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Large text collections are an important resource of information about the world, containing

everything from movie reviews and research papers to news articles about current events. Yet

the sheer size of such collections presents a challenge for applications to make sense of this

data and present it to users. Automatic summarization is one potential solution which aims

to shorten one or more source documents while retaining the important information. Summa-

rization is a complex task that requires inferences about the form and content of the summary

using a semantic model.

This dissertation examines the feasibility of distributional semantics as the core seman-

tic representation for automatic summarization. In distributional semantics, the meanings of

words and phrases are modelled by the contexts in which they appear. These models are easy

to train and have found successful applications, but they have until recently not been seriously

considered as contenders to support semantic inference for complex NLP tasks such as sum-

marization because of a lack of evaluation methods that would demonstrate their benefit.

I argue that current automatic summarization systems avoid relying on semantic analysis by

focusing instead on replicating the source text to be summarized, but that substantial progress

will not be possible without semantic analysis and domain knowledge acquisition. To over-

come these problems, I propose an evaluation framework for distributional semantics based

on first principles about the role of a semantic formalism in supporting inference. My experi-

ments show that current distributional semantic approaches can support semantic inference at
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a phrasal level invariant to the constituent syntactic constructions better than a word overlap

baseline.

Then, I present a novel technique to embed distributional semantic vectors into a genera-

tive probabilistic model for domain modelling. This model achieves state-of-the-art results in

slot induction, which also translates into better summarization performance. Finally, I intro-

duce a text-to-text generation technique called sentence enhancement that combines parts of

heterogeneous source text sentences into a novel sentence, resulting in more informative and

grammatical summary sentences than a previous sentence fusion approach. The success of this

approach relies crucially on distributional semantics in order to determine which parts may be

combined.

These results lay the groundwork for the development of future distributional semantic

models, and demonstrate their utility in determining the form and content of automatic sum-

maries.
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Chapter 1

Introduction

Complex natural language processing (NLP) systems can be characterized by their need for se-

mantic inference in order to understand and generate natural language; that is, they require the

ability to make explicit some knowledge that is implicit in the text (Blackburn and Bos, 2005).

The subject of this dissertation is the complex NLP application of automatic summarization,

the task of condensing some input source material into a shorter, output summary. In automatic

summarization, semantic inference can be used to understand the material in the source in re-

lation to what is expected or known; it can be used to decide what important content should be

expressed in the output summary; it can also be used to generate the final form of the output

summary.

Automatic summarization has great potential for informing users and helping them make

decisions, precisely because it can automate part of the inference that is required for determin-

ing the important and relevant information in text. As the amount of textual data that could be

relevant increases, so too does the need for summarization as a tool to help make sense of it.

The necessary semantic inference for complex NLP and summarization in particular has

proved to be difficult for automatic systems. The reason is that the ideal semantic formalism

used to support inference must demonstrate two competing properties. The first is expres-

sive power—the formalism must be capable of supporting the type of complex reasoning that

1
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humans perform from the basis of world knowledge. The other is robustness—the meaning

representations should be easy to construct and apply to any domain without large amounts of

manual effort. These properties are in conflict because richer semantic representations neces-

sitate a greater abstraction from the surface form of the text to a form in which inference can

be performed, and this process of abstraction or semantic analysis can be difficult to learn.

To illustrate this point, consider the following pair of sentence:

(1.1) The patient gained 10 pounds.

(1.2) The patient experienced a 10-pound weight gain.

A shallow analysis of the meaning of these sentences might rely on their syntactic structures

in order to relate the predicates (gain and experience) with their arguments (patient, 10 pounds

and 10-pound weight gain). Such an analysis would miss the fact that these two sentences are

paraphrases of each other that permit the same inferences and have the same truth condition;

i.e., whenever one of the statements is true, so is the other. A more expressive semantic for-

malism would permit both sentences to map to the same meaning representation, which would

solve the above problem. However, such an analysis would require greater abstraction over the

syntactic structures of sentences; namely, recognizing that the meaning of the verb phrase in

the first sentence, gained 10 pounds, is identical to that of a noun phrase in the second sentence,

a 10-pound weight gain.

A caveat is in order at this point. In this dissertation, I take semantics to refer to the sort of

literal meaning involving reasoning with objects in the world in the sense found in (Blackburn

and Bos, 2005). I do not take it to refer to nuances in suggested meaning (i.e., implicature)

that may be conveyed by a particular phrasing. For example, in the above pair of sentences,

the second seems to suggest that the patient did not intentionally gain the weight, but that the

weight gain might be the result of some course of medication. While the view of semantics

that I adopt is incomplete, it is sufficient to account for many of the deductions that occur in

automatic summarization, as I will discuss in Section 1.2. It also accords with the Motagovian,
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logical accounts of compositional semantics, which I discuss next.

1.1 Two Approaches to Semantics

Logical semantics and distributional semantics are traditional approaches to semantics that

represent two extremes along the spectrum between expressive power and robustness. Be-

low, I introduce the two approaches by describing the types of meaning representations and

inference mechanisms that characterize them. Knowledgeable readers may wish to proceed to

Section 1.2, in which I discuss the use of semantics, or the lack thereof, in automatic summa-

rization.

Logical semantics is an approach to computational semantics based on first-order and re-

lated logics (Frege, 1892; Montague, 1974)1. This approach supports expressive inference

through logical rules of inference, chief among them modus ponens. Given a knowledge base

of facts about the world, the truth value of a novel statement or query can be judged based on

whether it is entailed by the propositions in the knowledge base.

For example, a statement such as Sebastian is a cat and he likes catnip. may be presented

to the system in the form of a logical formula such as:

Cat(Sebastian)∧Likes(Sebastian,catnip) (1.3)

Determining the truth value of this statement is done with respect to a formal model of the

world using automated theorem proving techniques. Suppose the knowledge base contains the

fact that all cats like catnip. Then, the above statement can be verified by applying generalized

modus ponens, as shown in Figure 1.1.

One of the key features of this type of semantics that enable the powerful inference mech-

anism is that the meaning representation of a sentence is constructed compositionally from

1Note that many of the ideas that make up this approach to semantics actually originated before Frege.
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Domain knowledge:
∀x Cat(x) =⇒ Likes(x,catnip)
Logical inference:
Cat(Sebastian)
∀x Cat(x) =⇒ Likes(x,catnip)
∴ Likes(Sebastian,catnip)

Figure 1.1: An example of inference in proof-theoretic semantics.

#  »cat =
[

0.29 4.63 −0.39 7.77 −1.11 2.03 2.32
]

cosine( #  »cat,
#   »

dog) =
#  »cat · #   »

dog

|| #  »cat||× || #   »

dog||
= 0.82

Figure 1.2: An example of a vector representation of a word in distributional semantics, and of
calculating the similarity between the vector representations of two words.

its subparts, being guided by the syntactic structure of the sentence. Compositionality is ap-

pealing because it facilitates a view of natural language as a kind of formal language, with a

parallelism between syntactic clauses and semantic propositions. Strictly speaking, however,

compositionality is broken in natural language by phenomena such as idiomatic expressions.

The main weakness of logical approaches to computational semantics is that they perform

well only in the domain and task that they were designed for (see Wong and Mooney (2007)

for a representative approach). A great deal of annotation effort is required to train methods to

associate each word and sentence with a semantic form, and to build up a knowledge base that

is appropriate for a target domain.

The other major approach to semantics is distributional semantics. In this approach, the

meanings of words and phrases are modelled by the contexts in which they appear in a training

corpus. A common aphorism describing this approach is that “you shall know a word by the

company it keeps.” (Firth, 1957).

For example, the meaning representation of a target word, say cat, would be a vector in

which each dimension corresponds to a context word, and the component value represents the

strength of the association between the target word (i.e., cat in this example) and the corre-
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sponding context word (e.g., purr). Such vector representations are typically used to compute

similarity scores between words. For example, a similarity measure such as cosine similarity

can be computed between the vector representations of cat and dog, as in Figure 1.2. These

similarity scores can then be used in some downstream application, such as clustering similar

documents for information retrieval, or discovering synonyms.

These models are easy to train and have found successful applications, particularly in lex-

ical semantics and in information retrieval, but they have until recently not been seriously

considered as contenders to support semantic inference for complex NLP tasks.

The principal reason is that distributional semantic vectors cannot yet support the type of

expressive inference that logical semantics can. In fact, there has not even been any clear eval-

uation methodology that can demonstrate their potential ability to do so. One reason for this

lack is that until recently, distributional semantics has focused on issues of word meaning, and

word vectors fall far short in capturing the type of domain knowledge that is built into the in-

ference process of logical semantics. Recent interest in compositional models of distributional

semantics aims to expand the domain in which distributional semantics operates with the goal

of approximating the type of inferences possible in logical semantics at a phrasal or sentential

level (Baroni et al., 2014).

There have also been approaches that can be described as hybrid methods that combine

logical and distributional semantics. Unsupervised machine learning methods for semantic

parsing (e.g., Poon and Domingos, 2009; Lewis and Steedman, 2013), and for constructing

knowledge bases (e.g., Etzioni et al., 2007) essentially rely on distributional information to

cluster linguistic expressions that are semantically similar, but produce logical representations.

1.2 Semantics in Automatic Summarization

Perhaps surprisingly, current automatic summarization systems do not make use of rich se-

mantic representations to determine the content and form of output summaries. Instead, they
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use simple word-level statistics to determine topic words that appear in the source text to be

summarized, then select source text sentences that contain these topic words to include in the

summary.

This process of sentence extraction has been the dominant approach in recent summariza-

tion systems. As I will discuss in Chapters 2 and 3, these extractive summarization systems typ-

ically rely on the idea of centrality within the source text to determine sentence importance.

That is, sentences that are representative of other sentences in the source text are preferred for

inclusion in the summary.

The alternative to extraction is abstraction, in which novel text not found in the source text

is composed in order to be included in the summary. Abstraction requires some sort of analysis

of the source text, but it has several fundamental advantages over pure extraction, besides the

obvious one that humans do not normally write extractive summaries.

First, adjacent sentences in an extractive summary may come from different portions of the

source text or even different source documents, which may lead to problems with coherence.

For example, there may be a sudden topic shift or contradictory information between the sen-

tences. Such coherence problems may also be due to cohesive devices that no longer function

when removed from their original context. For example, pronouns and discourse cues may no

longer make sense because their antecedents may not be in the summary text. Consider the

following excerpt from an automatically generated extractive summary about the Columbine

shootings:

(1.4) She said the school was allowing students to stay home. Columbine and Chatfield are

sports rivals, but junior John Danos said he welcomed the newcomers.

In the first sentence, it is unclear which entities are referred to by she or the school, and there are

no cohesive links between the two sentences such as coreferent noun phrases or semantically

coherent transitions.

Second, there is a fundamental limit to the level of compression and usefulness that can

be achieved by extraction. Abstractive summaries are not only able to contain paraphrases
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that condense the source text and eliminate unimportant information, they can also contain

generalizations, analysis, and aggregation of information from multiple points in the source

text. This is especially important in multi-document summarization, where different documents

may contain conflicting or divergent information, which would be useful to point out in a

summary.

The lack of robust and powerful semantic analysis techniques has caused extraction to in

essence be used as a crutch, because source text sentences that are guaranteed to be grammatical

and locally coherent are readily available. With recent advances in distributional semantics,

however, the time is now ripe to reexamine the role of semantics in automatic summarization

to progress towards abstractive summarization. Even within the extractive paradigm, better

semantic modelling could be useful to detect salient concepts in the domain that should be

included in the summary, as well as to prevent redundancy in the summary.

1.3 Thesis Statement

The thesis of this dissertation is that distributional semantics can support the semantic infer-

ence that is required for robust automatic summarization. By robust summarization, I mean

first of all that the summarization system should be wide-coverage and easy to adapt to a new

domain without a large amount of manual annotation, similar to the definition of robustness for

a semantic representation. By robustness, I also mean that the summarization system should

exhibit some of the capabilities of human summary writers to precisely convey some content

in the most appropriate way, which often involves reformulating and paraphrasing the source

text.

What are the ways in which robust automatic summarization depend on semantic inference?

One way is paraphrase detection in order to determine when some semantic content is repeated

in the source text. Especially in multi-document summarization, repetition is a good indicator

of importance.
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Entailment relations are useful for avoiding redundancy in summaries (Mehdad et al.,

2013). For example, suppose a summarization system has already decided to include the state-

ment:

(1.5) Search crews determined the source of the fire which damaged five homes.

Then, there is no reason to include any sentence that is entailed by this statement, such as:

(1.6) The fire wrecked five homes.

Consistency checking or its converse of contradiction detection (Condoravdi et al., 2003;

de Marneffe et al., 2008) can be important, especially to certain kinds of summarization where

differences of opinion may occur. For example, it is important to detect when users have dif-

fering opinions in a product review summary, or to detect when two scientific papers disagree

on an issue.

Inference is important not just in determining the content of a summary, but also the form

of summary sentences. In abstractive summarization, summary sentences are composed by

reformulating the source text by some method of semantics-to-text natural language generation.

Here, semantics plays an important role in ensuring that the inferences that can be drawn from

the source text are preserved in the summary sentence, an issue that will arise in Chapter 6.

1.4 Dissertation Objectives

At a high level, this dissertation is an argument for incorporating more semantic knowledge

into automatic summarization systems. I will propose novel techniques for evaluating and

using distributional semantics that are inspired by properties of logical semantics, yet are ap-

plicable to arbitrary domains, unlike logical semantics. From a practical perspective, this dis-

sertation aims to improve extractive summarization and to progress towards robust abstractive

summarization. From a theoretical perspective, it shows that distributional semantics should

not be relegated to the domain of lexical semantics in its evaluation and application, but should
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instead be considered a full-fledged complement or alternative to logical semantics that can be

usefully incorporated into NLP applications.

I enumerate below the specific objectives and contributions of the dissertation.

1. Novel evaluation framework for distributional semantics. I propose an evaluation

framework for distributional semantics that is based on first principles about the desider-

ata of semantic representations that were originally proposed for logical semantics, rather

than on the types of tasks that distributional semantic models were traditionally expected

to perform well on. In two extrinsic evaluation settings, I demonstrate the ability of cur-

rent distributional semantic approaches to support semantic inference at a phrasal level

invariant of the constituent syntactic constructions.

2. Centrality in extractive summarization systems. I show that current summarization

systems have used centrality within the source text along with sentence extraction as a

proxy for the deeper semantic analysis necessary to fully solve the problem.

3. Domain knowledge in automatic summarization. I show that domain knowledge is

an important factor in automatic summarization which has been largely ignored in recent

systems. I investigate reasons that human summary writers might look beyond the source

text into in-domain text, and identify a number of features that may be useful for an

automatic system with the same goal. I use distributional semantics to produce better

domain models which result in better summarization performance.

4. Embedding distributional semantics into probabilistic models. To accomplish the

above, I present a novel technique to embed distributional semantic vectors into a gener-

ative probabilistic model as observed emissions. I show that this model is able to induce

a structured representation of a domain better than a state-of-the-art system, and that

the improved domain induction translates into better performance in automatic multi-

document summarization.
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5. Using greater contexts in abstractive summarization. I propose sentence enhance-

ment, a text-to-text language generation technique that can draw from many points in

the source text in order to produce a summary sentence. This contrasts with extraction or

sentence compression, which operates at the level of individual sentences, and traditional

sentence fusion, which operates on a small number of highly similar sentences.

1.5 Structure of the Dissertation

The following is an outline of the remaining chapters and how they meet the objectives of the

dissertation.

Chapter 2 reviews existing work in automatic summarization, focusing on the prevailing

assumption that importance in text can be approximated by centrality in an information space

using a shallow word- or n-gram-based representation. I also examine work in the psychology

of reading and in compositional distributional semantics that challenges these assumptions,

providing an avenue of research for development of systems that can make better content se-

lection decisions and, in the long run, perform robust abstractive summarization.

In Chapter 3, I study current summarization systems and examine how they differ from

human summary writers. I provide a quantitative measure of centrality to demonstrate the over-

reliance of current systems on it, compared to human summary writers. These results suggest

that substantial improvements are unlikely to result from better optimizing centrality-based

criteria. I also investigate the degree to which human summary writers produce abstractive

summaries, and how these summaries may be constructed by automatic systems by considering

domain knowledge. Specifically, I identify linguistic factors that are correlated with the use of

in-domain text that is external to the source text in human-written summaries.

In Chapter 4, distributional semantics is examined as a potential solution to address the

issues raised in the previous chapter. The first challenge to address is to properly evaluate dis-

tributional semantic models in terms of the inference decisions that they support. I propose a
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novel framework for evaluating distributional semantic phrase representations, invariant to the

particular syntactic constructions in the sentence. I propose two evaluation methods in relation

classification and QA which reflect these goals, and apply several recent compositional distri-

butional models to the tasks. Experimental results show that the models outperform a simple

lemma overlap baseline slightly, demonstrating that distributional approaches can already be

useful for tasks requiring deeper inference.

In Chapter 5, I introduce a new technique for using distributional semantics to learn about

the characteristic aspects of a domain. Generative probabilistic models have been used for

content modelling and automatic summarization, but are typically trained on small corpora in

the target domain. Distributional semantic models contain information from the large corpora

on which they are trained, and also have the potential to support complex inference decisions

as shown in the Chapter 4. I introduce Distributional Semantic Hidden Markov Models, a

novel variant of HMMs that integrates these two approaches by incorporating contextualized

distributional semantic vectors into a generative model as observed emissions. Experiments in

slot induction show that DSHMM yields improvements in learning coherent entity clusters in

a domain. A subsequent extrinsic evaluation shows that these improvements are reflected in

multi-document summarization.

Further use of distributional semantics and domain knowledge for abstractive summariza-

tion is explored in Chapter 6, in which I show that distributional semantics is crucial to the

success of a novel sentence revision technique called sentence enhancement. Here, distri-

butional semantics forms the basis of an event coreference resolution algorithm that aims to

preserve the inferences that can be drawn from the revised output sentence compared to the

input source text sentences.

Finally, I conclude in Chapter 7 by describing the limitations of the current work and future

research directions.
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1.5.1 Peer-Reviewed Publications

Several chapters in this dissertation are based on previous publications at peer-reviewed venues.

In particular, Chapter 3 excluding Section 3.4 has been published as (Cheung and Penn, 2013a);

Chapter 4 as (Cheung and Penn, 2012); Chapter 5 as (Cheung and Penn, 2013b); and Sec-

tion 3.4 and Chapter 6 as (Cheung and Penn, 2014). However, Chapter 4 contains new results

from models trained on a larger corpus, which supersede the previously published results.



Chapter 2

Centrality in Automatic Summarization

In this chapter, I discuss properties and characteristics that contribute to the definition of impor-

tance in text and how this is used to determine the contents and output of automatic summaries.

The main assumption in current systems about importance is that it can be approximated using

centrality within the source text; that is, elements of the source text that are most similar to

other elements of the source text should be considered important. I consider potential bases

for criticizing this assumption by examining work in the psychology of reading literature on

cognitive determinants of interest and memorability. This work suggests that determining im-

portance requires making use of some sort of background knowledge about the domain that

the text falls under. In contrast, existing summarization systems largely rely on the concept of

centrality to determine summary content, and I survey the variety of techniques that they use

to do so.

2.1 The Design and Evaluation of Summarization Systems

The overall goal of automatic summarization is to produce a condensed version of some in-

formation source, selecting the most important information in the source to include in the

summary. An example of a summary is presented in Figure 2.1.

13
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Figure 2.1: An informative, generic, extractive summary produced by the Columbia News-
blaster system (McKeown et al., 2002).

2.1.1 Classification of Summaries

Automatic summarization can be divided into subtypes according to the specific goal and the

method of producing summaries (Mani, 2001). The first distinction that can be made is in

the goal of the summary. A summary can be indicative, containing pointers to more detailed

sources of information (Figure 2.2) much like a search engine; informative, aiming to act as a

replacement for the source; or critical, reviewing the source text and giving a value judgement

of it.

Another dimension along which summarization systems differ is in whether they are generic

or focused. A generic summary should appeal to a broad audience without any group-specific

goal in mind, whereas a focused summary aims to target particular user groups or needs. Sum-

maries can be focused in several ways. One is by user preferences, such as by placing more

emphasis on particular aspects of a product in summarizing product reviews. Another is to fo-

cus by some query, such as a query about risks to journalists in articles about civilian casualties

in conflicts (Figure 2.3). A third possibility is to focus by the prior information that is assumed

to be known by the reader of the summary. This is exemplified by the update summarization
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Figure 2.2: An indicative, generic, extractive summary from the movie review website Rot-
ten Tomatoes (http://www.rottentomatoes.com/m/mission_impossible_
ghost_protocol/).

