Python, Sklearn and some Summarization

COMP 599
22nd September
Introduction to Python

- Open a prompt with Python. (Make sure it is version 2.7)
- Example code:
 - look for: indentation, for, if, else-if constructs, methods, compulsory and optional variables
- Some common commands for text used:
 - split, join, substring search
Classes in Python

Example code
Numpy

- Python scientific computing package.
- Install with a Python package installer.
- N-dimensional arrays in numpy:
 - Example of array creation:

```python
>>> import numpy as np
>>> x = np.array([[1,2,3],[2,3,4]],np.int32)
>>> type(x)
<type 'numpy.ndarray'>
>>> x.shape
(2, 3)
>>> x.dtype
dtype('int32')
```
Array slicing

- Generate views of the data.
- Slice object - `start : stop : step`

```python
>>> y = x[:,1]
>>> y
array([2, 3], dtype=int32)
```

```python
>>> z = np.array([0,1,2,3,4,5,6,7,8,9])
>>> z[1:7:2]
array([1, 3, 5])
```
Scikit learn

- Machine Learning package for Python.
- Example code (Linear regression).
NLTK

- What’s NLTK?
 - Natural Language ToolKit
- What does it contain?
 - Stemmers, lemmatizers, parsers with a bunch of corpora
NLTK data

Downloading the data:

Open python and type the following commands:

```python
>>> import nltk
>>> nltk.download()
```

Contents

- Natural Language Generation
- Summarization
 - Extractive
 - Abstractive
- ROUGE evaluation metric
- Stylistics - Formality, subjectivity
- Tweet generation
- Indicative tweets using articles
 - Data
 - Results
 - Interaction with Formality
- Conclusion
Natural Language Generation

- Generating understandable text from machine representation of information

- One of the first NLG systems: Weather information system WeatherReporter

- Natural Language Understanding vs Natural Language Generation: hypothesis vs choice
NLG system Structure

- Broad structure:

 Internal representation, communicative goal

 Document Planner → Microplanning → Surface realizer

 Document plan → Text Specification → Surface text
Summarization

● Automatic summarization techniques
 ○ process of reducing text document
 ○ retain important information from source

● Two main approaches:
 ○ Extractive
 ○ Abstractive
Londoners face travel chaos as strike shuts down subways

Millions of Londoners faced misery as they tried to get to work on Thursday as a 24-hour strike by staff and drivers brought the British capital's underground rail network to a complete halt. 1:02 PM ET 😡 13 📸
Extractive summarization

- Extract key sentences or paragraphs, piece together
- Relatively simple, retains key information
- Drawbacks:
 - summary is disconnected and incoherent
 - inconcise
 - sometimes misleading
- How to overcome this? Use NLG techniques, smoothe extracted sentences to generate readable summaries
Londoners face travel chaos as strike shuts down subways

Millions of Londoners faced misery as they tried to get to work on Thursday as a 24-hour strike by staff and drivers brought the British capital's underground rail network to a complete halt. 1:02 PM ET 13
Abstractive Summarization

- Extract information from text, generate novel sentences to represent it in concise form.
- Usually requires world knowledge, much harder problem
- Summaries are expected to be more coherent and concise than extractive summaries.
Evaluation: ROUGE-1,2,L scores

- Recall Oriented Understudy for Gisting Evaluation
- Used for automatic summarization and machine translation
- 1 - unigram, 2 - bigram matching, n - n gram matching, L - Longest common subsequence match.
- Works best with a range of model human summaries
Output from system

- unigrams,
- bigrams,
- n-grams
- Longest common subsequence

Corpus of gold-standard summaries
Stylistics

● Information that can be extracted from the text, that is not related to meaning of the text
● Applications
 ○ Authorship attribution
 ○ Semantic Analysis
 ○ Personality Typing
● Stylistic features
 ○ part-of-speech
 ○ function words
 ○ textual statistics - word & sentence length
Formality

- Is also a stylistic feature, associated with interpersonal status, social standing

 get, acquire, snag, obtain, appropriate

- Studies for obtaining lexicons - Julian Brooke, recent paper from NAACL [2],[3]
- Applications in text summarization, machine translation, classification etc.
Subjectivity

- Subjectivity lexicon - words that might indicate opinion in text.
- Example:

 adore, agree, scary, selective

- Obtained using manual annotation and then using a polarity classifier.
- Words classified as strongly subjective and weakly subjective.
Stylistic features in NLG

● Can be used as parameters in generation

● Dimensions that have been used - colloquialism, politeness, naturalness [1]

● Use style scores as parameters while generating further text.
Tweet generation

- Applications in advertisements, event summarization.

- Has been talked about a little
 - use existing summarization techniques to generate tweets
 - suggested: use documents from local public works office for updates
Idea

- Indicative tweets - ones that contain link to another article

- Intuitive to think of it as extractive summarization problem
Earlier attempt

- Study compared various summarization algorithms to generate tweets. [4]

- Used ROUGE and user evaluations. For ROUGE, human written reference tweet taken as gold standard.

- Drawbacks:
 - ROUGE in this case does not make sense.
 - Examples of tweets generated not satisfactory
Data

- Tweets from hashtags
- Extract articles from urls connected.
- Data cleaning - images, videos, advertisements, other languages

<table>
<thead>
<tr>
<th>Politics</th>
<th>Science & Technology</th>
</tr>
</thead>
<tbody>
<tr>
<td>#apec2014</td>
<td>#rosetta</td>
</tr>
<tr>
<td>#G20 #oscarpistorius</td>
<td>#lollipop</td>
</tr>
<tr>
<td></td>
<td>#mangalayan</td>
</tr>
<tr>
<td>Events</td>
<td>Films and Pop culture</td>
</tr>
<tr>
<td>#haiyan</td>
<td>#TaylorSwift</td>
</tr>
<tr>
<td>#memorialday</td>
<td>#theforceawakens</td>
</tr>
<tr>
<td>#ottawashootings</td>
<td>#johnoliver</td>
</tr>
<tr>
<td>International</td>
<td>Sports</td>
</tr>
<tr>
<td>#berlinwall</td>
<td>#ausvssa</td>
</tr>
<tr>
<td>#ebola</td>
<td>#playingitmyway</td>
</tr>
<tr>
<td>#erdogan</td>
<td>#nycmarathon</td>
</tr>
</tbody>
</table>
Direction of analyses

- Calculate scores of overlap in tweet & article
- Scores give the degree to which the tweet can be extracted using extractive summarization
- ROUGE-inspired unigram, bigram and LCS matching scores for article-tweet pairs
ROUGE inspired scores

Unigram matching

Bigram matching
ROUGE scores

Unigram matching in window = 3 sentences

LCS matching
Interaction with formality

- Formality of articles and averaged over hashtags using lexicon:

<table>
<thead>
<tr>
<th>Lowest</th>
<th>Highest</th>
</tr>
</thead>
<tbody>
<tr>
<td>#theforceawakens</td>
<td>#KevinVickers</td>
</tr>
<tr>
<td>#TaylorSwift</td>
<td>#erdogan</td>
</tr>
<tr>
<td>#winteriscoming</td>
<td>#apec</td>
</tr>
</tbody>
</table>

- Correlate formality of articles with degree of extraction represented by LCS: Pearson coefficient of 0.41 with p-value of 7.08e-66.
- More formal the article, the more chances that the tweet can be extracted.
Conclusion, next steps

● Results show tweets cannot be generated using extractive summarization

● Use intent - model purpose or intent of tweets.
 ○ advertisement, opinion, support a cause etc.

● Information on the actual contents of the tweets - why they are not in common with the tweets.
References

