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Abstract

We propose to base the development of
vector-space models of semantics on con-
cept extensions, which defines concepts to
be sets of entities. We investigate two
sources of knowledge about entities that
could be relevant: distributional informa-
tion provided by word or phrase embed-
dings, and ontological information derived
from a knowledge base. We develop a
feedforward neural network architecture
to learn entity representations that are used
to predict their concept memberships, and
show that the two sources of information
are actually complementary. In an entity
ranking experiment, the combination ap-
proach that uses both types of information
outperforms models that only rely on one
of the two. We also perform an analysis of
the output using fuzzy logic techniques to
demonstrate the potential of learning con-
cept extensions for supporting inference
involving classical semantic operations.

1 Introduction

The extensional definition, or denotation, of a con-
cept is the set of entities in the world to which that
concept applies. For example, the definition of
Celebrity would be the set of entities in the world,
including Will Smith, Paris Hilton, etc.

In formal semantics and pragmatics, this con-
ception of meaning has played an important role
in the accounts of a wide range of compositional
constructions, including definite and indefinite ar-
ticles, quantifiers, presuppositions, and intersec-
tive adjectives. For example, the extension of
a noun phrase such as “red apple” that is com-

posed of a noun and a modifying adjective is de-
rived by taking the set intersection of the exten-
sions of “red” and “apple”. In an applied setting,
explicitly enumerating the members of these ex-
tensions seems to be an impossible task, as there
are large numbers of entities and relations, not to
mention infinitely many possible contexts and do-
mains. Thus, the direct application of this view
of semantics would seem to be confined to limited
domains.

Distributional semantics is a potential solution
to this problem. The long-touted advantages of
distributional approaches are that they can be eas-
ily trained from a large corpus, and they enable a
graded notion of similarity. Typically, such mod-
els are trained to optimize distributional criteria
based on similarity correlations or predicting a
word in context. However, it is not enough to
rely solely on these criteria. Similarity only sup-
ports relative reasoning about relations between
concepts, and it is difficult to adapt such mea-
sures to make absolute inferences about the truth
value of a proposition. The applications of distri-
butional semantics (DS) to date have reflected this
bias. The most common approach to evaluate DS
models has been to correlate predicted similarity
judgments against judgments gathered from hu-
mans (Finkelstein et al., 2002; Agirre et al., 2012).
More recent applications in paraphrase detection
(Socher et al., 2011), textual entailment (Beltagy
et al., 2013) and analogical reasoning (Mikolov et
al., 2013) are also primarily concerned with the re-
lationships between phrases.

A more serious issue is that distributional se-
mantics alone seems to be insufficient for handling
rarely occurring events and entities, if we treat
them as just another target phrase in the corpus.
Consider the following passage:



(1) He is an American actor, producer, and
rapper. As of 2014, 17 of the 21 films in
which he has had leading roles have
accumulated worldwide gross earnings of
over $100 million each.

Given just this short description of the entity, we
are able to make several inferences about its prop-
erties. For example, we are able to infer that this
entity is a male human, working in the entertain-
ment industry. He can most likely vote in Ameri-
can elections, obtain a passport, and he is likely a
wealthy celebrity, given the success of the movies
he has acted in. We might even be able to guess
the identity of this person (Will Smith)1.

While it may be possible to learn these char-
acteristics from the contexts of the bigram “Will
Smith” in a large training corpus, this is less plau-
sible for a rarely occurring, or perhaps an entirely
invented entity. Clearly, these inferences are en-
abled by extracting the concept and relational in-
formation present in the local context, then relat-
ing them to other concepts of interest based on our
knowledge of the world.

In this paper, we propose to use concept exten-
sion predictions as the overall training objective
of a vector-space model of semantics. While dis-
tributional information will still be a crucial com-
ponent of our model, what distinguishes our ap-
proach is that it optimizes directly for an objective
which is well justified by compositional theories
of semantics, rather than an objective that is inter-
nal to considerations within distributional seman-
tics such as similarity measurements.