Journalist risks What types of dangers do journalists find themselves in and how are these sit-
uations related to their work? Are journalists specifically targetted [sic]? Are they endangered
by the type of situations they are covering or by the content of their reports?

(a) Summary topic

Journalists may face a variety of dangers in their work. When deployed to an area of active
warfare, whether between nations or factions within a nation, they are unlikely to be personally
targeted but in reporting on the battle in progress they subject themselves to danger of kidnap-
ping, capture, torture, wounding or death. Examples are media coverage of Romania 1989, Sri
Lanka 1989–90, the Gulf War in 1991, Bosnia 1992–93, and Somalia and Haiti in 1993. On
the other hand, when the journalist’s beat is a nation, state or region governed by autocratic
or corrupt government or under the influence of powerful criminal elements, the journalist’s
truthful reporting puts him in danger of arrest, beating, imprisonment, assassination or execu-
tion.

(b) Excerpt from an abstractive summary

Figure 2.3: A summary topic and a human-authored, informative, topic-focused abstractive
summary from DUC 2005.

http://www.rottentomatoes.com/m/mission_impossible_ghost_protocol/
http://www.rottentomatoes.com/m/mission_impossible_ghost_protocol/
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tasks of the Document Understanding Conference (DUC) series1 since 2007, in which an up-

date summary of an event must be produced, assuming that users have already read a previous

cluster of documents on the same event.

Summarization systems can also by classified by the method that is used to produce the

summaries. Most current systems are extractive (Nenkova et al., 2011b), which means that

snippets of source text are extracted and concatenated to form the output summary. Abstrac-

tive summarization, in contrast, involves the composition of new text not found in the source,

and allows more condensed and useful summaries with aggregation and generalization as de-

scribed above. Abstraction is a prerequisite of many of the desirable properties of an ideal

summary like aggregation and generalization, but naturally requires a deeper analysis of the

source text and a natural language generation (NLG) component. There are also specialized

domains in which it is important to maintain the exact wording of the source text, such as in

the legal domain when summarizing legal judgements (Farzindar and Lapalme, 2004), in which

case extractive or a combination of extractive and abstractive summaries are necessary.

Lastly, summarization systems can be classified by the modality (text, speech, or multi-

modal) and domain of interest (for example, news text, product reviews, legal documents,

biomedical documents, scientific articles). I will not focus much on the issue of adapting

generic summarization methods to particular domains or on issues of summarization modality,

except to comment that generic summarization systems have traditionally been tested on news

corpora, and a developing research area is to extend the results to other genres, media, and

languages other than English (Nenkova et al., 2011a).

Connections can be drawn between types of summaries and related research areas like

text mining, information retrieval, and question answering. Generic summaries can be seen

as related to text mining, where the goal is to determine what might be interesting or salient a

priori without any user input or tailoring. Indicative and focused summarization are rather more

like information retrieval and question answering in trying to gather information to address a

1DUC was renamed to the Text Analytics Conference (TAC) in 2008.
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particular information need. The effectiveness of summarization is very dependent on its final

presentation and deployment to the user. Thus, issues in human-computer interaction and

information visualization are also pertinent to summarization system builders.

2.1.2 Steps in Summarization

Summarization can be broken down into three broad, interdependent steps: analysis (or con-

tent selection), transformation (or refinement) and synthesis (or surface realization) (Mani,

2001). Semantic understanding and inference are important for all three steps, but feature par-

ticularly prominently in the first two. During the analysis step, text understanding is required to

determine the salient components to include in the summary, which involves sensibly dealing

with a wide range of linguistic issues such as paraphrases, relations between entities, corefer-

ence resolution, and discourse structure. In transformation, semantic inference is required to

do some sort of compaction or analysis of meaning representations, such as by aggregating the

opinions and viewpoints of multiple sources, removing redundancies, generalizing conclusions

and so forth, which thus profoundly influences the third step of synthesis, in which the final

summary string is generated.

In purely extractive systems, the first step is the most important, as there is by definition

almost no transformation or synthesis of the selected snippets aside from deciding on how to

arrange them. In abstractive systems, transformation and synthesis are much more difficult.

2.1.3 Summarization Evaluation

As in all NLP tasks, proper evaluation of summarization systems is crucial in order to mea-

sure progress. Summarization evaluation is a balancing act between the competing issues of

external validity, ecological validity, and cost. An evaluation is said to possess external

validity if the results of the evaluation can be generalized from the particular idiosyncratic

settings and dataset of the evaluation. This can be accomplished by, for example, testing on
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multiple domains on many document clusters. It is ecologically valid if the evaluation closely

approximates a real-world application involving summarization. Against both of these, the

constraining factor of cost in time and money must be taken into account. The following pop-

ular summarization evaluation methods make different choices in balancing these factors.

Responsiveness and Quality judgements

Direct human responsiveness judgements are taken to be a useful indication of a summariza-

tion system’s performance. Annotators give a rating, for example a score between 1 and 5, to

describe how well a summary meets the specified information need. The same procedure can

be applied to evaluate linguistic quality, using several questions targeting different properties

of the summary. A standard set of five questions for linguistic quality have been used in DUC

summarization competitions, targeting grammaticality, non-redundancy, referential clarity, fo-

cus, and structure and coherence (Figure 2.4).

Three main objections are levied against this type of judgement. The first objection is the

cost in hiring and training annotators for evaluating systems. The second is that the scores are

difficult to interpret, and it is unclear where exactly a summary is deficient and how to further

improve a system. Thirdly, this type of evaluation assumes that people can make this type of

judgement reliably and that these judgements correlate well with how well the summarization

system can be used in end applications. I examine alternative evaluation methodologies which

address each of these objections in turn.

Automatic Evaluation Measures

To address the issue of cost, automatic measures have been devised to compare automatic sum-

maries to human-written ones. Most of these automatic measures focus on summary content

rather than linguistic quality. This is a symptom of the current dominance of extractive sum-

marization approaches, where within-sentence grammaticality is assured and where not very

much can be done about between-sentence coherence issues. Automatic evaluation measures
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1. Grammaticality
The summary should have no datelines, system-internal formatting, capitalization errors
or obviously ungrammatical sentences (e.g., fragments, missing components) that make
the text difficult to read.

2. Non-redundancy
There should be no unnecessary repetition in the summary. Unnecessary repetition might
take the form of whole sentences that are repeated, or repeated facts, or the repeated use
of a noun or noun phrase (e.g., “Bill Clinton”) when a pronoun (“he”) would suffice.

3. Referential clarity
It should be easy to identify who or what the pronouns and noun phrases in the summary
are referring to. If a person or other entity is mentioned, it should be clear what their
role in the story is. So, a reference would be unclear if an entity is referenced but its
identity or relation to the story remains unclear.

4. Focus
The summary should have a focus; sentences should only contain information that is
related to the rest of the summary.

5. Structure and Coherence
The summary should be well-structured and well-organized. The summary should not
just be a heap of related information, but should build from sentence to sentence to a
coherent body of information about a topic.

Figure 2.4: Linguistic quality questions used in DUC evaluations. Annotators assign one of
five possible ratings to each category, from “Very Poor” to “Very Good”.

are evaluated by how well they correlate with manual responsiveness ratings.

In work on extractive systems, performance can be evaluated by comparing their selections

against those of a human making the same decisions. This method does not work for compar-

ing extractive to abstractive systems, however. Other methods compare system-generated sum-

maries with human-written summaries directly, being agnostic to the summarization method

used. The most popular of these measures is the ROUGE suite of evaluation measures (Lin,

2004). ROUGE is similar to the BLEU measure used in machine translation (Papineni et al.,

2002) in that it compares n-gram overlaps between system and model summaries. For a set of

reference summaries R, the ROUGE-N score of a system summary S measures the n-gram
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overlap for n = N, and is defined by

ROUGE-N(S) =
∑

S∈R
∑

gramn∈S
Countmatch(gramn)

∑
S∈R

∑
gramn∈S

Count(gramn)
, (2.1)

where gramn is an n-gram in the summary and Countmatch(gramn) is the maximum number of

n-grams that appear in both the system and reference summary.

ROUGE has been criticized because it does not correlate with human judgements as well

outside the domain of news text (Murray et al., 2005b) nor with performance on end tasks

(McCallum et al., 2012). Also, it does not consider syntactic relations or linguistic quality.

Basic Elements (Hovy et al., 2006) is an alternative to ROUGE that considers syntactic

information. A Basic Element is defined to be the head of a major syntactic constituent (noun,

verb, adjective, or adverbial phrase), or a dependency triple of (head,modifier,relation), such

as (throw,ball,OBJ) to represent a ball being thrown. Basic Elements are automatically ex-

tracted from text using standard parsers. Each Basic Element is then assigned a score equal to

the number of reference summaries in which it appears. In practice, Hovy et al. (2006) find

that Basic Elements, ROUGE, and responsiveness judgements all correlated highly with each

other in text summarization.

There are also automatic measures which do not require model summaries, but compare

directly against the source text instead (Louis and Nenkova, 2009; Saggion et al., 2010). These

papers use Jensen-Shannon divergence, which is a variant of Kullback-Leibler divergence that

measures how different two probability distributions area. Unlike Kullback-Leibler divergence,

Jensen-Shannon divergence is symmetric and always produces a finite value. In the automatic

evaluations, it is used to compute the divergence between the observed word probability distri-

butions between the source text and the summary text, with the intuition that these distributions

should be similar in a good summary. For summarization of news text, these papers find good

correlations in ranking the performance of summarization systems between this measure and
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other evaluation measures such as responsiveness, ROUGE or the Pyramid method, a more

structured evaluation method to be defined shortly.

The above methods focus on automatic evaluation of summary content. There has also been

some work on automatic measures of linguistic quality. Pitler et al. (2010) investigate a wide

variety of automatic measures of linguistic quality including lexical, syntactic, semantic, and

discourse features. Lexical and syntactic features include n-gram language models and POS

tag and syntactic category frequencies. Semantic features include named entity classes and

cosine similarity between adjacent sentences, while discourse features include measuring co-

hesive devices like pronouns and discourse connectives, coreference chains, and various word

and entity coherence measures. Overall, they find that using measures of similarity between

adjacent sentences is indicative of linguistic quality of system summaries by correlating with

human linguistic quality judgements, but that language models and entity coherence features

are also important.

The Pyramid Method

The second objection of the interpretability of results has been addressed by a more structured

type of evaluation for content selection called the Pyramid method (Nenkova and Passonneau,

2004). This method compares automatic and human summaries in terms of the summary

content units (SCUs) that they contain. The main assumption of the method is that many

choices of summary content are reasonable, but that the choices that are common to many

human summarizers are better than the ones that only a few summarizers make or none. The

method is so named because it is expected that relatively few SCUs will be expressed by all of

the human-written summaries, which form the top of the pyramid, whereas there will be many

SCUs that only one of the human-written summaries contains, corresponding to the bottom

of the pyramid. By directly assessing the quality of the SCUs selected by a summarization

system, system developers can gain more insight into the deficiencies of the current system

over simple responsiveness scores.
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To calculate the Pyramid score, annotators divide the content of model and system sum-

maries into SCUs, and annotate which SCUs are expressed in each summary. Then, each SCU

is given a weight equal to the number of model summaries that express this SCU, and a system

summary is scored by the sum of the weights of the SCUs that they express. This score is

divided by the maximum score achievable with the same number of SCUs in the original defi-

nition of the Pyramid method. Alternatively, in the modified Pyramid method, the denominator

is the optimal score using the average number of SCUs found in the model summaries, which

is more consistent with an evaluation setting in which the summary length is limited by the

number of words.

Formally, let Ti be the set of the SCUs that occur in i model summaries; that is, it represents

the ith tier of the pyramid. The numerator of the Pyramid score of a system summary to be

evaluated is then defined as d = ∑
n
i=1 i×Di, where Di is the number of SCUs in the system

summary that appears in the ith tier of the pyramid. The final Pyramid score is d divided by

the optimal score, Max:

Max =
n

∑
i= j+1

i×|Ti|+ j×

(
X−

n

∑
i= j+1

|Ti|
)
, (2.2)

where j = maxi s.t.∑n
t=i |Tt | ≥ X , and X is the number of SCUs in the summary. Intuitively,

j is the lowest tier in the pyramid from which SCUs are drawn in an optimal selection. In the

expression above, the first term corresponds to the contribution of the SCUs drawn from the

tiers above the jth tier, and the second term corresponds to the contribution of the SCUs drawn

from the jth tier to the optimal score Max.

Extrinsic Evaluation

To address the third objection of ecological validity, an evaluation task should simulates the

deployment of summarization technology in the real world. This type of extrinsic, task-based

evaluation is more useful though much more expensive and difficult to conduct, and thus rela-



CHAPTER 2. CENTRALITY IN AUTOMATIC SUMMARIZATION 23

tively uncommon.

One of the largest extrinsic evaluations of an NLG system was by Reiter et al. (2003), who

evaluated the effect of user tailoring on an NLG system that sends letters to people trying to

stop smoking. They evaluated their system on 2553 subjects in a randomized controlled clinical

setting to see if user-tailored letters increase smoking cessation rates, but they found that it did

not.

Specific to summarization, there are two main classes of extrinsic task-based evaluation.

The first type involves question answering and fact gathering (McKeown et al., 2005; McCal-

lum et al., 2012, for example). In this type of evaluation, users are either given just the source

text, the source text with the summary, or just the summary, and are then tested on how well

they extract facts from the source text. The test can either be in the form of a quiz, which makes

this a question-answering task evaluation, or it can be a timed open fact gathering task. In the

latter, the quality of the assembled facts would then be evaluated as a separate step.

The second type of evaluation involves relevance assessment (Mani et al., 2002; Dorr et al.,

2005, for example). In this setting, users are asked to classify the source documents either

into different categories, or by whether the document is relevant to some topic. The goal of

a summarization system is to improve the accuracy of classification, or more often, to reduce

the time needed to do the classifications. Dorr et al. (2005) for example find that summaries

can improve relevance prediction speed from more than 13 seconds per document to below 5

seconds.

2.2 The Assumption of Centrality

I next examine the assumption of centrality used in most current work to identify important

sentences to include in an extractive summary. As a working definition, a piece of text can be

said to be central within some larger collection if it is “close” to large portions of the collection.

Usually, “closeness” is defined according to some proxy of information content overlap, but



CHAPTER 2. CENTRALITY IN AUTOMATIC SUMMARIZATION 24

it can also be defined structurally, such as by using discourse structure. I first discuss various

properties of text related to centrality and the determination of text importance, then consider

theories in psychology of reading which emphasize the importance of prior knowledge and

context in determining cognitive interest and memorability. This stands in contrast to methods

for content selection in current summarization systems, which I then review.

2.2.1 Text Properties Important in Summarization

In content selection, it is important to consider a number of properties of the source text, de-

pending on the type of summarization. I will discuss these properties starting from the most

widely applicable to the least.

Relevance is the property of being pertinent to the topic or query at hand. In generic

summarization, relevance is usually quantified by how similar a piece of source text is to other

pieces of source text; that is, relevance reduces to centrality. In query-focused summarization,

relevance can in addition be determined relative to the query topic statement.

A number of properties pertain to how prominent a piece of source text is within the context

in which it is found. Salience is the property of being noticeable or prominent and is taken to

be the goal of generic summarization. It is often taken to be synonymous to relevance (Erkan

and Radev, 2004), though the two can in fact be distinguished, as I will further clarify. A piece

of information can be inherently salient because it is expected to be in the domain, such as the

number of deaths in a natural disaster, or paradoxically because it is somehow unusual for that

domain. Salience can also be predicted in some genres of text based on positional cues. For

example, the first paragraphs of a news article tend to contain salient information and indeed,

this is used as a baseline in news text summarization, but this does not hold in, say, novels.

Related terms that have been used are interestingness or memorability, which seem to focus

more on the effect that the source text has on the reader, such as the emotional response the

text evokes or how well the information can be recalled. I will expand upon these definitions

in the next section.
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Other properties that have been less explored in automatic summarization focus on the

expectation of the reader about the topic. Surprise or counterintuitiveness and their antonym

predictability measures how unexpected some text is upon encountering it during reading.

Postdictability in contrast focuses on how well some text fits into the mental picture of the

reader after being read; that is, it is “the ease with which a concept’s inclusion in a piece of text

can be justified after the textual unit containing that concept has been read” (Upal, 2005).

While these notions are correlated, there is a subtle distinction between them. As men-

tioned, salience and relevance have been taken to be synonymous in previous summarization

literature, but there are cases where the two diverge, particularly in the case of query-focused

summarization. The divergence comes from the fact that relevance here is defined by the

query and the grouping of the documents, and is external to any particular document, whereas

salience often depends on document-internal properties such as the position of the text in the

document.

Take the topic of “risks to journalists” (Figure 2.5) found in the Document Understand-

ing Conference (DUC) 2005 summarization competition (Dang, 2005). The source document

cluster contains instances of journalists or civilians being taken hostage or killed in various

incidents around the world. The first two sentences are examples of salient text, as they are

the leading sentence in their respective articles. However, only the first sentence is relevant

to the topic of the summary, describing a specific instance of journalist deaths. The second

sentence serves as background context to an event involving journalists, and so is not by itself

very relevant. One can also find text that is not salient but relevant, as in the third sentence.

The article from which this sentence is drawn is actually about another instance of hostage

taking in Columbia, but this sentence is included as additional information on other hostage

taking events by the same group. Lastly, there is text that is not salient or relevant, such as a

description of what exactly occurred when a journalist is released from custody.

In addition to salience and relevance, other less often discussed properties can also be

important, depending on the particular summarization task and evaluation method. Current
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Salience Relevance Text
Yes Yes Two Financial Times journalists, David Thomas, Natural Re-

sources Editor, and Alan Harper, staff photographer, died
on Wednesday when their car was engulfed by flames in the
southern oilfields of Kuwait. (FT911-2977)

Yes No A few years ago, when I used to cover Opec conferences for
the Financial Times, a bizarre event took place at one of the
Geneva price-fixing meetings of the cartel. (FT911-2786)

No Yes Another Bogota newspaper, La Prensa, reported Friday that
the cartel is planning to release the other five journalists,
including a West German. (LA092290-0094)

No No They walked to a government visa office and were driven
away in a government car. (LA060589-0077)

Figure 2.5: Sentences exhibiting different levels of salience and relevance in the DUC 2005
topic on risks to journalists. See Figure 2.3a for the topic statement. The document number
from which the sentence is drawn is given in parentheses.

approaches focus mostly on relevance and salience, because nothing in the evaluation protocol

requires anything further, as discussed in Section 2.1.3. There is, however, a movement towards

extrinsic evaluation where the goal of summarization is seen to be supporting decision-making

or fact-recall. This question-answering approach can directly validate the utility and value of

summarization, but issues not currently considered by system developers like the memorability

of the selected text becomes important. In the next section, I review results in the psychology of

reading that provide insights on the determinants of relevant factors like interest, memorability,

and surprise.

2.2.2 Cognitive Determinants of Interest, Surprise, and Memorability

Research in the psychology of reading literature informs us that humans rely on their existing

knowledge of a domain to determine what information in a new document in that domain is

interesting or salient (Kintsch, 1980). Maximally interesting information tends not to be too

similar to existing knowledge (and thus redundant), yet also not so dissimilar as to cause disso-

nance with existing knowledge about that domain. In particular, Kintsch (1980) speculates that
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cognitive interest is maximized at intermediate levels of reader knowledge about the subject,

as well as at intermediate levels of predictability and postdictability, as defined in the previous

section.

He also defines three different types of importance of a piece of text. The first is importance

for a macrostructure or schema of the domain. For example, a sentence about the location of

an earthquake would be important in an article about the earthquake, as the location is one

of the main slots in the schema. The second type of importance is how useful some text is

for an external task such as answering questions on an exam. Kintsch sees this as an ad hoc

schema, rather like the first type of importance. The third type of importance is rather different;

something might be important as perceived by a reader due to the reader’s internal state. For

example, a reader might be interested in a particular country because of a recent visit there.

The above speculations received experimental support in later work. For example, Iran-

Nejad (1987) showed that interest in a story is evoked not simply when a story is surprising, but

rather when a surprise occurs, and then is resolved and explained. He tested this by constructing

different versions of two stories with varying degrees of surprise and resolution of the surprise.

For example, in the first scenario, a stranger is introduced in a story and either implied to be

a maniac (in the high surprise setting) or not. He is then revealed to be a Good Samaritan

who intervened when the actual maniac in the story attempted to kill the protagonist, thereby

preventing the protagonist’s death. Alternate versions with tragic endings are also constructed,

with the roles of the maniac and the Good Samaritan and the implications reversed. Information

about the manner of survival or death of the protagonist and at whose hands is varied depending

on the degree of resolution. Judgements by annotators reading the story show that the ratings

for “interestingness” in the low surprise setting is significantly lower than for medium and high

surprise settings only when the incongruity is resolved. Stories with incongruity resolved were

also significantly more interesting and well liked overall, regardless of the other variables.

