Involve readings, problem sets and programming component.

- Programming component – hand in online through myCourses
- Programming to be done in Python 2.7.
- Non-programming components – hand in on paper in class
Midterm

Worth 20% of your final grade
Currently scheduled for November 10, 2015
Will be conducted in-class (80 minutes long). More details as we approach the midterm date.
Final Paper or Project

Worth 40%. Three options.

1. Paper option

 Critical survey of 10-15 research papers

 In-depth synthesis and critical analysis expected, in addition to a summary

2. Project option

 Experiment on some language data set

 Report on experiments and review relevant papers as needed

3. Paper + project option

 Complete both of the above in a team of two
Project Steps

Paper or project proposal
Progress update
Peer review (optional)
Final submission

Due dates to be announced
Workshop on Research Skills

Library Research Methods for Computer Science

Topics

• Library resources
• Citation management and issues

When: Thursday, October 1st, from 3:00 to 4:30 pm
Where: Schulich Library room 313
Computational Linguistics and Natural Language Processing
Language is Everywhere
Languages Are Diverse

6000+ languages in the world

language
langue
हिंदी
語言
idioma
Sprache
lingua

→ The Great Language Game

http://greatlanguagegame.com/ (My high score is 1300)
Computational Linguistics (CL)

Modelling natural language with computational models and techniques

Domains of natural language

Acoustic signals, phonemes, words, syntax, semantics, ...

Speech vs. text

Natural language understanding (or comprehension) vs. natural language generation (or production)
Computational Linguistics (CL)

Modelling natural language with computational models and techniques

Goals

- Language technology applications
- Scientific understanding of how language works
Computational Linguistics (CL)

Modelling natural language with computational models and techniques

Methodology and techniques
- Gathering data: language resources
- Evaluation
- Statistical methods and machine learning
- Rule-based methods
Natural Language Processing

Sometimes, *computational linguistics* and *natural language processing (NLP)* are used interchangeably.

Slight difference in emphasis:

<table>
<thead>
<tr>
<th>NLP</th>
<th>CL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Goal: practical technologies</td>
<td>Goal: how language actually works</td>
</tr>
<tr>
<td>Engineering</td>
<td>Science</td>
</tr>
</tbody>
</table>
Understanding and Generation

Natural language understanding (NLU)
Language to form usable by machines or humans

Natural language generation (NLG)
Traditionally, semantic formalism to text
More recently, also text to text

Most work in NLP is in NLU
c.f. linguistics, where most theories deal primarily with production
Personal Assistant App

Understanding

Call a taxi to take me to the airport in 30 minutes.

What is the weather forecast for tomorrow?

Generation
Machine Translation

I like natural language processing.

Automatische Sprachverarbeitung gefällt mir.

Understanding

Generation
Automatic Summarization

We want to condense the information in some source text or texts.

Understanding

Generation
Besides new language technologies, there are other reasons to study CL and NLP as well.
The Nature of Language

First language acquisition

Chomsky proposed a universal grammar
Is language an “instinct”?

Do children have enough linguistic input to learn their mother tongue?
Train a model to find out!
The Nature of Language

Language processing

Some sentences are supposed to be grammatically correct, but are difficult to process.

Formal mathematical models to account for this.

The rat escaped.

The rat the cat caught escaped.

?? *The rat the cat the dog chased caught escaped.*
Mathematical Foundations of CL

We describe language with various formal systems.
Mathematical Foundations of CL

Mathematical properties of formal systems and algorithms

- Can they be efficiently learned from data?
- Efficiently recovered from a sentence?
- Complexity analysis

Implications for algorithm design
Types of Language

Text

Much of traditional NLP work has been on news text.
Clean, formal, standard English, but very limited!
More recent work on diversifying into multiple domains
Political texts, text messages, Twitter

Speech

Messier: disfluencies, non-standard language
Automatic speech recognition (ASR)
Text-to-speech generation
Domains of Language

The grammar of a language has traditionally been divided into multiple levels.

- Phonetics
- Phonology
- Morphology
- Syntax
- Semantics
- Pragmatics
- Discourse
Phonetics

Study of the speech sounds that make up language
Articulation, transmission, perception

peach [phiːts]h

Involves closing of the lips, building up of pressure in the oral cavity, release with aspiration, ...

Vowel can be described by its formants, ...
Phonology

Study of the rules that govern sound patterns and how they are organized

peach [phi:tsh]
speech [spi:tsh]
beach [bi:tsh]

The p in peach and speech are the same phoneme, but they actually are phonetically distinct!
Morphology

Word formation and meaning
antidisestablishmentarianism
anti- dis- establish -ment -arian -ism

establish
establishment
establishmentarian
establishmentarianism
disestablishmentarianism
antidisestablishmentarianism
Syntax

Study of the structure of language

*I a woman saw park in the.
I saw a woman in the park.