To predict these concept extensions, we train a
model that learns a representation of an input en-
tity using features derived from distributional se-
mantics and ontological information derived from
a knowledge base. Our model, which we call
Ontological Distributional Semantics, employs a
simple feedforward neural network architecture to
learn interactions between these two sources of in-
formation.

We conduct experiments on Freebase (Bol-
lacker et al., 2008), taking Freebase types to be
concepts, and the entity set that the Freebase type
contains to be that concept’s extension. The results
of an entity ranking experiment show that Onto-
logical Distributed Semantics outperforms either
distributed representations or ontological informa-
tion alone across three entity classes.

1This passage is an edited version of his Wikipedia article.

Because a large, complete knowledge base may
not always be available, we further test our model
under conditions in which there is incomplete on-
tological knowledge about an entity, and we ana-
lyze the relative contributions of the distributional
and ontological components of our model.

Finally, to illustrate how our approach can take
advantage of insights from classical approaches to
semantics, we develop a method to extract seman-
tic relations between concepts from the output pre-
dictions of our model without further training us-
ing fuzzy set logic operations. These results argue
for the importance of learning concept extensions
not just to develop a better model of entities, but
also as a potential method to better integrate dis-
tributional semantics with formal, compositional
approaches to semantics.

2 Related Work

Several models have recently been proposed
which combine distributional with ontological in-
formation (Fried and Duh, 2014; Yang et al.,
2014). The goal of these papers is to encode the
ontological relationships as some kind of regular-
ity in the learned vector space, usually as a lin-
ear transformation; e.g., that objective encourages
there to be a consistent vector addition operation
that represents the part-of relationship between
two concepts. By contrast, our work argues for
an entirely different kind of objective function for
a vector-space model motivated by classical com-
positional semantics.

Herbelot and Ganesalingam (2013) investigate
KL-divergence of a semantic vector as a simple
information-theoretic measure to determine hyper-
nym/hyponym relations, but found that this was
outperformed by a word frequency baseline. Other
work employs distributional similarity to learn to
cluster concepts into a hierarchy (Yamada et al.,
2009, for example). There have also been super-
vised methods for hypernymy detection (Roller et
al., 2014, for example). Typically, this is done
for upward-entailing concept-to-concept reason-
ing, for example between word pairs (e.g., van en-
tails car) as in the BLESS data set (Baroni and
Lenci, 2011).

Another thread of related work is in relation ex-
traction (Banko et al., 2007; Bunescu and Mooney,
2007; Riedel et al., 2013, for example), and
knowledge base population, such as the TAC
shared task (McNamee and Dang, 2009). This



work is concerned with extracting the relation-
ships between entities, in order to improve the
quality of a database. Our work can be seen as
a way of integrating distributional semantics into
large-scale reasoning about entities.

Most recently, Gupta et al. (2015) investigate a
similar problem, using a logistic regression model
to map features derived from distributional meth-
ods to referential properties of countries that are
derived from Freebase. In our work, we explore
the effect of combining distributional and ontolog-
ical information, and perform a number of analy-
ses on the output of our models.

3 Framework and Model

Our model is designed to learn entity representa-
tions that are useful for predicting concept exten-
sions, which are sets of entities in the domain. Let
C = {c1, c2, ...} be the set of concepts of interest,
and E = {e1, e2, ...} be the set of entities. Since
we are interested in extensional meaning, each
concept c is defined by its extension, exten(c), a
set of elements drawn from E. Rather than explic-
itly enumerating these sets, we instead aim to learn
a function f : E → P(C) that maps an input en-
tity to the concepts of which it is an element. For
example, f(Will Smith) would evaluate to the con-
cepts Male and Actor, but also ¬Female, among
others.