Hidi and Baird (1988) conducted an experiment on creating interest in text to improve stu-

dent learning. They composed three versions of texts about inventors which employed different
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strategies to create interest, such as to add anecdotes or insert questions about the inventors that

were answered after an intervening paragraph. In a fact recall task, the results were inconclu-

sive, as the texts did not seem to increase recall of facts over a baseline method. It is possible

that the added anecdotes or questions are not relevant or salient enough to aid learning, and

thus are disruptive rather than helpful.

Upal (2005) proposed that the memorability of a concept is proportional to its postdictabil-

ity minus its predictability, which he called “minimal counterintuitiveness”. This formulation

of memorability explains why intuitive concepts are not memorable (high predictability), as

well as why very divergent concepts are not memorable (low postdictability). Since post-

dictability involves a sentence in context, much of the discussion is in the type of contexts that

surround a concept and how this affects its recall. In the experiments, different versions of a

story were constructed in which the prior context of certain concepts was changed in order to

control the levels of predictability and postdictability. For example, one story describes a boy

and a girl returning home from school who encounter strange events and concepts such as a

dog composing a symphony or a talking carrot. Predictability can be increased by adding a

prior context describing how dreams often violate the laws of nature. They found that partici-

pants who read the version of the story with high predictability containing more prior context

recalled fewer of the target concepts. This study has ramifications for summarization. In par-

ticular, if the goal of summarization is to inform users, then the current extractive methods and

the evaluation measures which compare overlap to human written summaries without consid-

ering context are not adequate. Rather, a more nuanced view based on the relation of some

information to the previous context or to the background domain is needed.

Most recently, Danescu-Niculescu-Mizil et al. (2012) provide some concrete statistical

measures that partially capture these insights about memorability. Using a collection of mem-

orable quotes from an online movie database, they find that memorable quotes tend to be lex-

ically more distinctive (i.e., they have lower lexical n-gram language model probability) yet

syntactically less so (higher part-of-speech tag language model probability) when compared to
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similar non-memorable quotes. Memorable quotes also tend to have fewer third person pro-

nouns, more indefinite articles, and more present tense verbs. In the terminology of Upal’s

theory, postdictability can be seen as having a common syntactic pattern, while lack of pre-

dictability can be seen as using novel word choices and introducing new entities into the dis-

course (fewer pronouns and more indefinite articles).

2.2.3 Centrality in Content Selection

I now provide a survey of past, influential summarization systems as well as several more recent

systems to illustrate current trends. Broadly speaking, I divide the systems into extractive

systems where the primary focus is on content selection, and text simplification-based pseudo-

abstractive systems where determining linguistic well-formedness is also an issue.

I first focus on the use of salience in content selection in extractive summarization. Whether

or not this is explicitly acknowledged, most systems make use of the centrality assumption that

a summary of the source text should contain the parts of it that are representative of it. In

other words, an information space is defined and the units of the source text that are centrally

located within this space are selected for inclusion in the summary. An additional concern is

that the selected units should not be too similar to each other, so some mechanism for avoiding

redundancy must also be proposed.

Maximal Marginal Relevance

The canonical system which first proposed this view of summarization is the Maximal Marginal

Relevance (MMR) system of Carbonell and Goldstein (1998). Sentences with the highest

MMR score are greedily selected from the source text, where the MMR score is defined to be

a linear combination of a centrality-based relevance term and a redundancy penalty term.

MMR = argmax
Di∈R\S

λSim1(Di,Q)− (1−λ )max
D j∈S

Sim2(Di,D j), (2.3)
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where Di is a candidate summary segment (in practice usually a sentence), Q is a query vector,

or a vector of the source text in generic summarization, Sim1,Sim2 are similarity measures,

usually the cosine similarity. The MMR score for each sentence is recalculated after a sentence

is selected in the summary.

SumBasic

Another influential word-based approach is the SumBasic system of Nenkova and Vander-

wende (2005), where each word-type is assigned a score based on its frequency in the source

text, p(wi) = ni/N, where ni is the number of times wi appears in the source text, and N is the

total number of words in the source text. Sentences with high average word scores are selected

in the summary. After a sentence is selected, the score of all the words in the sentence is up-

dated by squaring them. Since these scores are originally probabilities that are less than one,

squaring them has the effect of lowering their chance of being subsequently selected again,

thereby acting to avoid redundancy.

This word-based approach can be enhanced in several ways, such as by using tf-idf weights,

which nearly all current summarizers do, or using lexical chains to deal with words with related

meaning (Barzilay and Elhadad, 1997).

Topic Word and Content Models

Rather than assigning a weight to every word-type as in SumBasic, many models treat the

detection of topic words that are considered important as a separate step. Lin and Hovy (2000)

use a log-likelihood ratio to calculate how indicative a term ti is of a document being relevant

to a topic being summarized. In particular, the probability of ti is first estimated in three ways:

using just relevant documents in the topic, p1; using just irrelevant documents, p2; and using

all of the documents p. Then, two hypotheses are contrasted. The first, H1, states that the

probability of ti is independent of whether the document is relevant to the topic or not; that

is, only the one parameter p is needed. The second hypothesis, H2, states that the probability
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of ti is different depending on whether the document is relevant; that is, p1 � p2. The log

likelihood ratio of the documents given the two hypotheses is then calculated as follows:

λ =−2log
L(H1)

L(H2)
. (2.4)

The coefficient of−2 ensures that λ approximates a chi-square distribution. Terms which have

a high λ value are considered to be topic words (or as the authors call them, signature terms),

the presence of which is then used to indicate important sentences to include in a summary.

Conroy et al. (2006) builds on top of this method by including topic words from the topic

description in the topic-focused DUC tasks. In particular, the probability of a term t being

included in a summary given the topic τ is

P(t|τ) = 1
2

qt(τ)+
1
2

st(τ), (2.5)

where qt(τ) is an indicator function that is 1 iff t appears in the topic statement of τ , and st(τ)

is another indicator function that is 1 iff t is a signature term. Sentences with high average

probabilities are selected to be in a summary, after several linguistic preprocessing and redun-

dancy removal steps. This system produces state-of-the-art ROUGE results on DUC evaluation

data.

Interestingly, Conroy et al. (2006) also conducted a study on the upper bound of extrac-

tive systems by showing that an extractive system can score as well according to the ROUGE

measure as human abstractors. They define an oracle score for each word equal to the prob-

ability that the word appears in a human-written model summary, and select sentences with

high average oracle scores. While such a procedure does result in very high ROUGE scores,

a human evaluation is needed to investigate whether these summaries are actually on par with

human abstractors’ summaries in quality. A similar study on the limits of extractive methods in

the speech presentation domain has been done by He et al. (2000), in which various extractive

summarization methods of presentations are compared. It was found that highlighting portions
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of text transcripts and extracts of the audio-visual presentation as determined by the presenter

were the most successful in improving quiz scores of study participants, more so than simply

presenting the slides or transcripts alone.

In a similar vein, Bayesian topic models have been used to learn a distribution of word

probabilities that are relevant to the topic (Daumé and Marcu, 2006; Haghighi and Vander-

wende, 2009; Celikyilmaz and Hakkani-Tur, 2010). For example, Haghighi and Vanderwende

(2009) propose a hierarchical generative probability model based on latent Dirichlet allocation

(LDA) for this purpose. In LDA, each word is generated from one of multiple categorical dis-

tributions, which is selected based on the value of a hidden topic2 state. The value of this topic

state as well as the categorical distributions associated with each topic state are drawn for each

word, sentence, or larger unit of text, depending on the specific details of the model, based on

hyperparameters.

The TOPICSUM model of Haghighi and Vanderwende (2009) contains three such distribu-

tions: a background categorical distribution φB, a document-set-specific distribution φC, and

a document-specific distribution φD. For each sentence in the document set, a distribution is

drawn over the three topics to determine how likely each of φB, φC, and φD are used in this

sentence. Training consists of learning the parameters of these distributions, and after this, the

document-set-specific distribution φC is used to produce a summary. They also present an en-

hancement to this model called HIERSUM, which decomposes the φC distribution into multiple

distributions, each representing either the general word frequencies of the document cluster or

the word frequencies of subtopics within the document cluster. ROUGE and user judgement

evaluations show that HIERSUM outperforms the best performing system in DUC 2007.

2This use of the word “topic” is specific to topic models and unrelated to the notion of the summarization
topic.
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Graph Centrality

Some of the above models instantiate centrality implicitly by preferring sentences with words

that are frequent in the source text, but another approach makes this more explicit by treat-

ing content selection as selecting nodes from a graph-based representation of the source text.

Nodes in the graph are typically text spans, and edges are weighted according to the similarity

between the connected text spans.

One such system is LexRank (Erkan and Radev, 2004), which is inspired by the PageRank

method of returning relevant documents in information retrieval (Page et al., 1998). In this

method, similarity scores are calculated between each pair of sentences in the input text using

cosine similarity of tf-idf scores.

sim(s1,s2) = ∑
w∈s1,s2

tfw,s1
tfw,s2

idf2w
|| #»s1||× || #»s2||

(2.6)

Then, a threshold is set to filter out low similarity scores, resulting in an undirected graph with

weighted connections between nodes. Then, the centrality of a node is determined by

c(s) = ∑
t∈adj(s)

=
c(t)

deg(t)
(2.7)

Since, this definition of centrality is recursive, PageRank’s random walk algorithm is used to

determine the final centrality scores. Sentences are then selected for a summary according

to the centrality score, with a reranking step after each selection to avoid redundancy as in

SumBasic.

Lin and Bilmes (2011) quantify centrality as coverage. In this framework, every sentence in

the source text must be “covered” by a sentence in the summary, and an optimal summary is one

that maximizes the coverage score. In this way, redundancy is handled automatically without

requiring any extra steps, as a redundant sentence would not increase the coverage as much

as a more diverse sentence would, though the authors actually found a slight improvement if
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a separate term rewarding diversity in lexical choice is explicitly included. In particular, the

coverage of a summary S of source text V is

L (S) = ∑
i∈V

min{Ci(S),αCi(V )}, (2.8)

where Ci is a coverage function defining how much the summary covers sentence i in the

source text, and αCi(V ) is a constant limit of how much coverage score each sentence in the

source text can contribute. The coverage term Ci is defined as the sum of the tf-idf cosine

similarity scores between sentences in the summary and sentence i. Because the objective

function satisfies a certain monotonicity requirement (it is monotone submodular), there is a

theoretical guarantee of how well a greedy selection algorithm would perform, and the authors

achieve state-of-the-art ROUGE results on DUC data with this method.

While the above work represents each sentence as a node in the graph, other choices can

be made, depending on the particular domain of summarization. For example, nodes can rep-

resents fragments of an e-mail conversation or dialogue acts in a meeting discussion (Carenini

et al., 2008; Murray et al., 2005a). Weighted edges between nodes can be determined in various

ways as above. More abstractly, nodes can represent aspects of a product, such as the zoom

feature of a digital camera (Carenini et al., 2006) and the graph structure may be specified

manually.

Discourse Centrality

A rather different realization of the centrality assumption is to use discourse structure. Dis-

course theories such as Rhetorical Structure Theory (Mann and Thompson, 1987) often assign

asymmetrical relations between clauses, such that one is the nucleus, or more central, and oth-

ers are satellites, or more peripheral. For example, in the passage Jane did not want to go to

the circus. She was afraid of clowns., the first sentence would be the nucleus, and the second

sentence would be the satellite. Discourse-based summarization approaches make use of this
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asymmetry to define the central portions of the source text that are assumed to be more impor-

tant. For example, the algorithm of Marcu (2000) assigns scores to nodes in a discourse parse

tree based on whether the node is the nucleus and the depth of the node in the tree. These nodes

correspond to text spans that are ordered by this score to compose a summary.

Using Domain Knowledge

The centrality assumption means that current systems do not make much use of background

knowledge or a corpus to inform content selection, as shown above. To the extent that they do

so, it is usually in the form of aggregate statistics such as tf-idf scores or word probabilities.

More use of the background corpus can be found in the work of Barzilay and Lee (2004),

whose system clusters sentences in related documents into coarse topics using a hidden Markov

model-based content model. In this work, a sequence of hidden states takes on values repre-

senting topics in the domain. Each hidden topic state emits an observation which represents

a sentence. The hidden state transitions are modelled by a categorical distribution, while the

emissions are modelled by a smoothed bigram language model.

The model is trained as follows. First, a collection of articles in the same domain with

associated summaries is gathered for training data. Then, a content model is trained on the

articles by an EM-like iterative method. The learned content model is then applied to the

summaries to determine the topics (i.e., the hidden states) that are important and likely to be in

a summary in this domain. To summarize a new article, the Viterbi algorithm is first applied

to determine the topics in the new article, then the sentences that are generated by the most

important topics are selected for the summary.

Instead of being learned as in this work, earlier work directly encodes domain knowledge in

the form of templates or schemata (Radev and McKeown, 1998; White et al., 2001). This type

of system requires detailed specification and information extraction techniques to determine

the major slots and slot fillers in a particular frame or scenario, such as to determine that

Afghanistan is the slot filler for the Location slot in an article about earthquakes. On the other
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Accidents and Natural Disasters:

1. WHAT: what happened

2. WHEN: date, time, other temporal placement markers

3. WHERE: physical location

4. WHY: reasons for accident/disaster

5. WHO_AFFECTED: casualties (death, injury), or individuals otherwise negatively af-
fected by the accident/disaster

6. DAMAGES: damages caused by the accident/disaster

7. COUNTERMEASURES: countermeasures, rescue efforts, prevention efforts, other re-
actions to the accident/disaster

Figure 2.6: A sample template give in the TAC 2011 summarization task.

hand, the detailed structure of the extracted information could be passed onto a generation

component to create an abstractive summary. There is recent work in automatically extracting

the template for information extraction, which would eliminate the first obstacle (Chambers

and Jurafsky, 2011; Cheung et al., 2013). Recent TAC summarization tasks have returned to

this view of template-based summarization in an effort to encourage more linguistic analysis

in summarization (Figure 2.6).

2.2.4 Abstractive Summarization

Abstractive summarization is a comparatively less researched area due to its greater difficulty.

Despite the benefits of extractive summarization, there are several issues with pure extraction

that must be addressed. First, taking snippets of text from multiple documents without regard

for their context can be problematic, because a sentence may refer to or be connected to ele-

ments in previous sentences. For example, discourse markers like therefore or because become

nonsensical out of context, and antecedents of anaphora may be lost. Second, extraction does

not achieve as high a compression ratio as abstraction potentially can, simply because the pos-
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sibilities for sentence realization are much greater with abstraction; for example, a sentence in

the source document may contain important information, but be saddled by unnecessary detail

which should not be included in an ideal summary. Third, the crucial goals of generaliza-

tion and aggregation of information are not possible with extraction, because they necessarily

require reasoning over multiple source sentences.

Even by current summarization evaluation methodology, abstraction offers potential advan-

tages. Genest et al. (2009) find that human-written abstracts outperform human-created extracts

as well as current automatic systems on responsiveness, linguistic quality, and Pyramid score.

Most abstractive systems focus on rewriting or simplifying source document sentences to

solve the problems of dangling discourse markers and to reduce unnecessary detail and im-

prove compression ratio. For example, work on sentence compression uses a noisy channel

model and a syntactic parse tree to prune unimportant parts of the sentences while maintaining

grammaticality (Knight and Marcu, 2000; Daumé and Marcu, 2002).

Sentences can also be made more complex by combining multiple sentences that contain

overlapping information (sentence fusion). Jing and McKeown (2000) define manual rules to

combine multiple source text sentences. Another option is to identify overlaps in the syntax

trees followed by a linearization component to turn the tree into a summary sentence (Barzilay

and McKeown, 2005; Filippova and Strube, 2008).

Besides these rewriting approaches, I have already mentioned domain-dependent template-

based summarization systems as an alternative to extractive systems, but they require rich

knowledge about a domain and information extraction techniques to generate a summary, pos-

sibly using a natural language generation system (Radev and McKeown, 1998; White et al.,

2001; McKeown et al., 2002). There have also been limited aggregation in certain domains

such as opinion summarization of products or reviews (Carenini et al., 2006). Robust abstrac-

tive summarization outside of specific domains using deep language understanding remains a

distant goal for the field.
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2.3 Summarizing Remarks on Summarization

This chapter reviewed current work in automatic summarization, discussing in particular the

reliance of current models on the assumption of centrality to determine importance, and on

word or n-gram-level representations to produce extractive summaries. I also discussed how

such summary output is evaluated using automatic and manual means. I examined work in

the psychology of reading that challenge the current paradigm of summarization. This work

suggests that centrality may not be the most appropriate assumption about importance; rather,

a more sophisticated connection between the source text and background knowledge must be

drawn to determine salience and importance.

As discussed above, the most successful extant extractive summarization systems operate

at the word or n-gram level, such as the topic-word model of Conroy et al. (2006). The most

important reason that word-level models have been so dominant in DUC and TAC evaluations

is likely the behaviour of human abstractors in generating the model summaries. As noted by

Mani (2001), professional abstractors typically copy snippets of text verbatim from the source

text, especially in single document summarization. Given that the ROUGE evaluation measure

itself also operates at the bigram level, these two factors together contribute to the success of

word-level models.

Thus, summarization systems typically ignore or do not explicitly consider the issue of

how to represent the meaning of the sentence in source text above the word or bigram level,

but there is in fact a large amount of work in semantics on how to do so. Ignoring the work in

semantics is a missed opportunity for the summarization field for several reasons.

First, semantics work has had to grapple with the same issue of robustness versus pre-

ciseness of inference that is found in the tension between frame-based and shallow statistical

approaches to summarization. Several approaches in semantics have been developed recently

which try to combine the benefits of the two extremes which may be important to summariza-

tion. Second, semantic models provide tools for implementing assumptions about importance

such as centrality or predictability with more sophisticated meaning representations and sim-
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ilarity measures. Third, abstractive summarization will necessarily require deeper meaning

representations than scores over n-grams to be able to fulfill its potential for generalizing and

aggregating information. I return to the issue of semantic representations for summarization

beginning in Chapter 4.



Chapter 3

A Case for Domain Knowledge in

Automatic Summarization

Existing extractive summarization systems rely on the concept of centrality to inform their

content selection decisions, as discussed in the previous chapter, and these systems have been

considered state-of-the-art in recent evaluations of summarization systems. While extractive

methods based on centrality have thus achieved success, abstractive methods are ultimately

more desirable for reasons such as better compression ratios and the ability to aggregate and

synthesize information.

In this chapter, I provide experimental support for the position that centrality is not enough

to make substantial progress towards abstractive summarization that is capable of this type

of semantic inference; instead, summarization systems need to make better use of domain

knowledge. I present two sets of studies on the TAC 2010 guided summarization data set.

In the first (Studies 1 to 3), I compare the behaviours of automatic summarizers to human

summarizers by examining how the contents of the summaries relate to the source text and to

in-domain articles.

40
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Study 1 confirms that human-written model1 summaries are indeed more abstractive than

automatic peer summaries according to a quantitative measure of the degree of sentence aggre-

gation in a summarization system. Study 2 shows that centrality-based measures are unlikely to

lead to substantial progress towards abstractive summarization, because current top-performing

systems already produce summaries that are more “central” than humans do. Finally, Study 3

considers how domain knowledge may be useful as a resource for an abstractive system, by

showing that key parts of model summaries can be reconstructed from the source plus related

in-domain documents.

In the second set of studies (Studies 4 and 5), I examine in more detail some possible

reasons that human summary writers look beyond the source text when composing the sum-

mary text. Study 4 considers how elements of human written summaries that are found in the

source text differ from those that are not. Study 5 identifies features that might be useful for an

automatic system that mines in-domain articles for elements to incorporate into an automatic

summary.

These contributions are novel in the following respects. First, previous studies have op-

erated at the level of words or syntactic dependencies. By contrast, the present analyses are

performed at the level of caseframes, which are shallow approximations of semantic roles

that are well suited to characterizing a domain by its slots. Furthermore, this work will take a

developmental rather than evaluative perspective—the goal here is not to develop a new evalu-

ation measure as defined by correlation with human responsiveness judgements. Instead, these

studies reveal useful criteria with which to distinguish (1) model from peer summaries, (2)

model summary components according to whether they are found in the source text, and (3)

in-domain article components according to whether they are used in the summary of the target

domain instance. These findings can thus guide the development of future abstractive systems

and frameworks for summarization.