There are two meanings for the sentence above! What are they? This is called **ambiguity**.
Semantics

Study of the meaning of language

\textit{bank}

Ambiguity in the \textbf{sense} of the word
Semantics

Ross wants to marry a Swedish woman.
Pragmatics

Study of the meaning of language in context.

⇒ Literal meaning (semantics) vs. meaning in context:
Pragmatics

This is actually a pretty easily managed curse, if you just phrase all statements so broadly that they can’t be false.

Pinocchio, did you bully that boy at school?

There are people who would dispute that perspective.
You can also answer tough questions by just describing the current situation.

Pinocchio! Did you egg my door?

If you’re accusing me of such a deed, I have nothing more to say.
Pragmatics

OR, YOU CAN IMPLY STATEMENTS VIA QUESTIONS WITH NO INHERENT STANCE.

PINO, DO YOU LOVE ME?

HOW COULD I NOT?
Cursed to never lie, Pinocchio ceased to interact with truth, even in safe situations.

SIR, WOULD YOU LIKE ANY DESSERT?

DESSERT WOULD BE DELICIOUS.
Discourse

Study of the structure of larger spans of language (i.e., beyond individual clauses or sentences)

I am angry at her.

She lost my cell phone.

I am angry at her.

The rabbit jumped and ate two carrots.
A Brief History of Computational Linguistics
Beginnings in Machine Translation

Early researchers in the 1950s were wildly optimistic.

Georgetown-IBM experiment:

A demonstration of Russian to English MT, featuring 6 translation rules and knowledge of around 250 words in the two languages.

This resulted in substantial interest and funding for MT

Researchers thought that with a little bit more work in engineering the rules and a more complete dictionary of words, they could develop a passable system. They were wrong.

→ http://www.hutchinsweb.me.uk/AMTA-2004.pdf
Disillusionment and the AI Winter

The Automatic Language Processing Advisory Committee (ALPAC) report came out in 1966.

- Criticized MT research and its future prospects
- Its effect was to reduce funding to MT and NLP in general, which continued into the seventies.
- The current name for the Association for Computational Linguistics was changed from the Association for Machine Translation and Computational Linguistics in 1968.

Part of the AI winter, in which funding and interest in AI research stagnated.
Handcrafted Rule-based Systems

Up until the late 1980s, much work in CL involved coming up with formal analyses of natural language using carefully designed rules. This led to very precise systems that could give you lots of information about the small fragment of language it knows about, but which are limited in domain and scope.
The Statistical Revolution

Starting in the late 80s, early 90s, the trend became to learn grammar rules from data, rather than specify them.

Often, the level of analysis was shallower, so that it would be something that could be learned by simple statistical models. Algorithms developed to get the analysis with the highest probability according to some statistical model. Use this to resolve ambiguity.

Machine learning and empirical evaluation on corpora of naturally occurring language samples became very important.
Modern Trends

Continuation of statistical revolution

- More sophisticated machine learning techniques
- Make better use of the large amounts of language data available
- Require less supervision or input from humans to learn useful regularities in language.

New applications for the Internet age

- Real-time language translation
- Semantic search to directly access information
- Sentiment analysis to predict trends

<Your brilliant idea here>
Main Organizations and Venues

Association for Computational Linguistics
 ACL, NAACL, EACL, EMNLP (Empirical Methods in Natural Language Processing), CoNLL (Conference on Natural Language Learning)
 Workshops of associated special interest groups
 All publications are open-access on the ACL Anthology!
 http://aclweb.org/anthology/

Others:
 COLING, IJCNLP ("Asian ACL")

Journals
 Computational Linguistics, Natural Language Engineering, ACM/IEEE Transactions on Audio Speech and Language Processing
Course Objectives

Understand the broad topics, applications and common terminology in the field

Prepare you for research or employment in CL/NLP

 - Learn some basic linguistics
 - Learn the basic algorithms
 - Be able to read an NLP paper

Understand the challenges in CL/NLP

 - Answer questions like “Is it easy to...”; see through hype
This Semester in COMP-599

We’ll progress through the subfields, roughly organized by the level of linguistic analysis

 Morphology -> Syntax -> Semantics -> Discourse

We’ll cover selected NLP applications in more details in the last part of the course.

Along the way:

 Learn some basic linguistics
 Learn algorithms to analyze linguistic structure
 Learn some machine learning techniques for the above