We frame this as a supervised multi-label clas-
sification problem. For an entity e ∈ E, the input
to the classifier is a feature vector representation
of the entity, ~x. The classifier predicts a binary
output vector ~y of length |C|, in which yk = 1
means that e ∈ exten(ck), and yk = 0 means that
e /∈ exten(ck). In our experiments, we will actu-
ally assume that the classifier makes probabilistic,
“soft” decisions, so that the entries of the output
vector will range from 0 to 1, representing the pre-
dicted probability of the entity being a member of
the concept extension.

It is possible to view this task as a series of
standard binary classification problems, one for
each of the concepts. However, this would require
training a large number of concept-specific mod-
els. Our hope in learning entity representations is
that they will be more generally useful, for exam-
ple, in a compositional setting in which inferences
are to be made about phrases containing entities
for which we have already learned a representa-
tion.

3.1 Input features
We now specify the input feature vector represen-
tation of the entity, as well as a learning algorithm
for the function f . Our full model combines onto-
logical information with pre-trained distributional
semantic vectors to learn the extensional meaning
of concepts. To measure the effect of each of these
components, we also train baseline versions of the
model that omit one or the other feature set. Thus,
we compare the following three sets of features:

DS We derive a distributional vector of features
from word2vec, a popular recent approach to dis-
tributional semantics (Mikolov et al., 2013). We
use the 300-dimensional pre-trained vectors avail-
able on their website, which include both single-
word and multi-word entities. We chose word2vec
as it is a popular recent model of distributional se-
mantics which has been shown to work well on
a variety of existing semantic tasks (Baroni et al.,
2014). We leave the comparison of this model to
other recent distributional semantic models (Pen-
nington et al., 2014, for example) to future work.

ONTO For the ontological features, we derive an
ontological vector of an entity from its Freebase
entry. Each dimension of the ontological vector
corresponds to a concept, represented by a Free-
base type. The vector takes a value of 1 at that di-
mension if the entity is an instance of that concept,
and 0 otherwise. For example, if the first three di-
mensions of the ontological vector correspond to
the concepts Male, Actor, and Female, their val-
ues for the ontological vector of Will Smith would
be 1, 1, and 0, respectively.

ONTODS We concatenate the above two feature
vectors into an ontological distributional semantic
vector.

3.2 Learning algorithm
The learning algorithm of our model is a sim-
ple feedforward neural network. The neural net-
work has one hidden layer, the entity representa-
tion, which is then used to predict the output vec-
tor ~y. The network is trained by stochastic gradi-
ent descent with a mean squared error loss, a sig-
moid nonlinearity and weight decay. All of the
parameters to the model are tuned according to
performance on a held-out development set (Sec-
tion 4.1).

Using a neural network offers several advan-
tages. First, despite its simplicity, it is able to learn
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Figure 1: Graphical representation of the ON-
TODS model as a feedforward neural network ar-
chitecture

a more complex function over the vector space
than the typical candidates for inference with dis-
tributional semantics; namely, vector addition and
cosine similarity. Second, we are able to train one
model that jointly predicts all of the concept la-
bels in one feedforward pass, rather than training
separate classifiers for each concept. A graphical
representation of the architecture of our model is
presented in Figure 1.

Note that in this architecture, both the ontologi-
cal features in the input vector and the predictions
in the output vector refer to the membership of the
entity in concept extensions. In our experiments,
the features in the output vector will actually be
a subset of the features in the ontological vector,
because we will only use the model to make pre-
dictions about the most commonly occurring con-
cepts. This design architecture is reminiscent of
autoencoders, which have been applied to learn
a compositionality function for distributional se-
mantics (Socher et al., 2011), though in our case,
the input and output vectors are not identical. Our
use of regularization, weight decay, and parame-
ter tuning on a development set prevents the model
from overfitting to the training data by simply mir-
roring the appropriate values of the input vector.