1The summarization community uses “model” and “peer” to refer to gold-standard and automatic summarizers
respectively.
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3.1 Related Work

Domain-dependent template-based summarization systems have been an alternative to extrac-

tive systems which make use of rich knowledge about a domain and information extraction

techniques to generate a summary, possibly using a natural language generation system (Radev

and McKeown, 1998; White et al., 2001; McKeown et al., 2002). This work can be seen as

a first step towards reconciling the advantages of domain knowledge with the resource-lean

extraction approaches popular today.

Lin and Hovy’s (2000) method discovers signature terms that appear in the source text

with unusual frequency, indicating that these terms are likely important to the text. These

terms are identified by a log-likelihood ratio test based on their relative frequencies in relevant

and irrelevant documents. They were originally proposed in the context of single-document

summarization, where they were calculated using in-domain (relevant) vs. out-of-domain (ir-

relevant) text. In multi-document summarization, the in-domain text has been replaced by the

source text cluster (Conroy et al., 2006), thus they are now used as a form of centrality-based

features. In this chapter, I use guided summarization data as an opportunity to reopen the inves-

tigation into the effect of domain, because multiple document clusters from the same domain

are available.

Several studies complement the present work by examining the best possible extractive sys-

tem using current evaluation measures, such as ROUGE (Lin and Hovy, 2003; Conroy et al.,

2006). They found that the best possible extractive systems score higher or as highly than

human summarizers, but it is unclear whether this means the oracle summaries are actually

as useful as human ones in an extrinsic setting. Genest et al. (2009) asked humans to create

extractive summaries, and found that they scored in between current automatic systems and

human-written abstracts on responsiveness, linguistic quality, and Pyramid score. In the lec-

ture domain, He et al. (1999; 2000) found that lecture transcripts that have been manually

highlighted with key points improved students’ quiz scores more than when using automated

summarization techniques or when providing only the lecture transcript or slides.
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Jing and McKeown (2000) manually analyzed 30 human-written summaries, and found

that 19% of sentences cannot be explained by cut-and-paste operations from the source text.

Saggion and Lapalme (2002) similarly defined a list of transformations necessary to convert

source text to summary text, and manually analyzed their frequencies. Copeck and Szpakowicz

(2004) found that at most 55% of vocabulary items found in model summaries occur in the

source text, but they did not investigate where the other vocabulary items might be found.

3.2 Theoretical basis of the analysis

Many existing summarization evaluation methods rely on word or n-gram overlap measures,

but these measures are not appropriate for the present analysis. Word overlap can occur due to

shared proper nouns or entity mentions. Good summaries should certainly contain the salient

entities in the source text, but when assessing the effect of the domain, different domain in-

stances (i.e., different document clusters in the same domain) would be expected to contain

different salient entities. Also, the realization of entities as noun phrases depends strongly on

context, which would confound the analysis if coreference is not also correctly resolved, a

difficult problem in its own right. Such issues are best left to other work (e.g., Nenkova and

McKeown, 2003).

Domains would rather be expected to share slots (a.k.a. aspects), which require a more se-

mantic level of analysis that can account for the various ways in which a particular slot can be

expressed. Another consideration is that the structures to be analyzed should be extracted auto-

matically. Based on these criteria, I selected caseframes to be the appropriate unit of analysis.

A caseframe is a shallow approximation of the semantic role structure of a proposition-bearing

unit like a verb, and is derived from the dependency parse of a sentence. In particular, they are

(pred,role) pairs, where pred is a proposition-bearing element, and role is an approximation of

a semantic role with pred as its head (see Table 3.1 for examples).

The use of caseframes is well grounded in a variety of NLP tasks relevant to summarization
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Sentence:
At one point, two bomb squad trucks sped to the school
after a backpack scare.
Dependencies:
num(point,one) prep_at(sped,point)
num(trucks, two) nn(trucks,bomb)
nn(trucks,squad) nsubj(sped, trucks)
root(ROOT,sped) det(school, the)
prep_to(sped,school) det(scare,a)
nn(scare,backpack) prep_after(sped,scare)
Caseframes:
(speed,prep_at) (speed,nsubj)
(speed,prep_to) (speed,prep_after)

Table 3.1: A sentence decomposed into its dependency edges, and the caseframes derived from
those edges that are considered (in black).

such as coreference resolution (Bean and Riloff, 2004), and information extraction (Chambers

and Jurafsky, 2011), where they serve the central unit of semantic analysis. I adopt the term

for terminological consistency with previous work, but note that caseframes are distinct from

(though directly inspired by) the similarly named case frames of Case Grammar (Fillmore,

1968) and derivative formalisms such as frame semantics (Fillmore, 1982). Thus, the pred-

icates and roles found in caseframes operate at a level close to the surface form, such that

(speed,prep_to) in Table 3.1, for example, would not be further analyzed and decomposed into

a form that indicates a reference to the destination of a travel action that is proceeding quickly.

Caseframes also do not explicitly take into account the dependents or fillers of the semantic

role approximations.

The following algorithm extracts caseframes from dependency parses. First, those depen-

dency edges with a relation type of subject, direct object, indirect object, or prepositional object

(with the preposition indicated) are extracted, along with their governing predicates. The gov-

ernor must be a verb, event noun (as defined by the hyponyms of the WordNet EVENT synset),

or nominal or adjectival predicate. Then, a series of deterministic transformations are applied
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Relation Caseframe Pair Sim.
Degree (kill,dobj) (wound,dobj) 0.82
Causal (kill,dobj) (die,nsubj) 0.80
Type (rise,dobj) (drop,prep_to) 0.81

Figure 3.1: Sample pairs of similar caseframes by relation type, and the similarity score as-
signed to them by the distributional model.

to the syntactic relations to account for voicing alternations, control, raising, and copular con-

structions.

3.2.1 Caseframe Similarity

Direct caseframe matches account for some variation in the expression of slots, such as voicing

alternations, but there are other reasons different caseframes may indicate the same slot (Fig-

ure 3.1). For example, (kill,dobj) and (wound,dobj) both indicate the victim of an attack, but

differ by the degree of injury to the victim. (kill,dobj) and (die,nsubj) also refer to a victim,

but are linked by a causal relation. (rise,dobj) and (drop,prep_to) on the other hand simply

share a named entity type (in this case, numbers). To account for these issues, I measure case-

frame similarity based on the distributional similarity between a pair of caseframes in a large

training corpus.

First, a vector representation of each caseframe is constructed, where the dimensions of the

vector correspond to the lemma of the head word that fills the caseframe in the training corpus.

For example, kicked the ball would result in a count of 1 added to the caseframe (kick,dobj) for

the context word ball. Then, the counts are rescaled into pointwise mutual information values,

which has been shown to be more effective than raw counts at detecting semantic relatedness

(Turney, 2001). Similarity between caseframes is then defined by the cosine similarity between

their vector representations.

For training, I used the AFP portion of the Gigaword corpus (Graff et al., 2005), which

was parsed using the Stanford parser’s typed dependency tree representation with collapsed
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conjunctions (de Marneffe et al., 2006). For reasons of sparsity, only caseframes that appear

at least five times in the guided summarization corpus are considered, and only the 3000 most

common lemmata in Gigaword are used as context words.

3.2.2 An Example

The following fragment of a model summary from TAC about the Unabomber trial illustrates

how caseframes indicate the slots in a summary:

(3.1) In Sacramento, Theodore Kaczynski faces a 10-count federal indictment for 4 of the 16

mail bomb attacks attributed to the Unabomber in which two people were killed. If

found guilty, he faces a death penalty. ... He has pleaded innocent to all charges. U.S.

District Judge Garland Burrell Jr. presides in Sacramento.

All of the slots provided by TAC for the Investigations and Trials domain can be iden-

tified by one or more caseframes. The DEFENDANT can be identified by (face,nsubj), and

(plead,nsubj); the CHARGES by (face,dobj); the REASON by (indictment,prep_for); the SEN-

TENCE by (face,dobj); the PLEAD by (plead,dobj); and the INVESTIGATOR by (preside,nsubj).

3.3 Experiments

The experiments are conducted on the data and results of the TAC 2010 summarization work-

shop. This data set contains 920 newspaper articles in 46 topics of 20 documents each. Ten are

used in an initial guided summarization task, and ten are used in an update summarization task,

in which a summary must be produced assuming that the original ten documents had already

been read. All summaries have a word length limit of 100 words. I analyzed the results of the

two summarization tasks separately in the experiments.

The 46 topics belong to five different categories or domains: Accidents and natural dis-

asters, Criminal or terrorist attacks, Health and safety, Endangered resources, and In-

vestigations and trials. Each domain is associated with a template specifying the type of
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information that is expected in the domain, such as the participants in the event or the time that

the event occurred.

This study compares the characteristics of summaries generated by the eight human sum-

marizers with those generated by the automatic peer summaries, which are basically extractive

systems. There are 43 peer summarization systems, including two baselines defined by NIST.

The systems will be referred to by their ID given by NIST, which are alphabetical for the

human summarizers (A to H), and numeric for the peer summarizers (1 to 43). Two peer sys-

tems (systems 29 and 43) were removed because they did not generate any summary text in

the workshop, presumably due to software problems. For each measure to be considered, I

compare the average among the human-written summaries (the model average) to the average

among the 41 peer summarizers (the peer average. In addition, I also compare against three

individual peer systems, which represent the state of the art in automatic summarization ac-

cording to current evaluation methods. These systems are all primarily extractive, like most of

the systems in the workshop:

Peer 16 This system scored the highest in responsiveness scores on the original summariza-

tion task and in ROUGE-2, responsiveness, and Pyramid score in the update task.

Peer 22 This system scored the highest in ROUGE-2 and Pyramid score in the original sum-

marization task.

Peer 1 The NIST-defined baseline, which is the leading sentence baseline from the most

recent document in the source text cluster. This system scored the highest on linguistic quality

in both tasks.

3.3.1 Study 1: Sentence Aggregation

I first confirm that human summarizers are more prone to sentence aggregation than system

summarizers, showing that abstraction is indeed a desirable goal. To do so, I propose a measure
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Condition Initial Update
Model average 1.58 1.57
Peer average 1.06 1.06
Peer 1 1.00 1.00
Peer 16 1.04 1.04
Peer 22 1.08 1.09

Table 3.2: The average number of source text sentences needed to cover a summary sentence.
The model average is statistically significantly different from all the other conditions, p < 10−7

(Study 1).

to quantify the degree of sentence aggregation exhibited by a summarizer, which I call average

sentence cover size. This is defined to be the minimum number of sentences from the source

text needed to cover all of the caseframes found in a summary sentence (for those caseframes

that can be found in the source text at all), averaged over all of the summary sentences. Purely

extractive systems would thus be expected to score 1.0, as would systems that perform text

compression by removing constituents of a source text sentence. Human summarizers would

be expected to score higher, if they actually aggregate information from multiple points in the

source text.

To illustrate, suppose I assign arbitrary indices to caseframes, a summary sentence contains

caseframes {1,2,3,4,5}, and the source text contains three sentences with caseframes, which

can be represented as a nested set {{1,3,4},{2,5,6},{1,4,7}}. Then, the summary sentence

can be covered by two sentences from the source text, namely {{1,3,4},{2,5,6}}.

This problem is actually an instance of the minimum set cover problem, in which sentences

are sets, and caseframes are set elements. Minimum set cover is NP-hard in general, but the

standard integer programming formulation of set cover sufficed for this data set; I used ILOG

CPLEX 12.4’s mixed integer programming mode to solve all the set cover problems optimally.

Results Figure 3.2 shows the ranking of the summarizers by this measure. Most peer sys-

tems have a low average sentence cover size of close to 1, which reflects the fact that they are
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(a) Initial guided summarization task
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(b) Update summarization task

Figure 3.2: Average sentence cover size: the average number of sentences needed to generate
the caseframes in a summary sentence (Study 1). Model summaries are shown in darker bars.
Peer system numbers that I focus on are in bold.
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Topic: Unabomber trial
(charge,dobj), (kill,dobj),
(trial,prep_of), (bombing,prep_in)

Topic: Mangrove forests
(beach,prep_of), (save,dobj)
(development,prep_of), (recover,nsubj)

Topic: Bird Flu
(infect,prep_with), (die,nsubj)
(contact,dobj), (import,prep_from)

Figure 3.3: Examples of signature caseframes found in Study 2.

purely or almost purely extractive. Human model summarizers show a higher degree of aggre-

gation in their summaries. The averages of the tested conditions are shown in Table 3.2, and

the differences between the model average and the other conditions are statistically significant.

Peer 2 shows a relatively high level of aggregation despite being an extractive system. Upon

inspection of its summaries, it appears that Peer 2 tends to select many datelines, and without

punctuation to separate them from the rest of the summary, the automatic analysis tools incor-

rectly merged many sentences together, resulting in incorrect parses and novel caseframes not

found in the source text.

3.3.2 Study 2: Signature Caseframe Density

Study 1 shows that human summarizers are more abstractive in that they aggregate informa-

tion from multiple sentences in the source text, but how is this aggregation performed? One

possibility is that human summary writers are able to pack a greater number of salient case-

frames into their summaries. That is, humans are fundamentally relying on centrality just as

automatic summarizers do, and are simply able to achieve higher compression ratios by being

more succinct. If this is true, then sentence fusion methods over the source text alone might be

able to solve the problem. Unfortunately, I show that this is false and that system summaries

are actually more central than model ones.
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Condition Initial Update
Model average 0.065 0.052
Peer average 0.080∗ 0.072∗

Peer 1 0.066 0.050
Peer 16 0.083∗ 0.085∗

Peer 22 0.101∗ 0.084∗

Table 3.3: Signature caseframe densities for different sets of summarizers, for the initial and
update guided summarization tasks (Study 2). ∗: Statistically significant difference against the
model average at p < 0.005.

To extract topical caseframes, I use Lin and Hovy’s (2000) method of calculating signature

terms, but extend the method to apply it at the caseframe rather than the word level. I follow Lin

and Hovy (2000) in using a significance threshold of 0.001 to determine signature caseframes2.

Figure 3.3 shows examples of signature caseframes for several topics. Then, I calculate the

signature caseframe density of each of the summarization systems. This is defined to be the

number of signature caseframes in the set of summaries divided by the number of words in that

set of summaries.

Results Figure 3.4 shows the density for all of the summarizers, in ascending order of den-

sity. As can be seen, the human abstractors actually tend to use fewer signature caseframes in

their summaries than automatic systems. Only the leading baseline is indistinguishable from

the model average. Table 3.3 shows the densities for the conditions that I described earlier.

The differences in density between the human average and the non-baseline conditions are

highly statistically significant, according to paired two-tailed Wilcoxon signed-rank tests for

the statistic calculated for each topic cluster.

These results show that human abstractors do not merely repeat the caseframes that are

indicative of a topic cluster or use minor grammatical alternations in their summaries. Rather,

a genuine sort of abstraction or distillation has taken place, either through paraphrasing or
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(a) Initial guided summarization task
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(b) Update summarization task

Figure 3.4: Density of signature caseframes (Study 2).
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Threshold 0.9 0.8
Condition Init. Up. Init. Up.
Model average 0.066 0.052 0.062 0.047
Peer average 0.080 0.071 0.071 0.063
Peer 1 0.068 0.050 0.060 0.044
Peer 16 0.083 0.086 0.072 0.077
Peer 22 0.100 0.086 0.084 0.075

Table 3.4: Density of signature caseframes after merging to various thresholds for the initial
(Init.) and update (Up.) summarization tasks (Study 2).

semantic inference, to transform the source text into the final informative summary.

Merging Caseframes A natural question to ask is if simple paraphrasing could account for

the above results; it may be the case that human summarizers simply replace words in the

source text with synonyms. To account for this, I merged similar caseframes into clusters

according to the distributional semantic similarity defined in Section 3.2.1, and then repeated

the previous experiment. I chose two relatively high levels of similarity (0.8 and 0.9), and used

complete-link agglomerative (i.e., bottom-up) clustering to merge similar caseframes. That

is, each caseframe begins as a separate cluster, and the two most similar clusters are merged

at each step until the desired similarity threshold is reached. Cluster similarity is defined to

be the minimum similarity (or equivalently, maximum distance) between elements in the two

clusters; that is, maxc∈C1,c′∈C2−sim(c,c′). Complete-link agglomerative clustering tends to

form coherent clusters where the similarity between any pair within a cluster is high (Manning

et al., 2008).

Cluster Results Table 3.4 shows the results after the clustering step, with similarity thresh-

olds of 0.9 and 0.8. Once again, model summaries contain a lower density of signature case-

frames. The statistical significance results are unchanged. This indicates that simple paraphras-

2Other thresholds did not produce substantially different results.
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ing alone cannot account for the difference in the signature caseframe densities, and that some

deeper abstraction or semantic inference has occurred.

Note that a lower density of signature caseframes does not necessarily correlate with a

more informative summary. For example, some automatic summarizers are comparable to the

human abstractors in their relatively low density of signature caseframes, but these are in fact

the worst performing summarization systems by all measures in the workshop, and they are

unlikely to rival human abstractors in any reasonable evaluation of summary informativeness.

It does, however, appear that further optimizing centrality-based measures alone is unlikely to

produce better informative summaries, even if the summary is analyzed at a syntactic/semantic

rather than lexical level.

3.3.3 Study 3: Summary Reconstruction

The above studies show that the higher degree of abstraction in model summaries cannot be

explained by better compression of topically salient caseframes alone. I now switch perspec-

tives to ask how model summaries might be automatically generated at all. I will show that

they cannot be reconstructed solely from the source text, extending Copeck and Szpakowicz

(2004)’s result to caseframes. However, I also show that if articles from the same domain are

added, reconstruction then becomes possible. I define caseframe coverage to measure the de-

gree to which a model summary can be reconstructed from some reference set. Specifically,

this is the proportion of caseframes in a summary that is contained by the reference set. This is

thus a score between 0 and 1. Unlike in the previous study, it is necessary to consider the full

set of caseframes, not just signature caseframes, because the goal now is to create a hypothesis

space from which it is in principle possible to generate the model summaries.

Results The results of calculating caseframe coverage with respect to the source text alone

are shown in Figure 3.5. As expected, automatic systems show close to perfect coverage, be-

cause of their basically extractive nature, while model summaries show much lower coverage.
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(a) Initial guided summarization task
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(b) Update summarization task

Figure 3.5: Coverage of summary text caseframes in source text (Study 3).
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Condition Initial Update
Model average 0.77 0.75
Peer average 0.99 0.99
Peer 1 1.00 1.00
Peer 16 1.00 1.00
Peer 22 1.00 1.00

Table 3.5: Coverage of caseframes in summaries with respect to the source text. The model
average is statistically significantly different from all the other conditions, p < 10−8 (Study 3).

These statistics are summarized by Table 3.5. These results present a fundamental limit to ex-

tractive systems, and also text simplification and sentence fusion methods based solely on the

source text.

The Impact of Domain Knowledge How might automatic summarizers be able to acquire

these caseframes from other sources? Traditional systems that perform semantic inference do

so from a set of known facts about the domain in the form of a knowledge base, but as I have

shown, most extractive summarization systems do not make much use of in-domain corpora.

As a first approximation to having an in-domain knowledge base, I examined whether adding

in-domain text to the source text could improve coverage.

Recall that the 46 topics in TAC 2010 are categorized into five domains. To calculate the

impact of domain knowledge, I now add all the documents that belong in the same domain as

the source text to the reference set when calculating coverage. To ensure that coverage does

not increase simply due to increasing the size of the reference set, I compare to the baseline of

adding the same number of documents that belong to another domain. As shown in Table 3.6,

the effect of adding more in-domain text on caseframe coverage is substantial, and noticeably

more than using out-of-domain text. In fact, nearly all caseframes can be found in the ex-

panded set of articles. The implication of this result is that it may be possible to generate better

summaries by mining in-domain text for relevant caseframes.
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Reference corpus Initial Update
Source text only 0.77 0.75
+out-of-domain 0.91 0.91
+in-domain 0.98 0.97

Table 3.6: The effect on caseframe coverage of adding in-domain and out-of-domain doc-
uments. The difference between adding in-domain and out-of-domain text is significant
p < 10−3 (Study 3).

3.4 Why Source-External Elements?

I argued above that current extractive state-of-the-art summarization systems rely too heavily

on notions of information centrality and do not make enough use of domain knowledge. As

shown by Study 3, one possible direction is to incorporate elements from in-domain articles

into the summary. Study 3 and other previous studies on cut-and-paste summarization thus

(Jing and McKeown, 2000; Saggion and Lapalme, 2002) investigate the operations that human

summarizers perform on the source text in order to produce the summary text. While such

studies elucidate the mechanisms by which such source text modification occurs, they leave

unresolved the reasons why such techniques are required in the first place.