4 Experiments

Our experiments were conducted on the collabora-
tive knowledge base, Freebase. We extracted three
classes of entities from the June 9, 2014 dump of
Freebase by taking instances of top-level concepts
(i.e., Freebase types) corresponding to People, Or-
ganizations, and Locations, as shown in Table 1.
We chose these classes because they are the en-
tity classes most often modelled by other work in
NLP, such as by NER taggers (Finkel et al., 2005).
These classes also tend to be a part of many differ-
ent scenarios, thus there should be rich ontological

structures to learn. In addition to the entities, we
extracted all of the concepts that these entities are
tagged with, in order to construct the ontological
vector component of our model.

We then filtered the entities and concepts ac-
cording to several frequency and quality criteria.
For entities, we required the following characteris-
tics: (1) there must be a word2vec vector available
for that entity, as determined by a string match to
the entity’s name or one of its aliases; (2) the en-
tity must belong to a minimum of five concepts;
(3) the entity must satisfy a minimum frequency
threshold, as follows.

We estimate the frequency of an entity by taking
the frequency of the name of the entity in the Giga-
word corpus. Where the name consists of multiple
words, the minimum of these is taken. We used a
frequency threshold of 150, which is actually quite
low given the size of the Gigaword corpus. We
chose to filter on frequency so that the distribu-
tional component would have seen the entity often
enough to learn something useful about it.

Of the roughly one million entities in Freebase
in these three categories, 84,286 entities passed the
above filters.

For the concepts, we required the following
characteristics: (1) the concept must contain a
minimum of ten entity instances; (2) the concept
must not be a /user or /m type. The second crite-
rion removes many concepts that are overly spe-
cific and only of interest to a particular user, con-
taining for example lists of landmarks that a user
would like to visit. In addition, we removed the
concept used to construct an entity category, and
the concept /common/topic, because all of the en-
tities in an entity class would be instances of these
concepts. 1,262 concepts of the original 5,024
were retained after filtering.

Following filtering, the remaining entities are
randomly assigned to training, development, and
test sets in a 60%-20%-20% split. Table 1 provides
a summary of several statistics about the data sets
that we extracted.

4.1 Method
We applied the models described above to predict
the concept memberships of entities in the fifty
most common concepts of each entity class. We
focused on the most common concepts, because
they are likely to be the important high-level divi-
sions in the entity class, and are also more likely



Entity category Freebase ID N entities (train + dev + test) N concepts
People /people/person 23053 + 7684 + 7685 530
Organizations /organization/organization 4771 + 1591 + 1591 260
Locations /location/location 22746 + 7582 + 7583 472

Table 1: Basic statistics concerning the subsets of Freebase that we extracted for our experiments. Free-
base ID refers to the top-level concept used to define the entity classes that we extract. N represents the
count of unique entities or concepts.

to be correctly annotated. These fifty concepts to
be predicted are themselves part of the ontological
vector used in the ONTO and ONTODS models.
To ensure that the models do not have access to the
label to be predicted at prediction time, we predict
the membership for each concept separately, and
mask the corresponding element of the ontologi-
cal vector by setting it to zero. So, if we are pre-
dicting whether an entity is Male, we set the di-
mension corresponding to the Male concept in the
input ontological vector to 0. We repeat this pro-
cess for each concept to be predicted in the output
vector. In Section 4.3, we will also test the effect
of having only partial or no ontological informa-
tion in the ontological vector for the ONTO and
ONTODS models.

We train the feedforward neural network model
by backpropagation using stochastic gradient de-
scent with a decreasing learning rate schedule, and
weight decay to prevent overfitting. To tune the
parameters involved, as well as other parameters
such as the number of units in the hidden layer,
the amount of randomness in the initialization of
the weight matrices, and the number of training
epochs to perform, we use the Spearmint Bayesian
optimization package (Snoek et al., 2012). We
tune the parameters on the held-out development
set for each entity class separately. For almost all
of the models, training for 20 iterations with 100
hidden units achieves the best performance on the
development set 2.

As our evaluation measure, we adopt mean av-
erage precision (MAP) from work in relation ex-
traction and information retrieval. For each con-
cept, the predictions from the model results in
a ranking of entities that belong to the concept,
in decreasing order of probability. This ranking
is compared against the gold-standard extracted
from FreeBase using the average precision mea-

2The best parameter settings are available on the author’s
website or upon request.