What previous studies lack is a detailed analysis of the factors surrounding why human

summary writers use non-source-text elements in their summaries, and how these may be auto-

matically identified in the in-domain text. In this section, I supply such an analysis and provide

evidence that human summary writers actually do incorporate elements external to the source

text for a reason; namely, that these elements are more specific to the semantic content that they

wish to convey. I also identify a number of features that may be useful to future systems for

automatically identifying which of these elements in in-domain text may be used in a summary.

Because the focus in this section has shifted from characterizing the relationship between a

summary’s content and its domain towards how an automatic system might identify elements

that are external to the source text, I expand the definition of caseframes in the following

studies to include all relation types, not just verb complements and prepositional objects. So,
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constructions such as attributive adjectives (e.g. (computer,amod)) would be captured.

I divide my analyses into two studies. In the provenance study (Study 4), I divide the

caseframes in human-written summaries according to whether they are found in the source text

(source-internal) or not (source-external). In the domain study (Study 5), I divide in-domain

caseframes according to whether they are used in a human-written summary (gold-standard)

or not (not gold-standard).

3.4.1 Study 4: Provenance Study

I compare the characteristics of gold-standard caseframes according to their provenance; that is,

are they found in the source text itself? The question of interest here is why human summarizers

need to look beyond the source text at all for caseframes when writing their summaries. I will

provide evidence that they do so because they can find predicates that are more appropriate to

the content that is being expressed according to two quantitative measures.

Predicate Provenance

Source-external caseframes may be external to the source text for two reasons. Either the

predicate is found in the source text, but the relation is not found with that particular predicate,

or the predicate itself may be external to the source text altogether. If the former is true, then

perhaps there is little need to look beyond the source text after all. I thus compute the proportion

of source-external caseframes where the predicate already exists in the source text.

I find that in 2413 of the 4745 source-external caseframes (or 51%), the predicate can be

found in the source text. This indicates that an abstractive summarization method based on

extending the source text by expanding predicates with relations not necessarily found in the

source text could already capture some of the source-external caseframes in its hypothesis

space.
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Average freq (millions)
Source-internal 1.77 (1.57, 2.08)
Source-external 1.15 (0.99, 1.50)

(a) The average predicate frequency of source-internal vs. source-external gold-standard predicates in
an external corpus.

Arg entropy
Source-internal 7.94 (7.90, 7.97)
Source-external 7.42 (7.37, 7.48)

(b) The average argument entropy of source-internal vs. source-external PR pairs in bits.

Table 3.7: Results of the provenance study. 95% confidence intervals are estimated by the
bootstrap method and indicated in parentheses.

Predicate Frequency

What factors then can account for the remaining predicates that are not found in the source text

at all? The first such factor I identify is the frequency of the predicates. Here, I take frequency

to be the number of occurrences of the predicate in an external corpus; namely the Annotated

Gigaword, which gives us a proxy for the specificity or informativeness of a word. In this

comparison, I take the set of predicates in human-written summaries, divide them according to

whether they are found in the source text or not, and then look up their frequency of appearance

in the Annotated Gigaword corpus.

As Table 3.7a shows, the predicates that are not found in the source text consist of signif-

icantly less frequent words on average (Wilcoxon rank-sums test, p < 10−17). This suggests

that human summary writers are motivated to use source-external predicates, because they are

able to find a more informative or apposite predicate than the ones that are available in the

source text.

Entropy of Argument Distribution

Another measure of the informativeness or appropriateness of a predicate is to examine the

range of arguments that it tends to take. A more generic word would be expected to take a
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wider range of arguments, whereas a more particular word would take a narrower range of

arguments, for example those of a specific entity type.

I formalize this notion by measuring the entropy of the distribution of arguments that a

caseframe takes as observed in Annotated Gigaword. Given frequency statistics f (p,r,a) of

predicate p taking an argument word a in relation r, I define the argument distribution of

caseframe (p,r) as:

P(a|p,r) = f (p,r,a)/∑
a′

f (p,r,a′) (3.2)

I then compute the entropy of P(a|p,r) for the gold-standard caseframes, and compare the

average argument entropies of the source-internal and the source-external subsets.

Table 3.7b shows the result of this comparison. Source-external caseframes exhibit a lower

average argument entropy, taking a narrower range of possible arguments. Together these two

findings indicate that human summary writers look beyond the source text not just for the sake

of diversity or to avoid copying the source text; they do so because they can find predicates that

are more specifically convey some desired semantic content.

3.4.2 Study 5: Domain Study

The final study that I perform is to examine how to distinguish those source-external caseframes

in in-domain articles that are used in a summary from those that are not. For this study, I rely

on the topic category divisions in the TAC 2010 data set, using all of the documents of the

same topic category as the target document cluster as the in-domain text. The contribution of

this study is to show the importance of better semantic understanding for developing a text-to-

text generation system that uses in-domain text, and to identify a potentially useful feature for

training such a system.
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N NN sim
GS 2202 0.493 (0.486, 0.501)
Non-GS 789K 0.443 (0.442, 0.443)

(a) Average similarity of gold-standard (GS) and non-gold-standard (non-GS) caseframes to the nearest
neighbour in the source text.

N Freq. (millions) Fecundity
GS 1568 2.44 (2.05, 2.94) 21.6 (20.8, 22.5)
non-GS 268K 0.85 (0.83, 0.87) 6.43 (6.41, 6.47)

(b) Average frequency and fecundity of GS and non-GS predicates in an external corpus. The differences
are statistically significant.

Table 3.8: Results of the domain study. 95% confidence intervals are given in parentheses.

Similarity to Nearest Source-text Neighbour

I examine whether distributional similarity may be used to determine whether a source-external

caseframe may be used in a summary by measuring its similarity to the nearest caseframe in

the source text. To determine the similarity between two caseframes, I compute the cosine

similarity between their vector representations. The vector representation of a caseframe is the

concatenation of a context vector for the predicate itself and a selectional preferences vector

for the caseframe; that is, the vector of counts with elements f (p,r,a) for fixed p and r. As

before, these vectors are trained from the Annotated Gigaword corpus.

The average nearest-neighbour similarities of PR pairs are shown in Table 3.8a. While the

difference between the gold-standard and non-gold-standard caseframes is indeed statistically

significant, the magnitude of the difference is not large. This illustrates the challenge of min-

ing source-external text for abstractive summarization, and demonstrates the need for a more

structured or detailed semantic representation in order to determine the caseframes that would

be appropriate.
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Frequency and fecundity

We also explore several features that would be relevant to identifying predicates in in-domain

text that are used in the automatic summary. This is a difficult problem, as less than 0.6% of

such predicates are actually used in the source text. As a first step, we consider several simple

measures of the frequency and characteristics of the predicates.

The first measure that we compute is the average predicate frequency of the gold-standard

and non-gold-standard predicates in an external corpus, as in Section 3.4.1. A second, related

measure is to compute the number of possible relations that may occur with a given predicate.

We call this measure the fecundity of a predicate. Both of these are computed with respect to

the external Annotated Gigaword corpus, as before.

As shown in Table 3.8b, there is a dramatic difference in both measures between gold-

standard and non-gold-standard predicates in in-domain articles. Gold-standard predicates tend

to be more common words compared to non-gold-standard ones. This result is not in conflict

with the result in the provenance study that source-external predicates are less common words.

Rather, it is a reminder that the background frequencies of the predicates matter, and must be

considered together with the semantic appropriateness of the candidate word.

3.5 Summary and Discussion

In this chapter, I have argued for the use of domain knowledge in summarization in two series

of studies. In the first, I distinguish human-written informative summaries from the summaries

produced by current systems. The studies are performed at the level of caseframes, which

are able to characterize a domain in terms of its slots. First, I confirm that model summaries

are more abstractive and aggregate information from multiple source text sentences. Then, I

show that this is not simply due to summary writers packing together source text sentences

containing topical caseframes to achieve a higher compression ratio, even if paraphrasing is

taken into account. Indeed, model summaries cannot be reconstructed from the source text
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alone. However, the results are also positive in that nearly all model summary caseframes can

be found in the source text together with some in-domain documents.

Then, in the second series of studies, I investigate the reasons that human summary writers

look beyond the source text, and show that they do so in order to find predicates that are better

able to convey some intended content. I also identify several features that might be useful for

determining which caseframes from in-domain text outside of the source text might be used in

a summary of some target domain instance.

Current summarization systems have been heavily optimized towards centrality and lexical-

semantical reasoning, but the field is nearing the bottom of the barrel. Domain inference, on

the other hand, and a greater use of in-domain documents as a knowledge source for domain

inference, are very promising indeed. Mining useful caseframes for a sentence fusion-based

approach has the potential, as these experiments have shown, to deliver results in just the areas

where current approaches are weakest.



Chapter 4

Compositional Distributional Semantics

If neither logical semantics nor n-grams are ideal for automatic summarization systems, then

what semantic representation is? This chapter examines distributional semantic models as a

potential tool for complex NLP tasks. I first review a number of recent distributional semantic

models which attempt to construct representations for linguistic units larger than that of single

words. Then, I discuss problems with current evaluations of such semantic models, and propose

a novel evaluation framework for distributional semantics based on first principles about the

function of semantic models in general. I describe experiments using this framework which

demonstrate the potential of current distributional semantic models, and serve as the basis for

further experiments in Chapter 5.

4.1 Compositionality and Co-Compositionality in Distribu-

tional Semantics

Distributional semantics takes the view that a word’s meaning can be characterized by the con-

texts in which it appears, which is known as the distributional hypothesis (Harris, 1954).

Such models represent word meaning as one or more high-dimensional vectors which capture

the lexical and syntactic contexts of the word’s occurrences in a training corpus. For example,

64
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the vector representation of a word like cat might have high values in the dimensions corre-

sponding to purr or rat, but low values in dimensions corresponding to unrelated words like

democracy or insightful.

Both of these views of semantics have influenced and inspired a recent line of work called

compositional distributional semantics (CDS). These models of semantics take the distribu-

tional hypothesis as a starting point to construct vector representations of words, but attempt to

compositionally build representations of phrases and sentences from them.

The idea of compositionality has been central to understanding contemporary natural lan-

guage semantics from an historiographic perspective. Compositionality is a natural way to

construct representations of linguistic units larger than a word, and it has a long history in log-

ical semantics for dealing with argument structure and assembling rich semantical expressions

of the kind found in predicate logic. The idea is often credited to Frege, although in fact Frege

had very little to say about compositionality that had not already been repeated since the time

of Aristotle (Hodges, 2005). The modern notion of compositionality took shape primarily with

the work of Tarski (1956), who was actually arguing that a central difference between formal

languages and natural languages is that natural language is not compositional. This in turn was

the “the contention that an important theoretical difference exists between formal and natural

languages,” that Richard Montague so famously rejected (Montague, 1974). Compositional-

ity also features prominently in Fodor and Pylyshyn’s (1988) rejection of early connectionist

representations of natural language semantics.

A related idea is co-compositionality, which is the idea that the meaning of words that

are part of the same phrase mutually influence each other (Pustejovsky, 1991, 2000). This is

canonically illustrated by showing that a direct object “selects” the sense of the verb that is the

complement to, as in the following example by Pustejovsky:

(4.1) John cut the bread.

(4.2) John cut the string.
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(4.3) John cut his hair.

(4.4) John cut his finger.

Here, the verb cut takes on distinct senses meaning to separate, to shorten, to open, or to

slice, depending on the direct object. In distributional semantics, this effect is modelled by

contextualizing the vector representations of words by their neighbours.

4.1.1 Several Distributional Semantic Models

The standard method of training a distributional semantic model is to first create a term-context

matrix, in which rows correspond to target words and columns correspond to context words.

Training begins by counting context words that appear within a context window and updating

the corresponding cells in the matrix. These counts may then be rescaled into general cor-

relation measures of the association between the target and context word, such as by using

pointwise mutual information scaling. The rows in the resulting matrix are then the vector rep-

resentations of the target words. From this basis, various compositional and co-compositional

models can be derived. I describe below several that will be used in later experiments.

The Simple Vector Space Model

Mitchell and Lapata (2008) (M&L) propose a framework for compositional distributional se-

mantics using the standard term-context vector space word representation. A phrase is rep-

resented as a vector of context-word counts (actually, values scaled by computing pointwise

mutual information), which is derived compositionally by a function over constituent vectors,

as described by the following equation:

p = f (u,v,R,K) (4.5)

u and v are vector representations of the constituents which compose into vector p according to

relation R with additional background knowledge K, and f is the composition function. While
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the framework is quite general, the instantiations of f that they test assume component-wise

independence, with the best performing models being component-wise multiplication and a

combined model of multiplication and addition. In the experiments, I use M&L to refer to the

model instances that use component-wise operators.

Syntax-Modulated Models

M&L use a bag-of-words context representation which ignores syntactic relations and is insen-

sitive to word-order and hence voicing alternations. Erk and Padó (2008) (E&P) introduce a

structured vector space model for co-compositional effects which uses syntactic dependencies

by modelling words’ selectional preferences. The vector representation of a word in context is

modulated by the inverse selectional preferences of its dependents, and the selectional pref-

erences of its head. For example, suppose catch occurs with a dependent ball in a direct object

relation. The vector for catch would then be influenced by the inverse direct object preferences

of ball (e.g. throw, organize), and the vector for ball would be influenced by the selectional

preferences of catch (e.g. cold, drift). More formally, given a dependency between words a

and b in a relation r, a distributional representation of a, va the representation of a in context,

a′, is given by

a′ = va�R−1
b (r) (4.6)

R−1
b (r) = ∑

c: f (b,r,c)>θ

f (b,r,c) · vc, (4.7)

where R−1
b (r) is the vector describing the inverse selectional preference of word b in relation

r, f (b,r,c) is the frequency of the dependency triple headed by c with dependent b in relation

r, θ is a frequency threshold to weed out low-frequency dependency triples, and � is a vector

combination operator for contextualization, which is component-wise multiplication in their

work.
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Dinu and Lapata (2010) (D&L) assume that there exists a global, abstract set of senses or

semantic primitives, and that the meaning of a word can be modelled as a mixture of these

latent senses. In this model, the vector for a word ti in the context of a word c j is modelled by

v(ti,c j) = P(z1|ti,c j), ...,P(zK|ti,c j) (4.8)

where z1...K are the latent senses. By making independence assumptions and decomposing

probabilities, training becomes a matter of estimating the probability distributions P(zk|ti) and

P(c j|zk) from data. While Dinu and Lapata (2010) describe two learning algorithms to do so,

based on non-negative matrix factorization and latent Dirichlet allocation, the performances

are similar.

4.1.2 Other Distributional Models

Turney and Pantel (2010) survey various types of vector space models and applications thereof

in computational linguistics. I describe below a number of other word- or phrase-level distri-

butional models.

Thater et al. (2010) (TFP) propose an alternative model that is sensitive to selectional pref-

erences, but whereas E&P represent each (inverse) selectional preference with a separate vec-

tor, TFP’s model encodes the selectional preferences in a single vector directly using frequency

counts. Furthermore, TFP consider selectional preferences to two degrees. For example, the

vector for catch might contain a dimension labelled (OBJ, OBJ−1, throw), which indicates the

strength of connection between the two verbs through all of the co-occurring direct objects

which they share. Baroni and Lenci (2010) define Distributional Memory to be a third-order

tensor of dependency path triples consisting of two arguments and a linking word, such as

(marine, own, gun), each associated with a score derived from a training corpus. They project

these tensors down to matrix subspaces in various ways and test them on a variety of semantic

tasks.
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The syntax-modulated approaches deal with polysemy and homonymy implicitly by using

a dependency context. Another approach is to explicitly model the multiple senses. The multi-

prototype approach determines top-down a number of senses for each word, and then clusters

the occurrences of the word (Reisinger and Mooney, 2010) into these senses. A prototype vec-

tor is created for each of these sense clusters. When a new occurrence of a word is encountered,

it is represented as a combination of the prototype vectors, with the degree of influence from

each prototype determined by the similarity of the new context to the existing sense contexts.

In contrast, the bottom-up exemplar-based approach assumes that each occurrence of a word

expresses a different “sense” of the word. The most similar senses of the word are activated

when a new occurrence of it is encountered and combined, for example with a kNN algorithm

(Erk and Padó, 2010).

The above work assumes each dimension in the feature vector corresponds to a context

word. In contrast, Washtell (2011) uses potential paraphrases directly as dimensions in his

expectation vectors. Unfortunately, this approach does not outperform various context word-

based approaches in two phrase similarity tasks.

Dimensionality reduction methods can also produce word vector representations with a low

number of dimensions amenable to fast processing. Singular value decomposition is a popular

approach to produce condensed versions of term-context matrices with minimal squared error

loss in reconstruction error. Dhillon et al. (2011) apply canonical correlation analysis to pro-

duce low-dimensional contextualized word representations which are successful when used as

features for named entity recognition and chunking.

Other Composition Operators In terms of the vector composition function, component-

wise addition and multiplication are the most popular in recent work, but there also exist a

number of other vector space-based composition operators, such as tensor product and con-

volution product, which are reviewed by Widdows (2008). Similarly, instead of vector space

representations, one could also use a matrix space representation with its much more expres-
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sive matrix operators (Rudolph and Giesbrecht, 2010). So far, however, this has only been

applied to specific syntactic contexts like adjective-noun compositions (Baroni and Zampar-

elli, 2010; Guevara, 2010) and verb-noun compositions (Grefenstette and Sadrzadeh, 2011), or

tasks (Yessenalina and Cardie, 2011).

Neural networks have been used to learn both the representation and the composition func-

tion. In these models, one neural network is used in a pre-training step to learn word represen-

tations (Bengio et al., 2006; Collobert and Weston, 2008). Then, the learned representations are

fed as input into a subsequent network that learns and constructs representations for phrases.

This second model is typically a recursive neural network, in which a set of nodes in a neu-

ral network represents one constituent, whose outputs are connected to another set of nodes

which represents the parent in a syntactic tree. The syntactic tree can be learned (Socher et al.,

2010), or given (Socher et al., 2011a,b). In the latter papers, a recursive autoencoder model

is used, where the learning objective is to minimize reconstruction error of the training text at

every point of the parse tree. Socher et al. (2012) further develop this approach by learning

matrix representations for words to model their co-compositionality effects, in addition to the

regular vector representations. Huang et al. (2012) introduce a neural network architecture that

combines information from both the local context window as in standard models, as well as a

global context from the document.

Blacoe and Lapata (2012) compare the simple vector space model of Mitchell and Lapata

(2008) to the Distributional Memory approach and Socher et al. (2011a)’s model on several

semantic tasks involving lexical semantics and paraphrase detection. Surprisingly, they find

that the simple method performs about as well as the other two more sophisticated models,

despite the simple model not requiring syntactic information or learning.



CHAPTER 4. COMPOSITIONAL DISTRIBUTIONAL SEMANTICS 71

4.2 Evaluating Distributional Semantics for Inference

One obstacle to using these semantic models is the lack of guidance of which model to select

or the strengths and weaknesses of each. This is primarily due to ad-hoc evaluation methods

of models designed to showcase the specific strengths of a system, rather than to evaluate the

potential of using the semantic model in an applied setting such as summarization. The first

step to applying these models would be a better evaluation and comparison of these models to

determine their potential for semantic inference.

In addition, the above work focused on the notion of compositionality as the litmus test of a

truly semantic model. While compositionality may provide a convenient recipe for producing

representations of propositionally typed phrases, it is not a necessary condition for a semantic

representation. That distinction still belongs to the crucial ability to support inference.

As Richard Montague put it, “The basic aim of semantics is to characterize the notion of

a true sentence (under a given interpretation) and of entailment” (1970). In other words, a

model that is not capable of natural language inference does not even deserve to be called a

semantics.

A desirable and arguably necessary for a compositional semantic representation to support

inference invariantly, in the sense that the particular syntactic construction that guided the

composition should not matter relative to the representations of syntactically different phrases

with the same meanings. For example, one can assert that John threw the ball and The ball was

thrown by John have the same meaning for the purposes of inference, even though they differ

syntactically.

An analogy can be drawn to research in image processing, in which it is widely regarded as

important for the representations of images to be invariant to rotation and scaling. What should

be desired of a representation of sentence meaning that it should be invariant to diathesis,

other regular syntactic alternations in the assignment of argument structure, and, ideally, even

invariant to other meaning-preserving or near-preserving paraphrases.

Existing evaluations of distributional semantic models fall short of measuring this. One
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evaluation approach consists of lexical-level word substitution tasks which primarily evalu-

ate a system’s ability to disambiguate word senses within a controlled syntactic environment

(McCarthy and Navigli, 2009, for example). Another approach is to evaluate parsing accuracy

(Socher et al., 2010, for example), which is really a formalism-specific approximation to ar-

gument structure analysis. These evaluations may certainly be relevant to specific components

of, for example, machine translation or natural language generation systems, but they tell us

little about a semantic model’s ability to support inference.