People Organ. Loc.
DS 45.06 43.66 38.15
ONTO 41.12 47.55 73.26
ONTODS 50.04 56.60 75.63

Table 2: Entity ranking results by input feature set
in terms of the mean average precision measure
(%). All differences are statistically significant by
a randomized bootstrap test at p < 0.0001.

sure:

AP =

∑N
k=1(P (k)× rel(k))

N
, (2)

where P (k) is the precision of the top k entities
ranked by our model, rel(k) is an indicator func-
tion that is 1 exactly when the kth entity is cor-
rectly predicted to be an instance of the concept,
and N is the total number of entities that this con-
cept contains. The mean average precision (MAP)
is then the mean of the average precisions over all
concepts. MAP is the appropriate measure for this
task, as classification accuracy would give a mis-
leading picture of performance; most entities do
not belong to most concepts, so simply predicting
that all entities belong to no concepts would give
a very high accuracy score.

4.2 Results
The results of our concept prediction models are
presented in Table 2. All differences in MAP be-
tween models trained on the same data set are
statistically significant, by the randomized boot-
strap method. The results show that our ON-
TODS model achieves the best performance on all
three entity classes in terms of MAP, outperform-
ing both the ONTO and the DS models. Com-
paring ONTO and DS, DS achieves better perfor-
mance on People, but not on Organization, and is
substantially worse on Locations.



People Organizations Locations
/people/deceased person
Benjamin Franklin 1
Christopher Columbus 1
Ronald Reagan 1
Duke Ellington 1

/dining/restaurant
Cold Stone Creamery 1
Rainforest Cafe 1
Frontera Grill 1
Waffle House 1

/architecture/venue
Staples Center 1
Candlestick Park 1
MTS Centre 1
Xcel Energy Center 1

/film/music contributor
Frank Sinatra 0
Sean Combs 0
Fred Astaire 0
Ice Cube 1

/organization/organization member
MIT 1
University of Virginia 1
University of Connecticut 0
DirecTV Group 0

/geography/river
Yamuna 1
Sugar Creek 1
Sugar Creek 1
Brazos River 1

Figure 2: The highest-ranked entities for six select concepts according to the ONTODS model. Next to
the name of the entity, a 1 indicates that the entity belongs to the concept according to Freebase, and 0
means it does not. For the river concept, Sugar Creek appears twice due to a duplicate entry in Freebase.

model: condition People Organ. Loc.
ONTO: half 29.62 32.76 58.28
ONTO: all-but-one 41.12 47.55 73.26
ONTODS: none 32.62 40.42 27.08
ONTODS: half 44.85 48.78 65.08
ONTODS: all-but-one 50.04 56.60 75.63

Table 3: Entity ranking results in the partial on-
tological information experiment, by MAP (%).
The results from “all-but-one” rows are identical
to corresponding rows in Table 2.

Figure 2 shows several rankings made by the
best performing ONTODS model for different
concepts. Overall, almost all of the top rank-
ings are correct according to the information ex-
tracted from Freebase. Several apparently incor-
rect rankings seem to be related to problems with
the coverage of Freebase. For example, Frank
Sinatra, Sean Combs, and Fred Astaire are not la-
belled as film music contributors in the version of
Freebase we used. Other errors are in categories
that seem to be less well-defined, such as /orga-
nization/organization member, a concept that de-
scribes entities that belong to some other unspeci-
fied organization.

4.3 Partial Ontological Information
Earlier, we motivated the need for ontological in-
formation to model rare occurring or invented en-
tities, yet knowledge bases are incomplete, and re-
liable ontological information about an entity is
not always available. In this section, we simulate

having partial ontological information of an input
entity by masking some of the features in the on-
tological vector. In future work, we would like to
design a system that can extract ontological infor-
mation about an entity from a short passage.