Below, I propose a general framework for evaluating distributional semantic models that

build sentence representations, and suggest two evaluation methods that test the notion of

structurally invariant inference directly. Both rely on determining whether sentences express

the same semantic relation between entities, a crucial step in solving a wide variety of infer-

ence tasks like recognizing textual entailment, information retrieval, question answering, and

summarization.

The first evaluation is a relation classification task, where a semantic model is tested on its

ability to recognize whether a pair of sentences both contain a particular semantic relation, such

as Company X acquires Company Y. The second task is a question answering task, the goal of

which is to locate the sentence in a document that contains the answer. Here, the semantic

model must match the question, which expresses a proposition with a missing argument, to the

answer-bearing sentence which contains the full proposition.

I apply these new evaluation protocols to several recent distributional models, extending

several of them to build sentence representations. I find that the models outperform a simple

lemma overlap model only slightly, but that combining these models with the lemma overlap

model can improve performance. This result is likely due to weaknesses in current models’

ability to deal with issues such as named entities, coreference, and negation, which are not

emphasized by existing evaluation methods, but it does suggest that distributional models of

semantics can play a more central role in systems that require deep, precise inference.
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4.2.1 Existing Evaluations

Logic-based forms of compositional semantics have long striven for syntactic invariance in

meaning representations, which is known as the doctrine of the canonical form. The traditional

justification for canonical forms is that they allow easy access to a knowledge base to retrieve

some desired information, which amounts to a form of inference. This work can be seen as

an extension of this notion to distributional semantic models with a more general notion of

representational similarity and inference.

There are many regular alternations that semantics models have tried to account for such as

passive or dative alternations. There are also many lexical paraphrases which can take drasti-

cally different syntactic forms. Take the following example from Poon and Domingos (2009),

in which the same semantic relation can be expressed by a transitive verb or an attributive

prepositional phrase:

(4.9) Utah borders Idaho.

Utah is next to Idaho.

In distributional semantics, the original sentence similarity test proposed by Kintsch (2001)

served as the inspiration for the evaluation performed by Mitchell and Lapata (2008) and most

later work in the area. Intransitive verbs are given in the context of their syntactic subject, and

candidate synonyms are ranked for their appropriateness. This method targets the fact that a

synonym is appropriate for only some of the verb’s senses, and the intended verb sense depends

on the surrounding context. For example, burn and beam are both synonyms of glow, but given

a particular subject, one of the synonyms (called the High similarity landmark) may be a more

appropriate substitution than the other (the Low similarity landmark). So, if the fire is the

subject, glowed is the High similarity landmark, and beamed the Low similarity landmark.

Fundamentally, this method was designed as a demonstration that compositionality in com-

puting phrasal semantic representations does not interfere with the ability of a representation

to synthesize non-compositional collocation effects that contribute to the disambiguation of
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homographs. Here, word-sense disambiguation is implicitly viewed as a very restricted, highly

lexicalized case of inference for selecting the appropriate disjunct in the representation of a

word’s meaning.

Kintsch (2001) was interested in sentence similarity, but he only conducted his evaluation

on a few hand-selected examples. Mitchell and Lapata (2008) conducted theirs on a much

larger scale, but chose to focus only on this single case of syntactic combination, intransitive

verbs and their subjects, in order to “factor out inessential degrees of freedom” to compare

their various alternative models more equitably. This was not necessary—using the same, suf-

ficiently large, unbiased but syntactically heterogeneous sample of evaluation sentences would

have served as an adequate control—and this decision furthermore prevents the evaluation from

testing the desired invariance of the semantic representation.

Other lexical evaluations suffer from the same problem. One uses the WordSim-353 dataset

(Finkelstein et al., 2002), which contains human word pair similarity judgements that semantic

models should reproduce. However, the word pairs are given without context, and homography

is unaddressed. Also, it is unclear how reliable the similarity scores are, as different annotators

may interpret the integer scale of similarity scores differently. Recent work uses this dataset

mostly for parameter tuning. Another is the lexical paraphrase task of McCarthy and Navigli

(2009), in which words are given in the context of the surrounding sentence, and the task is to

rank a given list of proposed substitutions for that word. The list of substitutions as well as the

correct rankings are elicited from annotators. This task was originally conceived as an applied

evaluation of WSD systems, not an evaluation of phrase representations.

Parsing accuracy has been used as a preliminary evaluation of semantic models that pro-

duce syntactic structure (Socher et al., 2010; Wu and Schuler, 2011). However, syntax does

not always reflect semantic content, and the focus here is specifically on supporting syntactic

invariance when doing semantic inference. Also, this type of evaluation is tied to a particular

grammar formalism.

The existing evaluations that are most similar in spirit to what I propose are paraphrase
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detection tasks that do not assume a restricted syntactic context. Washtell (2011) collected

human judgements on the general meaning similarity of candidate phrase pairs. Unfortunately,

no additional guidance on the definition of “most similar in meaning” was provided, and it

appears likely that subjects conflated lexical, syntactic, and semantic relatedness. Dolan and

Brockett (2005) define paraphrase detection as identifying sentences that are in a bidirectional

entailment relation. While such sentences do support exactly the same inferences, NLP end

applications are typically also interested in the inferences that can be made from similar sen-

tences that are not paraphrases according to this strict definition. Thus, I adopt a less restricted

notion of paraphrasis.

4.2.2 An Evaluation Framework

I now describe a simple, general framework for evaluating semantic models using the idea

of argument structure invariance. The framework consists of the following components: a

semantic model to be evaluated, pairs of sentences that are considered to have high similarity,

and pairs of sentences that are considered to have low similarity.

In particular, the semantic model is a binary function, s = M (x,x′), which returns a real-

valued similarity score, s, given a pair of arbitrary linguistic units (that is, words, phrases,

sentences, etc.), x and x′. Note that this formulation of the semantic model is agnostic to

whether the models use compositionality to build a phrase representation from constituent

representations, and even to the actual representation used. The model is tested by applying it

to each element in the following two sets:

H = {(h,h′)|h and h′ are linguistic units with high similarity} (4.10)

L = {(l, l′)|l and l′ are linguistic units with low similarity} (4.11)
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The resulting sets of similarity scores are:

S H =
{
M (h,h′)|(h,h′) ∈ H

}
(4.12)

S L =
{
M (l, l′)|(l, l′) ∈ L

}
(4.13)

The semantic model is evaluated according to its ability to separate S H and S L. I will define

specific measures of separation for the two experimental settings shortly. While the particular

definitions of “high similarity” and “low similarity” depend on the task, at the crux of both

these evaluations is that two sentences are similar if they express the same semantic relation

between a given entity pair, and dissimilar otherwise. This threshold for similarity is closely

tied to the argument structure of the sentence, and allows considerable flexibility in the other

semantic content that may be contained in the sentence, unlike the bidirectional paraphrase

detection task. Yet it ensures that a consistent and useful distinction for inference is being

detected, unlike unconstrained similarity judgements.

Also, compared to word similarity assessments or paraphrase elicitation, determining whether

a sentence expresses a semantic relation is a much easier task cognitively for human judges.

This binary judgement does not involve interpreting a numerical scale or coming up with an

open-ended set of alternative paraphrases. It is thus easier to get reliable annotated data.

Below, I present two tasks that instantiate this evaluation framework and choice of similar-

ity threshold. They differ in that the first is targeted towards recognizing declarative sentences

or phrases, while the second is targeted towards a question answering scenario, where one

argument in the semantic relation is queried.

4.2.3 Task 1: Relation Classification

The first task is a relation classification task. Relation extraction and recognition are central

to a variety of other tasks, such as information retrieval, ontology construction, recognizing

textual entailment and question answering. This task involves distinguishing sentences that
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express some target semantic relation between a given entity pair from those that do not.

To understand the difficulty of this task, several sentences expressing the proposition Pfizer

acquires Rinat Neuroscience are shown in Examples 4.14 to 4.16. These sentences illustrate the

amount of syntactic and lexical variation that the semantic model must recognize as expressing

the same semantic relation. In particular, besides recognizing synonymy or near-synonymy at

the lexical level, models must also account for subcategorization differences, extra arguments

or adjuncts, and part-of-speech differences due to nominalization.

(4.14) Pfizer buys Rinat Neuroscience to extend neuroscience research and in doing so

acquires a product candidate for OA. (lexical difference)

(4.15) A month earlier, Pfizer paid an estimated several hundred million dollars for biotech

firm Rinat Neuroscience. (extra argument, subcategorization)

(4.16) Pfizer to Expand Neuroscience Research With Acquisition of Biotech Company Rinat

Neuroscience (nominalization)

In terms of the framework, the high and the low similarity sentence pairs are constructed in

the following manner. First, a target semantic relation, such as Company X acquires Company

Y is chosen, and entities are chosen for each slot in the relation, such as Company X=Pfizer

and Company Y=Rinat Neuroscience. Then, sentences containing these entities are extracted

and divided into two subsets. In one of them, E, the entities are in the target semantic relation,

while in the other, NE, they are not. Examples 4.14 to 4.16 show several sentences that would

belong to the set E, whereas the following examples shows a sample sentence in NE:

(4.17) He has also received consulting fees from Alpharma, Organon, Eli Lilly and Company,

Pfizer, Wyeth Pharmaceuticals, Janssen, Ortho-McNeil, Rinat Neuroscience, Elan

Pharmaceuticals, and Forest Laboratories.
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The evaluation sets H and L are then constructed as follows:

H = E×E \{(e,e)|e ∈ E} (4.18)

L = E×NE (4.19)

In other words, the high similarity sentence pairs are all the pairs where both express the target

semantic relation, except the pairs between a sentence and itself, while the low similarity pairs

are all the pairs where exactly one of the two sentences expresses the target relation.

Since the goal is to measure the models’ ability to separate S H and S L in an unsupervised

setting, standard supervised classification accuracy is not applicable. Instead, I employ the

area under a ROC curve (AUC), which does not depend on choosing an arbitrary classification

threshold. A ROC curve is a plot of the true positive versus false positive rate of a binary

classifier as the classification threshold is varied. The area under a ROC curve can thus be seen

as the performance of linear classifiers over the scores produced by the semantic model. The

AUC can also be interpreted as the probability that a randomly chosen positive instance will

have a higher similarity score than a randomly chosen negative instance. A random classifier

is expected to have an AUC of 0.5.

AUC is not calculated on the scores of S H and S L directly, because these scores are not

independent and there are quadratically many of them. Instead, the similarity scores associated

with each element of E and NE are first averaged so that there is now one similarity score per

element. AUC is then calculated on these average similarity scores.

4.2.4 Task 2: Restricted QA

The second task is a restricted form of question answering in the biomedical domain. For

example, a question-answer pair might be the following:

(4.20) Q: What does il-2 activate?

A: PI3K
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Sentence: Phosphatidyl inositol 3-kinase (PI3K) is activated by IL-2.

In this task, the system is given a question q and a document D consisting of a list of sentences,

in which one of the sentences contains the answer to the question. The goal of the distributional

semantic model is then to identify this sentence. I define:

H = {(q,d)|d ∈D and d answers q} (4.21)

L = {(q,d)|d ∈D and d does not answer q} (4.22)

In other words, the sentences are divided into two subsets; those that contain the answer to q

should be similar to q, while those that do not should be dissimilar. I also assume that only one

sentence in each document contains the answer, so H contains only one sentence.

Unrestricted question answering is a difficult problem that forces a semantic representation

to deal sensibly with a number of other semantic issues such as coreference and information

aggregation which still seem to be out of reach for contemporary distributional models of

meaning. Since this work focuses on argument structure semantics, I restrict the question-

answer pairs to those that only require dealing with paraphrases of this type.

This is accomplished by semi-automatically restricting the question-answer pairs using the

manually corrected output of an unsupervised clustering semantic parser (Poon and Domin-

gos, 2009). The semantic parser clusters semantic sub-expressions derived from a dependency

parse of the sentence, so that those sub-expressions that express the same semantic relations

are clustered. The parser is used to answer questions, and the output of the parser is manually

checked. I use only those cases that have thus been determined to be correct question-answer

pairs. As a result of this restriction, this task is rather more like Task 1 in how it tests a model’s

ability to recognize lexical and syntactic paraphrases. This task also involves recognizing voic-

ing alternations, which were automatically extracted by the semantic parser, as demonstrated

by Example 4.20.
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Since there is only one element in H and hence S H for each question and document, I

measure the separation between S H and S L using the rank of the score of the answer-bearing

sentence among the scores of all the sentences in the document. I normalize the rank so that it

is between 0 (ranked least similar) and 1 (ranked most similar). Where ties occur, the sentence

is ranked as if it were in the median position among the tied sentences. If the question-answer

pairs are zero-indexed by i, answer(i) is the index of the sentence containing the answer for the

ith pair, and length(i) is the number of sentences in the document, then the mean normalized

rank score of a system is:

NormRank = E
i

[
1− answer(i)

length(i)−1

]
(4.23)

4.3 Experiments

I reimplemented the models described in Section 4.1.1, setting the parameter as described in

previous work where possible, which were typically tuned for the lexical similarity task of

Finkelstein et al. (2002). In training the term-context matrix, the 50,000 most frequent lem-

mata are modelled as target words. Context vectors are constructed using a symmetric window

of 5 words, and their dimensions represent the 3000 most frequent lemmatized context words

excluding stop words. The raw counts in the term-context matrix are converted to positive

pointwise mutual information scores, which has been shown to improve word similarity corre-

lation results (Turney and Pantel, 2010).

The models were trained on the Annotated Gigaword corpus (Napoles et al., 2012), which is

a version of the 5th edition of Gigaword (~4B tokens) that has been automatically preprocessed

(i.e., tokenized, lemmatized, POS-tagged, and parsed). All models use cosine to measure the

similarity between representations, except for the baseline model.

The E&P and D&L models were originally designed for constructing word vector represen-

tations in context. I extended them to compositionally construct phrase representations using
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component-wise vector addition and multiplication. Since the focus of this chapter is on eval-

uation methods for such models, I did not experiment with other compositionality operators.

Note, however, that component-wise operators have been popular in recent literature, and have

been applied across unrestricted syntactic contexts (Mitchell and Lapata, 2009).

I implemented the latent Dirichlet allocation version of the D&L method. The contextual-

ization operator in the E&P model was the component-wise multiplication in the original work.

However, I found that this method interacted poorly with the component-wise composition op-

erators, especially multiplication, because it is often the case that most of the dimensions “zero

out”, resulting in zero vectors that do not represent any useful semantic information. Instead,

I defined the contextualization operator to be component-wise addition after dividing by the

L2-norm. Suppose vector x is to be contextualized by vector x′. Then,

x� x′ = x+ x′/||x′||. (4.24)

The distributional models are compared against a Lemma Overlap baseline. This baseline

simply represents a sentence as the counts of each lemma present in the sentence after removing

stop words. Let a sentence x consist of lemma-tokens m1, . . . ,m|x|. The similarity between two

sentences is then defined as

M (x,x′) = #In(x,x′)+#In(x′,x) (4.25)

where #In(x,x′) =
|x|

∑
i=1

1x′(mi ∈ x′) (4.26)

and 1x′(mi ∈ x′) is an indicator function that returns 1 if mi ∈ x′ or 0 otherwise. This definition

accounts for multiple occurrences of a lemma.

In addition, I tested hybrid models that combine the lemma overlap baseline with a distri-

butional semantic model by summing the similarity scores from the two. These models give an

idea of how distributional semantics could be a complement to shallow word-based represen-
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Entities {X, Y} + N
Relation: acquires
{Pfizer, Rinat Neuroscience} 41 50
{Yahoo, Inktomi} 115 433
Relation: was born in
{Luc Besson, Paris} 6 126
{Marie Antoinette, Vienna} 39 105

Table 4.1: Task 1 dataset characteristics. N is the total number of sentences. + is the number
of sentences that express the relation.

tations.

4.3.1 Task 1

Data I tested the semantic models on the relation extraction dataset of Bunescu and Mooney

(2007), which contains sentences with entity pairs that may be in some target semantic rela-

tion. The dataset is separated into subsets depending on the target binary relation (Company

X acquires Company Y or Person X was born in Place Y) and the entity pair (e.g., Yahoo and

Inktomi) (Table 4.1). The dataset was constructed semi-automatically using a web search for

the two entities in the prescribed order with up to seven content words in between. Then the

extracted sentences were manually labelled by Bunescu and Mooney to indicate whether they

express the target relation. Because the order of the entities has been fixed, passive alternations

do not appear in this dataset.

Unlike other similar datasets such as that of Roth and Yih (2002), this dataset has a large

number of candidate sentences for each subset of entity pair and relation. For each semantic

model to be tested, I conducted the AUC-based evaluation on each of the four subsets, then

averaged the results to compute the final evaluation score. This procedure in effect controls

for the target entity pair, and makes the task more difficult, because the semantic model cannot

make use of distributional information about the entity pair itself for inference.
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Model AUC
Overlap 0.7592
M&L add 0.7448
M&L mult 0.6420−

D&L add 0.7762
D&L mult 0.4847−

E&P add 0.6863
E&P mult 0.6867
Hybrid Models
Overlap + M&L add 0.7619
Overlap + M&L mult 0.7671
Overlap + D&L add 0.7712+

Overlap + D&L mult 0.7654
Overlap + E&P add 0.7603
Overlap + E&P mult 0.7697+

Table 4.2: Task 1 results in AUC scores, averaged over the four subsets. The expected ran-
dom baseline performance is 0.5. The superscripts − and + indicate statistically significantly
worse or better performance than the overlap baseline respectively, according to a randomized
bootstrap test at p < 0.05.

Results The results for Task 1 are given in Table 4.2. The D&L addition model performs the

best, though the lemma overlap model presents a strong baseline. The simple M&L addition

model performs quite well, while the syntax-modulated E&P model performs poorly on this

task. Combining lemma overlap with distributional semantics seems to be beneficial, and

two of the hybrid models are significantly better than the lemma overlap baseline. The pure

D&L addition model is not significantly better, indicating a higher variance in its performance

according to the randomized bootstrap test (Berg-Kirkpatrick et al., 2012).

Overall, some of the datasets are easier for the models than others. For example, the Over-

lap + D&L add model achieves an AUC of 0.8632 on the Antoinette dataset, but 0.6430 on

Yahoo. More entity pairs and relations would be needed to investigate the models’ variance

across datasets.
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Model Full Subset
Overlap 0.8830 0.7843
M&L add 0.7249− 0.6962−

M&L mult 0.4853− 0.4962−

D&L add 0.7106− 0.6609−

D&L mult 0.5583− 0.5848−

E&P add 0.8466− 0.7639
E&P mult 0.5895− 0.5972−

Hybrid Models
Overlap + M&L add 0.8857 0.7893
Overlap + M&L mult 0.8860 0.7898
Overlap + D&L add 0.8781 0.7752
Overlap + D&L mult 0.8855 0.7889
Overlap + E&P add 0.8910+ 0.7991+

Overlap + E&P mult 0.9012+ 0.8179+

Table 4.3: Task 2 results, in normalized rank scores. Subset is the cases where lemma overlap
does not achieve a perfect score. The expected random baseline performance is 0.5. Signif-
icance testing against the overlap baseline was done by Wilcoxon signed rank tests (− and +

indicate statistically significantly worse and better performance respectively).

4.3.2 Task 2

Data I used the question-answer pairs extracted by the Poon and Domingos (2009) semantic

parser from the GENIA biomedical corpus that have been manually checked to be correct

(295 pairs). Because the models were trained on newspaper text, they required adaptation to

this specialized domain. Thus, I trained the M&L, and E&P models on the GENIA corpus,

backing off to word vectors from the GENIA corpus when a word vector could not be found

in the Gigaword-trained model. I could not do this for the D&L model, since the global latent

senses that are found by latent Dirichlet allocation training do not have any absolute meaning

that holds across multiple runs. Instead, I updated the Gigaword-trained D&L model by feeding

in the additional word contexts from GENIA as training data.

Results The results are presented in Table 4.3. Lemma overlap again presents a strong base-

line, but the hybridized models are able to outperform simple lemma overlap. Unlike in Task 1,
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the hybrid E&P model achieves the best result, likely due to the need to more precisely distin-

guish syntactic roles in this task. The D&L addition model, which achieved the best perfor-

mance in Task 1, does not perform as well in this task.

Even compared to Task 1, the pure distributional models underperform, compared to the

baseline. Distributional models have problems in dealing with named entities which are com-

mon in this corpus, such as the names of genes and proteins, so the information from the lemma

overlap is important for good performance. Nevertheless, the distributional semantic models

are able to complement the lemma information, indicating their potential as part of the core

semantic representation used in complex NLP tasks.

4.4 Conclusions

This chapter has introduced an evaluation framework for distributional models of semantics

which build phrase- and sentence-level representations, and instantiated two evaluation tasks

which test for the crucial ability to recognize whether sentences express the same semantic re-

lation. These results demonstrate that compositional distributional models of semantics already

have some utility in the context of more empirically complex semantic tasks than WSD-like

lexical substitution tasks, in which compositional invariance is a requisite property. Simply

computing lemma overlap, however, is a very competitive baseline, due to issues in these

protocols with named entities and domain adaptivity. The better performance of the mixture

models shows that such weaknesses can be addressed by hybrid semantic models. Future work

should investigate more refined versions of such hybridization, as well as extend this idea to

other semantic phenomena like coreference, negation and modality.

It should be noted that no single model or composition operator performs best for all tasks

and datasets. A more thorough investigation of the factors that can predict the performance

and/or invariance of a given composition operator is warranted. However, these results do

indicate that current distributional semantic models are ready to be integrated into systems that
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solve complex NLP tasks such as automatic summarization, which I will begin to examine in

the next chapter.



Chapter 5

Distributional Semantic Hidden Markov

Models

Two main issues have arisen so far in this dissertation. The first is the insufficient use of domain

knowledge in current automatic summarization systems, which was discussed in Chapter 3.

The second is the evaluation of distributional semantics in order to demonstrate their potential

to support inference and complex NLP tasks, as demonstrated in Chapter 4.

In this chapter, I begin to address both issues by showing that distributional semantics can

be used to improve the learning of structured domain representations, which are then used as

the basis of a summarization method. The approach that I take to learning about a domain is

content modelling, which attempts to discover the typical topics and the way these topics are

structured from unannotated texts belonging to the target domain.

Generative probabilistic models have been one popular approach to content modelling. An

important advantage of this approach is that the structure of the model can be adapted to fit

the assumptions about the structure of the domain and the nature of the end task. As this field

has progressed, the formal structures that are assumed to represent a domain have increased in

complexity and become more hierarchical. Earlier work assumed a flat set of topics (Barzilay

and Lee, 2004), which are expressed as states of a latent random variable in the model. Later

87



CHAPTER 5. DISTRIBUTIONAL SEMANTIC HIDDEN MARKOV MODELS 88

work organizes topics into a hierarchy from general to specific (Haghighi and Vanderwende,

2009; Celikyilmaz and Hakkani-Tur, 2010). Recently, Cheung et al. (2013) formalized a do-

main as a set of frames consisting of prototypical sequences of events, slots, and slot fillers

or entities, inspired by classical AI work such as Schank and Abelson’s (1977) scripts. I adopt

much of this terminology in this work. For example, in the Criminal Investigations domain,

there may be events such as an investigation of the crime, an arrest, a trial, and a conviction

or exoneration. These would be indicated by event heads such as arrest, charge, plead, and

convict. Relevant slots would include VICTIM, SUSPECT, AUTHORITIES, PLEA, etc.

One problem faced by this line of work is that, by their nature, these models are typically

trained on a small corpus from the target domain, on the order of hundreds of documents. The

small size of the training corpus makes it difficult to estimate reliable statistics, especially for

more powerful features such as higher-order n-gram features or syntactic features.

By contrast, recall from previous chapters that distributional semantic models are trained

on large, domain-general corpora, and they provide a notion of word similarity by way of vec-

tor similarity measures such as cosine. Furthermore, contextualization and co-compositional

operators such as those proposed by (Mitchell and Lapata, 2008) can modify the meaning of

a word according to the specific context in which that word appears. These models have been

found to improve performance in tasks like lexical substitution and word sense disambiguation

(Thater et al., 2011), as discussed in Chapter 4.

In this chapter, I propose to inject contextualized distributional semantic vectors into gen-

erative probabilistic models in order to combine their complementary strengths for domain

modelling. There are a number of potential advantages that distributional semantic models

offer. First, they provide domain-general representations of word meaning that cannot be reli-

ably estimated from the small target-domain corpora on which probabilistic models are trained.

Second, the contextualization process allows the semantic vectors to implicitly encode disam-

biguated word sense and syntactic information without further adding to the complexity of the

generative model.
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The proposed model, the Distributional Semantic Hidden Markov Model (DSHMM), is a

novel variant of hidden Markov models that incorporates contextualized distributional semantic

vectors into a generative probabilistic model as observed emissions. I demonstrate the effec-

tiveness of this model in two domain modelling tasks. The first is slot induction, in which the

goal is to find coherent entity clusters on a guided summarization data set over five different

domains. I show that DSHMM outperforms a baseline version of the method that does not use

distributional semantic vectors, as well as a recent state-of-the-art template induction method.

The second task is multi-document summarization, in which the model must determine which

event and slot topics are appropriate to include in a summary. Here, DSHMM outperforms pre-

vious methods that do not rely on manually encoded knowledge about the domains, as well as a

previous content modelling approach (Li et al., 2011). From a modelling perspective, these re-

sults show that probabilistic models for content modelling and template induction benefit from

distributional semantics trained on a much larger corpus. From the perspective of distributional

semantics, this work broadens the variety of problems to which distributional semantics can be

applied, and proposes methods to perform inference in a probabilistic setting beyond geometric

measures such as cosine similarity.

5.1 Related Work

Unsupervised information and relation extraction based on heuristic clustering procedures have

been used in automatic summarization (Filatova and Hatzivassiloglou, 2004; Hachey, 2009).

Probabilistic content models were proposed by Barzilay and Lee (2004), and related models

have since become popular for summarization (Fung and Ngai, 2006; Haghighi and Vander-

wende, 2009), and information ordering (Elsner et al., 2007; Louis and Nenkova, 2012). Other

related generative models include topic models and structured versions thereof (Blei et al.,

2003; Gruber et al., 2007; Wallach, 2008). In terms of domain learning in the form of tem-

plate induction, heuristic methods involving multiple clustering steps have been proposed (Fi-
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latova et al., 2006; Chambers and Jurafsky, 2011). Most recently, Cheung et al. (2013) propose

PROFINDER, a probabilistic model for frame induction inspired by content models. This work

is similar in that I assume much of the same structure within a domain and consequently in the

model as well (Section 5.2), but whereas PROFINDER focuses on finding the “correct” num-

ber of frames, events, and slots with a nonparametric method, this work focuses on integrating

global knowledge in the form of distributional semantics into a probabilistic model. I adopt one

of their evaluation procedures and use it to compare DSHMM to PROFINDER in Section 5.4.

Li et al. (2011) propose a hierarchical topic model that clusters sentences for automatic

summarization. Crucially, their event-aspect model is trained over the documents of an en-

tire domain as in DSHMM, and extends the HIERSUM method of Haghighi and Vanderwende

(2009) by including a level of topics that is shared across a domain, but does not use any

distributional semantic information. I will compare directly against this method in the summa-

rization experiments.

Combining distributional information and probabilistic models has actually been explored

in previous work. Usually, an ad-hoc clustering step precedes training and is used to bias the

initialization of the probabilistic model (Barzilay and Lee, 2004; Louis and Nenkova, 2012),

or the clustering is interleaved with iterations of training (Fung et al., 2003). By contrast, the

proposed method better modularizes the two, and provides a principled way to train the model.

More importantly, previous ad-hoc clustering methods use only distributional information de-

rived from the target domain itself, because initializing based on domain-general distributional

information can be problematic if it biases training towards a local optimum that is inappropri-

ate for the target domain.

5.2 Distributional Semantic Hidden Markov Models

The DSHMM model is a directed probabilistic graphical model with a structure that is depicted

in Figure 5.1. As a graphical model, the nodes in its graphical representation represent random
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Figure 5.1: Basic graphical representation of DSHMM. Distributions that generate the latent
variables and hyperparameters are omitted for clarity.

variables, and the directed edges encode the conditional dependency assumptions between the

random variables. DSHMM can thought of as a variant of a standard HMM whose structure

has been adapted to reflect the assumptions about the domain representation to be learned and

the structure of the text to be modelled. The latent variables of DSHMM (the unshaded nodes

in Figure 5.1) represent either parts of the domain structure being learned, such as the events

and the slots, or the probability distributions that are being used to generate the observed text.

The observed variables (the shaded nodes) represent the parts of the text that are generated or

emitted by the model; i.e., the event heads and the entities. In contrast to a standard HMM,

DSHMM contains two layers of latent variables that represent events and slots. In the generative

story, these events and slots can be thought of as generating the parts of the text in their child

nodes. For example, an event corresponding to a charge might generate event heads such as

charge or indict, whereas a SUSPECT slot might generate entities such as suspect, accused, or

the name of the suspect.

More precisely, given a document consisting of a sequence of T clauses headed by proposi-
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tional heads ~H (verbs or event nouns), and argument noun phrases ~A, DSHMM models the joint

probability of observations ~H, ~A, and latent random variables ~E and ~S representing domain

events and slots respectively; i.e., P(~H,~A,~E,~S).

The basic structure of the model is also similar to that of PROFINDER. Each timestep in the

model generates one clause in the document. More specifically, it generates the event heads

and arguments which are crucial in identifying events and slots. I assume that event heads

are verbs or event nouns, while arguments are the head words of their syntactically dependent

noun phrases. I also assume that the sequence of clauses and the clause-internal syntactic

structure are fixed, for example by applying a dependency parser. However, DSHMM differs

from PROFINDER in not further distinguishing the latent events into a frame level and an event

level within a frame, and in making use of distributional semantic vectors.

Within each clause, a hierarchy of latent and observed variables maps to corresponding

elements in the clause (Table 5.1), as follows:

Event Variables At the top-level, a categorical latent variable Et with NE possible states

represents the event that is described by clause t. Its value is conditioned on the previous time

step’s event variable, following the standard, first-order Markov assumption (PE(Et |Et−1), or

PE
init(E1) for the first clause). The internal structure of the clause is generated by conditioning

on the state of Et , including the head of the clause, and the slots for each argument in the clause.

Slot Variables In addition to events, a clause t also contains a number of slots that represent

the entities involved in the event. Let Ct be the number of slots. These slots are represented by

categorical latent variables with NS possible states, and are conditioned on the event variable

in the clause, Et (i.e., PS(Sta|Et), for the ath slot variable, where a ranges from 1 to Ct). The

state of Sta is then used to generate an argument Ata.

Head and Argument Emissions The head of the clause Ht is conditionally dependent on

Et , and each argument Ata is likewise conditioned on its slot variable Sta. Unlike in most
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Node Component Textual unit
Et Event Clause
Sta Slot Noun phrase
Ht Event head Verb/event noun
Ata Event argument Noun phrase

Table 5.1: The correspondence between nodes in DSHMM, the domain components that they
model, and the related elements in the clause.

applications of HMMs in text processing, in which the representation of a token is simply its

word or lemma identity, tokens in DSHMM are also associated with a vector representation

of their meaning in context according to a distributional semantic model. Thus, the emissions

can be decomposed into pairs Ht = (lemma(Ht),sem(Ht)) and Ata = (lemma(Ata),sem(Ata)),

where lemma and sem are functions that return the lemma identity and the semantic vector

respectively. The probability of the head of a clause is thus:

PH(Ht |Et) = PH
lemm(lemma(Ht)|Et)×PH

sem(sem(Ht)|Et),

and the probability of a clausal argument is likewise:

PA(Ata|Sta) = PA
lemm(lemma(Ata)|Sta)×PA

sem(sem(Ata)|Sta).

All categorical distributions are smoothed using add-δ smoothing (i.e., uniform Dirichlet

priors). Based on the independence assumptions described above, the joint probability distri-

bution can be factored into:

P(~H,~A,~E,~S) = PE
init(E1) (5.1)

×
T

∏
t=2

PE(Et |Et−1)
T

∏
t=1

PH(Ht |Et)

×
T

∏
t=1

Ct

∏
a=1

PS(Sta|Et)PA(Ata|Sta).
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5.2.1 Contextualization

I use the distributional semantic models and methods to contextualize word vector representa-

tions described in Section 4.1.1. Here, I recapitulate them with notation specific to their use in

DSHMM.

SIMPLE Let event head h be the syntactic head of a number of arguments a1,a2, ...am. Given

a distributional semantic model trained from a term-context matrix as described in Section 4.3,

I call their respective vector representations~vh,~va1,~va2, ...~vam . The first distributional semantic

model that I will test is to use these context-independent vectors in DSHMM, which I call the

SIMPLE method.

M&L The Mitchell and Lapata (2008) method creates contextualized vectors~cM&L
h ,~cM&L

a1
, ...~cM&L

am

as follows:

~cM&L
h =~vh� (

m⊙
i=1

~vam) (5.2)

~cM&L
ai

=~vai�~vh,∀i = 1...m, (5.3)

where� represents a component-wise operator, addition or multiplication, and
⊙

represents its

repeated application. I tested component-wise addition (M&L+) and multiplication (M&L×).

E&P Erk and Padó (2008) incorporate inverse selectional preferences into their contextual-

ization function. Formally, let h take a as its argument in relation r. Then:

~cE&P
h =~vh×

m

∏
i=1

∑
w∈L

freq(w,r,ai) ·~vw, (5.4)

~cE&P
a =~va× ∑

w∈L
freq(h,r,w) ·~vw, (5.5)
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where f req(h,r,a) is the frequency of h occurring as the head of a in relation r in the training

corpus, L is the lexicon, and × represents component-wise multiplication. Where a head

occurs with more than one argument, I apply the contextualization procedure to the head vector

to each argument in sequence.

D&L The method of Dinu and Lapata (2010) learns global latent sense “topics” using a

topic modelling method such as latent Dirichlet allocation. This results in two distributions:

the probability of a latent sense zk given a target word w1, P1(zk|w1), and the probability of a

context word w2 given a latent sense, P2(w2|zk). Then, given a head h with argument a, their

contextualized representations up to normalization are:

~cD&L
h ∝ 〈P1(z1|h)P2(a|z1), ...,P1(zK|h)P2(a|zK)〉 (5.6)

~cD&L
a ∝ 〈P1(z1|a)P2(h|z1), ...,P1(zK|a)P2(h|zK)〉 (5.7)

where z1...K are the latent senses. I tested both the uncontextualized learned vectors (D&L) and

the contextualized vectors (D&L-Cont). As above, if h occurs with more than one argument,

its vector representation is contextualized by each of the arguments in sequence.

Dimensionality Reduction and Vector Emission After contextualization, I apply singular

value decomposition (SVD) for dimensionality reduction to reduce the number of model pa-

rameters, keeping the k most significant singular values and vectors. In particular, I apply SVD

to the m-by-n term-context matrix M produced by the SIMPLE method, resulting in the trun-

cated matrices M ≈UkΣkV T
k , where Uk is a m-by-k matrix, Σk is k-by-k, and Vk is n-by-k. This

takes place after contextualization, so the component-wise operators apply in the original se-

mantic space. Afterwards, the contextualized vector in the original space,~c, can be transformed

into a vector in the reduced space,~cR, by~cR = Σ
−1
k V T

k ~c.

Distributional semantic vectors are traditionally compared by measures which ignore vector

magnitudes, such as cosine similarity, but a multivariate Gaussian is sensitive to magnitudes.
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Thus, the final step is to normalize~cR into a unit vector by dividing it by its L2 norm, ||~cR||.

DSHMM models the emission of these contextualized vectors as multivariate Gaussian dis-

tributions, so the semantic vector emissions can be written as PH
sem,P

A
sem ∼ N (µ,Σ), where

µ ∈ Rk is the mean and Σ ∈ Rk×k is the covariance matrix. Regularization of the covariance

matrix is performed using its conjugate prior, the Inverse-Wishart distribution, following the

“neutral” setting of hyperparameters given by Ormoneit and Tresp (1995), so that the MAP

estimate for the covariance matrix for (event or slot) state i becomes:

Σi =
∑ j ri j(x j−µi)(x j−µi)

T +β I

∑ j ri j +1
, (5.8)

where j indexes all the relevant semantic vectors x j in the training set, ri j is the posterior

responsibility of state i for vector x j, and β is the remaining hyperparameter that adjusts the

amount of regularization. To further reduce model complexity, all off-diagonal entries of the

resulting covariance matrix are set to zero.

5.2.2 Training and Inference

Inference in DSHMM is accomplished by the standard Inside-Outside and tree-Viterbi algo-

rithms, except that the tree structure is fixed, so there is no need to sum over all possible

subtrees. Model parameters are learned by the Expectation-Maximization (EM) algorithm. I

tune the hyperparameters (NE ,NS,δ ,β ,k) and the number of EM iterations by two-fold cross-

validation1.

5.2.3 Summary and Generative Process

In summary, the following steps are applied to train a DSHMM:

1. Train a distributional semantic model on a large, domain-general corpus.

1The topic cluster splits and the hyperparameter settings are available at http://www.cs.toronto.
edu/~jcheung/dshmm/dshmm.html.

http://www.cs.toronto.edu/~jcheung/dshmm/dshmm.html
http://www.cs.toronto.edu/~jcheung/dshmm/dshmm.html
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2. Preprocess and generate contextualized vectors of event heads and arguments in the small

corpus in the target domain.

3. Train the DSHMM using the EM algorithm.

The formal generative process is as follows:

1. Draw categorical distributions PE
init ; PE ,PS,PH

lemm (one per event state); PA
lemm (one per

slot state) from Dirichlet priors.

2. Draw multivariate Gaussians PH
sem,P

A
sem for each event and slot state, respectively.

3. Generate the document, clause by clause.

Generating a clause at position t consists of these steps:

1. Generate the event state Et ∼ PE (or PE
init).

2. Generate the event head components lemm(Ht)∼ PH
lemm, sem(Ht)∼ PH

sem.

3. Generate a number of slot states Sta ∼ PS.

4. For each slot, generate the argument components lemm(Ata)∼ PA
lemm, sem(Ata)∼ PA

sem.

5.3 Experiments

After training the distributional semantic models as described above, the DSHMM can then

be trained on the target domain corpus. In the following experiments, the evaluations are

performed on the TAC 2010 guided summarization data set (Owczarzak and Dang, 2010).

Lemmatization and extraction of event heads and arguments are done by preprocessing with

the Stanford CoreNLP tool suite (Toutanova et al., 2003; de Marneffe et al., 2006). The TAC

2010 data set contains 46 topic clusters of 20 articles each, grouped into five topic categories

or domains. For example, one topic cluster in the ATTACK category is about the Columbine

Massacre. Each topic cluster contains eight human-written model summaries. Half of the

articles and model summaries in a topic cluster are used in the guided summarization task, and

the rest are used in the update summarization task.

There are several advantages to choosing this data set. First, templates for the domains are
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provided, and the model summaries are annotated with slots from the template, allowing for an

intrinsic evaluation of slot induction (Section 5.4). Second, each topic cluster comes annotated

with eight model summaries, allowing for an extrinsic evaluation of DSHMM by automatic

summarization (Section 5.5).

5.4 Guided Summarization Slot Induction

In the first evaluation, the models are tested on their ability to produce coherent clusters of

entities belonging to the same slot, following the experimental procedure of Cheung et al.

(2013).

As part of the official TAC evaluation procedure, model summaries were manually seg-

mented into contributors, and labelled with the slot in the TAC template that the contributor

expresses. For example, a summary fragment such as On 20 April 1999, a massacre occurred

at Columbine High School is segmented into the contributors: (On 20 April 1999, WHEN); (a

massacre occurred, WHAT); and (at Columbine High School, WHERE).

In the slot induction evaluation, this annotation is used as follows. First, the maximal

noun phrases are extracted from the contributors and clustered based on the TAC slot of the

contributor. These clusters of noun phrases then become the gold standard clusters against

which automatic systems are compared. Noun phrases are considered to be matched if the

lemmata of their head words are the same and they are extracted from the same summary.

This accounts for the fact that human annotators often only label the first occurrence of a word

that belongs to a slot in a summary, and follows the standard evaluation procedure in previous

information extraction tasks, such as MUC-4. Pronouns and demonstratives are ignored in

this evaluation. This extraction process is noisy, because the meaning of some contributors

depends on an entire verb phrase, but I keep this representation to allow a direct comparison to

previous work.

The clusters produced by the unsupervised systems are not labelled, and must be matched
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Method P R F1
HMM w/o semantics 13.8 64.1 22.6−

DSHMM w/ D&L 20.3 26.6 23.0−

DSHMM w/ SIMPLE 20.9 27.5 23.7
DSHMM w/ E&P 20.7 27.9 23.8
PROFINDER 23.7 25.0 24.3
DSHMM w/ D&L-Cont 20.4 32.8 25.1
DSHMM w/ M&L+ 19.7 36.3 25.6+

DSHMM w/ M&L× 22.1 33.2 26.5+

Table 5.2: Slot induction results on the TAC guided summarization data set, ordered by in-
creasing performance by F1. Superscripts (− or +) indicate that the model is statistically sig-
nificantly worse or better than PROFINDER in terms of F1 at p < 0.05.

to the gold standard clusters before evaluation can be performed. This matching is performed

by mapping to each gold cluster the best system cluster according to F1. The same system

cluster may be mapped multiple times, because several TAC slots can overlap. For example,

in the Natural Disasters domain, an earthquake may fit both the WHAT slot as well as the

CAUSE slot, because it generated a tsunami.