Using the same trained models from the previ-
ous section, we conducted experiments in which
we mask some of the input features in the ontolog-
ical vector under the following three conditions,
representing a decreasing amount of available in-
formation about an entity:

All-but-one This condition represents the same
setting as the previous experiments, in which the
model predicts the output features one at a time,
and has access to all of the ontological features
except for the one being predicted.

Half We ranked the output concepts by the num-
ber of entities that they contain, and then as-
signed them into two groups in an alternating man-
ner. The two groups of concepts are thus roughly
matched in terms of the number of entities they
contain. We predict each group separately, mask-
ing those concepts in the input ontological vector;
i.e., when predicting the first group of concepts,
the model only has access to information about the
second group of concepts, and vice versa.

None We masked all of the concepts to be
predicted in the ontological vector, setting all of
those features to zero. Note that the model still
has access to the remaining ontological features
that are not in the output vector. Thus, this setting
still has access to some ontological information,
unlike the DS model.



Avg. Max. Jaccard
People 0.3525
Organizations 0.4509
Locations 0.5717

Table 4: Average maximum Jaccard similarity for
the top 50 concepts in each entity class

We applied the ONTODS model under all of
these conditions, and the ONTO model under the
all-but-one and half conditions only, as we found
that it would have very little information to make
predictions on under the none condition. We
used the same best performing models from the
previous experiment, as the training was not af-
fected. The results of this experiment are pre-
sented in Table 3. Unsurprisingly, the performance
of both models degrade substantially when given
only partial ontological information. Note, how-
ever, that the ONTODS model in the half condi-
tion is still better than the DS and ONTO models
in the all-but-one condition on two of the three en-
tity classes.

4.4 Discussions
What accounts for the differing contributions of
the ontological and the distributional components
to the performance for the different entity classes?
In particular, ontological information seems to be
especially important for the Locations entity class,
whereas distributional information seems to be
better for the People entity class. We consider the
correlations between the different concepts as an
explanation for this result. Intuitively, the greater
the correlations between the concepts for a certain
entity class, the more useful ontological informa-
tion is in making inferences about concept mem-
berships of entities.

We compute a measure based on Jaccard simi-
larity between the concepts for this analysis. For
each of the top 50 concepts represented in the out-
put vector, we find the maximum Jaccard similar-
ity between that concept and the other concepts in
the training set:

maxJ(c) = max
c′

|exten(c) ∩ exten(c′)|
|exten(c) ∪ exten(c′)|

. (3)

Then, we take the average of this maximum Jac-
card similarity over the top 50 concepts. We use

the maximum similarity to other concepts rather
than the average; the average similarity could be
low due to having many unrelated concepts, which
a statistical learner would identify as irrelevant.
Across the three entity classes, the ranking of the
average maximum Jaccard similarity matches the
apparent importance of the ontological component
of the models in the entity ranking task (Table 4).
This result provides an explanation for the differ-
ent performances of the models in the entity rank-
ing task, and could be used to approximate model
performance given a new data set.

5 Deriving Semantic Relations

We further analyze our model’s performance by
examining its ability to recognize semantic rela-
tions between concepts. This analysis is not a for-
mal evaluation of the models, but serves two pur-
poses. First, it is a qualitative test of the entity
rankings of our model. Second, it demonstrates
inferences that follow directly from concept ex-
tension predictions without the need to train yet
another special-purpose classifier, for example to
determine hypernymy or synonymy.

Whereas relations such as hypernymy and syn-
onymy follow directly from crisp, 0-1 concept ex-
tensions predictions, we choose instead to use the
ranking probabilities that are the output of our
model. This avoids issues with choosing an ap-
propriate cut-off for the predictions, and also al-
lows the models to make soft predictions of lexi-
cal semantic relations between concepts. We fo-
cus below on hypernym/hyponym relations; be-
cause Freebase explicitly attempts to standardize
and canonicalize all entities and types, we do not
expect to find good synonyms.

We thus view the predictions produced by the
models as fuzzy sets (Zadeh, 1965)3, and use stan-
dard operations from fuzzy set logic to determine
hypernymy. Our models above learn a function
~y = f(~x), where yk is the probability that the in-
put entity belongs to concept ck. For a given con-
cept ck, let us now aggregate the model predictions
over all entities into a vector µk(x), which has a
length equal to the number of entities in the data
set. This can be seen as a membership function
of a fuzzy set that provides a score between 0 and
1 of an entity x in exten(ck). We use the follow-

3We leave aside the philosophical issue of whether our
models’ output values should be interpreted as probabilities
of set membership or degrees of set membership.



ci cj ⊆ ⊇ ci cj ⊆ ⊇
People ONTODS People DS
tv program guest /film/actor 0.99 0.35 cricket bowler cricket player 0.99 0.68
theater actor /film/actor 0.99 0.41 olympic athlete pro athlete 0.98 0.18
celebrity /film/actor 0.95 0.43 football player pro athlete 0.97 0.18
Organizations ONTODS Organizations DS
venture company employer 1.0 0.08 airline employer 0.99 0.03
football team sports team 0.99 0.22 airline aircraft owner 0.98 0.91
restaurant employer 0.99 0.05 university educ inst 0.92 0.85
Locations ONTODS Locations DS
river geog feature 0.99 0.28 capital admin div stat region 0.99 0.09
river body of water 0.97 0.38 university educ inst 0.95 0.91
body of water geog feature 0.97 0.70 building structure 0.96 0.57

Figure 3: Scores for several subset and superset relations learned by two of our models using fuzzy
set logic operations. The ⊆ columns display the score hypo(ci, cj), while the ⊇ columns display
hypo(cj , ci). We have abbreviated several concept names for space reasons.

ing definitions of intersection and union between
fuzzy sets A and B:

µA∩B = min(µA, µB) (4)

µA∪B = max(µA, µB). (5)

A concept c is a hyponymy of another concept
c′ if exten(c) ⊆ exten(c′). We determine the sub-
set relation in fuzzy logic reducing it to fuzzy set
intersection and set equality, and we determine
fuzzy set equality by using a generalized version
of Jaccard similarity using L1-norms:

A ⊆ B ↔ A ∩B = A (6)

fuzzyJ(µA, µB) =
‖µA∩B‖1
‖µA∪B‖1

. (7)

The degree of hyponymy of ci to cj , hypo(ci, cj),
is then simply hypo(ci, cj) = fuzzyJ(µi∩j , µi).

We present several subset relations discovered
by the ONTODS and DS models in Figure 3, as
indicated by a high hypo score between the con-
cepts. We chose these models because the former
is the best-performing model in entity ranking, and
the latter does not include ontological information
in its entity representation. This method finds sev-
eral good hyponym/hypernym relations, such as
football team⊆ sports team, and restaurant⊆ em-
ployer. It also finds chains of relations, such as
sports facility ⊆ venue ⊆ structure, and river ⊆
body of water ⊆ geographical feature.

6 Conclusion

We have argued that concept extensions can form
the basis of a vector-space model of semantics.

Our model learns entity representations by com-
bining ontological information derived from a
knowledge base with distributional information
trained to predict concept extensions. Our exper-
iments indicate the success of this model, and we
perform several analyses to explain the relative im-
portance of the ontological and distributional se-
mantic components of our model, as well as the
ability of the model to recover semantic relations
between concepts using fuzzy set logic.

Learning concept extensions provides a method
to integrate distributional semantics with formal,
compositional semantics. For example, seman-
tic relations between concepts could be detected
based on their formal, set-theoretic definitions, as
shown in Section 5. The framework and model
presented in this paper suggest a natural way to
predict these and other semantic relations without
the need for another classification step.

It would also be interesting to see whether
the ontological information/concept extensions,
which in this work was supplied by a knowledge
base, could be derived or augmented through other
means, such as by using image data (Young et al.,
2014).
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