A DSHMM is trained for each of the five domains with different semantic models, tuning

hyperparameters by two-fold cross-validation. The trained models are then used to extract

noun phrase clusters from the model summaries according to the slot labels produced via the

Viterbi algorithm.

Results I compared DSHMM to two baselines. The first baseline is PROFINDER, a state-

of-the-art template inducer which Cheung et al. (2013) showed to outperform the previous

heuristic clustering method of Chambers and Jurafsky (2011). The second baseline is the

DSHMM model, without the semantic vector component, (HMM w/o semantics). To calculate

statistical significance, I use the paired bootstrap method, which can accommodate complex

evaluation metrics like F1 (Berg-Kirkpatrick et al., 2012).

Table 5.2 shows the performance of the models. Overall, PROFINDER significantly out-
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performs the HMM baseline and the DSHMM model with D&L’s uncontextualized vectors,

but most of the DSHMM models outperform PROFINDER. DSHMM with contextualized se-

mantic vectors achieves the highest F1s, and the ones based on M&L are significantly better

than PROFINDER. All of the differences in precision and recall between PROFINDER and the

other models are significant. The baseline HMM model has highly imbalanced precision and

recall. This is likely because the model is unable to successfully produce coherent clusters, so

the best-case mapping procedure during evaluation picked large clusters that have high recall.

PROFINDER has slightly higher precision, which may be due to its non-parametric split-merge

heuristic. I plan to investigate whether this learning method could improve DSHMM’s perfor-

mance further. Importantly, the contextualization of the vectors seems to be beneficial, at least

with the M&L component-wise operators. In the next section, I show that the improvement

from contextualization transfers to multi-document summarization results.

5.5 Multi-document Summarization: An Extrinsic Evalua-

tion

The second experiment is an extrinsic evaluation in the setting of extractive, multi-document

summarization. To use the trained DSHMM for extractive summarization, a decoding proce-

dure is needed for selecting sentences in the source text to include in the summary. Inspired

by the KLSUM and HIERSUM methods of Haghighi and Vanderwende (2009), I develop a

criterion based on Kullback-Leibler (KL) divergence between distributions estimated from the

source text, and those estimated from the summary. The assumption here is that these distri-

butions should match in a good summary. Below, I present two methods to use this criterion:

a basic unsupervised method (Section 5.5.1), and a supervised variant that makes use of in-

domain summaries to learn the salient slots and events in the domain (Section 5.5.2).
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5.5.1 A KL-based Criterion

There are four main component distributions of DSHMM that should be considered during

extraction: (1) the distribution of events, (2) the distribution of slots, (3) the distribution of

event heads, and (4) the distribution of arguments. I estimate (1) as the context-independent

probability of being in a certain event state, which can be calculated using the Inside-Outside

algorithm. Given a collection of documents D which make up the source text, the distribution

of event topics P̂E(E) is estimated as:

P̂E(E = e) =
1
Z ∑

d∈D
∑
t

Int(e)Outt(e)
P(d)

, (5.9)

where Int(e) and Outt(e) are the values of the inside and outside trellises at timestep t for

some event state e, and Z is a normalization constant. The distribution for a set of sentences

in a candidate summary, Q̂E(E), is identical, except the summation is over the clauses in the

candidate summary. Slot distributions P̂S(S) and Q̂S(S) (2) are defined analogously, where the

summation occurs along all the slot variables.

For (3) and (4), I simply use the MLE estimates of the lemma emissions, where the esti-

mates are made over the source text and the candidate summary instead of over the entire train-

ing set. All of the candidate summary distributions (i.e., the “Q̂ distributions”) are smoothed

by a small amount, so that the KL-divergence is always finite. The KL criterion combines

the above components linearly, weighting the lemma distributions by the probability of their

respective event or slot state:

KLScore = DKL(P̂E ||Q̂E)+DKL(P̂S||Q̂S) (5.10)

+
NE

∑
e=1

P̂E(e)DKL(P̂H(H|e)||Q̂H(H|e))

+
NS

∑
s=1

P̂S(s)DKL(P̂A(A|s)||Q̂A(A|s))
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Method ROUGE-1 ROUGE-2 ROUGE-SU4
unsup. sup. unsup. sup. unsup. sup.

Leading baseline 28.0 − 5.39 − 8.6 −
HMM w/o semantics 32.3 32.7 6.45 6.49 10.1 10.2
DSHMM w/ SIMPLE 32.1 32.7 5.81 6.50 9.8 10.2
DSHMM w/ M&L+ 32.1 33.4 6.27 6.82 10.0 10.6
DSHMM w/ M&L× 32.4 34.3+ 6.35 7.11ˆ 10.2 11.0+
DSHMM w/ E&P 32.8 33.8+ 6.38 7.31+ 10.3 10.8+

DSHMM w/ D&L 31.7 33.5 5.79 6.92 9.8 10.7+

DSHMM w/ D&L-Cont 31.5 33.4 5.51 7.05+ 9.4 10.6ˆ
HIERSUM 28.7 − 5.50 − 8.9 −
Event-aspect 32.6 − 6.51 − 10.1 −

Table 5.3: TAC 2010 summarization results by three settings of ROUGE. The superscript
+ indicates that the model is statistically significantly better than the HMM model without
semantics at a 95% confidence interval, a caret ˆ indicates that the value is significant at a 90%
confidence interval.

To produce a summary, sentences from the source text are greedily added such that KLScore

is minimized at each step, until the desired summary length is reached, discarding sentences

with fewer than five words.

5.5.2 Supervised Learning

The above unsupervised method results in summaries that closely mirror the source text in

terms of the event and slot distributions, but this ignores the fact that not all such topics should

be included in a summary. It also ignores genre-specific, stylistic considerations about charac-

teristics of good summary sentences. For example, Woodsend and Lapata (2012) find several

factors that indicate sentences should not be included in an extractive summary, such as the

presence of personal pronouns. Thus, I implemented a second method, in which I modify

the KL criterion above by estimating P̂E and P̂S from other model summaries that are drawn

from the same domain (i.e. topic category), except for those summaries that are written for the

specific topic cluster to be used for evaluation.
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5.5.3 Method and Results

I used the best performing models from the slot induction task and the above unsupervised and

supervised methods based on KL-divergence to produce 100-word summaries of the guided

summarization source text clusters. I compared against several baselines. The first is the lead-

ing baseline, a well-known, non-trivial one for news articles. In this baseline, the leading

sentences from the most recent document in the source text cluster are used as the summary,

up to the word length limit. The next baselines are the HMM baseline without semantics

and DSHMM with SIMPLE distributional semantics, which measure the effect of adding dis-

tributional semantics, and contextualization respectively. Finally, I also show the results of

the event-aspect model of Li et al. (2011), and their implementation of HIERSUM (Haghighi

and Vanderwende, 2009), including a sentence compression component introduced by Li et al.

(2011) which was also used in the event-aspect model. The models were applied to the original

summarization task only, because they have not been adapted to the update task. All results are

in terms of the standard ROUGE suite of automatic evaluation measures (Lin, 2004).

Note that the evaluation conditions of TAC 2010 are different, and thus those results are not

directly comparable. For instance, top performing systems in TAC 2010 make use of manually

constructed lists of entities known to fit the slots in the provided templates and sample topic

statements, which this method automatically learns.

Table 5.3 shows the summarization results for the three most widely-used settings of ROUGE.

All of the models outperform the leading baseline by a large margin, demonstrating the effec-

tive of the KL-criterion. In terms of unsupervised performance, all of the models perform

similarly. Because the unsupervised method mimics the distributions in the source text at all

levels, the method may negate the benefit of learning and simply produce summaries that match

the source text in the word distributions, thus being an approximation of KLSUM. The event-

aspect model is not signficantly better, despite a complex summarization pipeline that includes

a sentence compression step.

Looking at the supervised results, the semantic vector models show clear gains in ROUGE,
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whereas the baseline method does not obtain much benefit from supervision. As in the previous

evaluation, the models with contextualized semantic vectors provide the best performance.

M&L× performs very well, as in slot induction, but E&P also performs well, unlike in the

previous evaluation. This result reinforces the importance of the contextualization procedure

for these distributional semantic models. The effect of contextualization is more mixed for

the D&L model, however, as the uncontextualized D&L model achieves similar results as the

contextualized one in the supervised setting. More analysis is needed to understand the cause

of this result.

Analysis To better understand what is gained by supervision using in-domain summaries,

I analyzed the best performing M&L× model’s output summaries for one document cluster

from each domain. For each event state, I calculated the ratio P̂E
summ(e)/P̂E

source(e), for the

probability of an event state e as estimated from the training summaries and the source text

respectively. Likewise, I calculated P̂S
summ(s)/P̂S

source(s) for the slot states. This ratio indicates

the change in state’s probability after supervision; the greater the ratio, the more preferred that

state becomes after training. I selected the most preferred and dispreferred event and slot for

each document cluster, and took the three most probable lemmata from the associated lemma

distribution (Table 5.4). It seems that supervision is beneficial because it picks out important

event heads and arguments in the domain, such as charge, trial, and murder in the Trials

domain. It also helps the summarizer avoid semantically generic words (be or have), pronouns,

quotatives, and common but irrelevant words (home, city, restaurant in Trials).

5.6 Discussion

I have shown that contextualized distributional semantic vectors can be successfully integrated

into a generative probabilistic model for domain modelling, as demonstrated by improvements

in slot induction and multi-document summarization. The effectiveness of the model stems

from the use of a large domain-general corpus to train the distributional semantic vectors, and
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Domain Event Heads Slot Arguments
+ − + −

ATTACKS
saya, cause,
doctor

saya, be, have
attack, hostage,
troops

he, it, they

TRIALS
charge, trial,
accuse

say, be, have
prison, murder,
charge

home, city,
restaurant

RESOURCES

reduce,
increase,
university

say, be, have
government,
effort, program he, they, it

DISASTERS

flood,
strengthen,
engulf

say, be, have
production,
statoil, barrel

he, it, they

HEALTH
be, department,
have

say, do, make
food, product,
meat

she, people, way

aThe event head say happens to appear in both the most preferred and dispreferred events in the ATTACKS
domain.

Table 5.4: Analysis of the most probable event heads and arguments in the most preferred (+)
and dispreferred (−) events and slots after supervised training.
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the implicit syntactic and word sense information provided by the contextualization process.

The approach is modular, and allows principled training of the probabilistic model using stan-

dard techniques.

The structure of the DSHMM model is very flexible and can be extended in a number of

ways. For example, it would be possible to differentiate multiple levels of event and slot topics

as in hierarchical models such as Li et al. (2011). While I have focused on the overall clustering

of entities and the distribution of event and slot topics in this work, I would also like to investi-

gate discourse modelling and content structuring. Finally, this work shows that the application

of distributional semantics to NLP tasks need not be confined to lexical disambiguation, further

broadening the variety of applications of distributional semantic methods.



Chapter 6

Sentence Enhancement for Automatic

Summarization

This chapter presents sentence enhancement as a novel technique for text-to-text generation

in abstractive summarization. Compared to extraction or previous approaches to sentence fu-

sion, sentence enhancement increases the range of possible summary sentences by allowing

the combination of dependency subtrees from any sentence in the source text. I present experi-

ments that indicate the approach yields summary sentences that are competitive with a sentence

fusion baseline in terms of content quality, but better in terms of grammaticality, and that the

benefit of sentence enhancement relies crucially on an event coreference resolution algorithm

using distributional semantics.

6.1 Sentence Revision for Abstractive Summarization

Sentence fusion is the technique of merging several input sentences into one output sentence

while retaining the important content (Barzilay and McKeown, 2005; Filippova and Strube,

2008; Thadani and McKeown, 2013). For example, the sections of the following input sen-

tences in bold may be fused into one output sentence:

107
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Input: Bil Mar Foods Co., a meat processor owned by Sara Lee, announced a recall of

certain lots of hot dogs and packaged meat.

Input: The outbreak led to the recall on Tuesday of 15 million pounds of hot dogs and cold

cuts produced at the Bil Mar Foods plant.

Output: The outbreak led to the recall on Tuesday of lots of hot dogs and packaged meats

produced at the Bil Mar Foods plant.

As a text-to-text generation technique, sentence fusion is attractive because it provides an

avenue for moving beyond sentence extraction in automatic summarization, while not requiring

deep semantic analysis beyond, say, a dependency parser and lexical semantic resources.

The overall trajectory pursued in the field can be characterized as a move away from local

contexts relying heavily on the original source text towards more global contexts involving

reformulation of the text. Whereas sentence extraction and sentence compression (Knight and

Marcu, 2000, for example) involve taking one sentence and perhaps removing parts of it, tra-

ditional sentence fusion involves reformulating a small number of relatively similar sentences

in order to take the union or intersection of the information present therein.

In this chapter, I present sentence enhancement as the next step along this path. Sentence

enhancement is a novel technique which extends sentence fusion by combining the subtrees of

many sentences into the output sentence, rather than just a few. Doing so allows relevant infor-

mation from sentences that are not similar to the original input sentences to be added during

fusion. As the following example shows, the phrase of food-borne illness can be added to the

previous output sentence, despite originating in a source text sentence that is quite different

overall:

Source text: This fact has been underscored in the last few months by two unexpected

outbreaks of food-borne illness.

Output: The outbreak of food-borne illness led to the recall on Tuesday of lots of hot dogs

and meats produced at the Bil Mar Foods plant.
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Elsner and Santhanam (2011) proposed the first method to fuse disparate sentences. The

input to their supervised algorithm consists of small numbers of sentences with compatible

information that have manually identified by editors of articles. By contrast, my algorithm is

unsupervised, and tackles the problem of identifying compatible event mergers in the entire

source text as part of sentence enhancement. My method also takes into account the issue of

event coreference to ensure that the predicates that are merged are compatible. It outperforms

a previous syntax-based sentence fusion baseline on measures of summary content quality and

grammaticality.

A more general argument of this chapter is to view the apparent dichotomy between text-

to-text generation and semantics-to-text generation as simply different starting points towards

the same end goal of precise and wide-coverage natural language generation. The statistical

generation techniques developed by the text-to-text generation community have demonstrated

their utility and wide applicability. Yet the sentence enhancement algorithm incorporating

event coreference and the results of the studies demonstrate the following point—as text-to-text

generation techniques move beyond using local contexts towards more dramatic reformulations

of the type that human writers perform, more semantic analysis will be needed in order to

ensure that the reformulations preserve the inferences that can be drawn from the input text.

6.2 Related Work

A relatively large body of work exists in sentence compression (Knight and Marcu, 2000; Mc-

Donald, 2006; Galley and McKeown, 2007; Cohn and Lapata, 2008; Clarke and Lapata, 2008,

inter alia). This line of work models deletions, insertions, and substitutions of words or phrases

in a single sentence with applications to automatic summarization and text simplification.

Syntax-based sentence fusion algorithms that merge together a small number of input

sentences have been proposed (Barzilay and McKeown, 2005; Filippova and Strube, 2008).

The proposed sentence enhancement algorithm builds upon this work, but considers the entire



CHAPTER 6. SENTENCE ENHANCEMENT FOR AUTOMATIC SUMMARIZATION 110

source text and is not limited to the initial input sentences. There have also been methods for

sentence fusion that are primarily word- or n-gram-based (Filippova, 2010; Thadani and McK-

eown, 2013). While such approaches have shown success, more structured representations will

ultimately be needed in order to account for the syntactic and semantic transformations that

human summary writers perform.

Few previous papers focus on combining the content of diverse sentences into one output

sentence. Wan et al. (2008) propose sentence augmentation by identifying “seed” words in

a single original sentence, then adding information from auxiliary sentences based on word

co-occurrence counts. Elsner and Santhanam (2011) investigate the idea of fusing disparate

sentences with a supervised algorithm, as discussed above. By constraining the input to their

algorithm to manually annotated sentence pairs, they avoid the need to perform content selec-

tion and deeper semantic analysis, in contrast to the algorithm proposed in this chapter.

6.3 A Sentence Enhancement Algorithm

The basic steps in the sentence enhancement algorithm are as follows:

1. Sentence graph creation

2. Sentence graph expansion

3. Tree generation

4. Linearization

At a high level, the proposed method for sentence enhancement algorithm is similar to and

inspired by the syntactic sentence fusion approach of Filippova and Strube (2008) (henceforth,

F&S) in that it takes as input the dependency parses of a small number of sentences and returns

an output sentence which fuses parts of the input sentences. These initial input sentences,

which I call core sentences, should have a high degree of similarity with each other, and should

form the core of a new sentence to be generated. In order to accomplish this, the dependency

trees of the core sentences are fused into an intermediate sentence graph (Step 1), a directed
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acyclic graph from which the final sentence will be generated (Steps 3 and 4).

However, unlike F&S or other previous approaches to sentence fusion, the sentence en-

hancement algorithm may also avail itself of the dependency parses of all of the other sentences

in the source text, which expands the range of possible sentences that may be produced. In par-

ticular, while the overall similarity of these sentences to the core sentences may be low, making

these sentences inappropriate for traditional align-and-fuse algorithms, there may be parts of

these sentences that contain information that could be usefully incorporated into the sentence

graph (Step 2). One important issue during this step is that the expansion of the sentence graph

must be modulated by an event coreference component to ensure that the merging of informa-

tion from different points in the source text is compatible and does not result in incorrect or

nonsensical inferences.

6.3.1 Sentence Graph Creation

The first step of the algorithm is to align the nodes of the dependency trees of the core input

sentences in order to create the initial sentence graph. The input to this step is the collapsed

dependency tree representations of the core sentences produced by the Stanford parser1. Thus,

preposition nodes are collapsed into the label of the dependency edge between the functor of

the prepositional phrase and the prepositional object. Chains of conjuncts are also split, and

each argument is attached to the parent. In addition, auxiliary verbs, negation particles, and

noun-phrase-internal elements2 are collapsed into their parent nodes. Figure 6.1a shows the

abbreviated dependency representations of the input sentences from above.

Then, a sentence graph is created by merging nodes that share a common lemma and part-

of-speech tag. In addition, I allow synonyms that belong to the same WordNet synset to be

merged. Merging is blocked if the word is a stop word, which includes function words as

well as a number of very common verbs (e.g., be, have, do). Throughout the sentence graph

1As part of the CoreNLP suite: http://nlp.stanford.edu/software/corenlp.shtml
2As indicated by the dependency edge label nn.

http://nlp.stanford.edu/software/corenlp.shtml
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BMFoods    announce    recall    certain lots...

outbreak    led    recall    Tuesday    15M pounds...

nsubj dobj

nsubj dobj

prep_of

prep_of
prep_on

(a) Abbreviated dependency trees.

BMFoods    announce                 certain lots...

outbreak    led                 Tuesday    15M pounds...

nsubj dobj

nsubj

dobj

prep_of

prep_of
prep_onrecall

food-borne illness

prep_of

(b) Sentence graph after merging the nodes with lemma recall (in bold), and expanding the node out-
break (dashed outgoing edge).

Figure 6.1: An example of the input dependency trees for sentence graph creation and expan-
sion.

creation and expansion process, the algorithm disallows the addition of edges that would result

in a cycle in the graph.

6.3.2 Sentence Graph Expansion

The initial sentence graph is expanded by merging in subtrees from dependency parses of non-

core sentences drawn from the source text. First, expansion candidates are identified for each

node in the sentence graph by finding all of the dependency edges in the source text from non-

core sentences in which the governor of the edge shares the same lemma and POS tag as the

node in the sentence graph.

Then, these candidate edges are pruned according to two heuristics. First, the candidate

edges for each dependency relation type are ranked by a standard informativeness score (Sec-

tion 6.3.3), and only the edge with the highest score is kept. Ties are broken such that the

edge that has a subtree with a fewer number of nodes is ranked higher. The second is to per-
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form event coreference in order to prune away those candidate edges which are unlikely to

be describing the same event as the core sentences, as explained in the next section. Finally,

any remaining candidate edges are fused into the sentence graph, and the subtree rooted at the

dependent of the candidate edge is added to the sentence graph as well. See Figure 6.1b for an

example of sentence graph creation and expansion.

Event Coreference

One problem of sentence fusion is that the different inputs of the fusion may not refer to

the same event, resulting in an incorrect merging of information, as would be the case in the

following example:

(6.1) Officers pled not guilty but risked 25 years to life.

(6.2) Officers recklessly engaged in conduct which seriously risked the lives of others.

Here, the first usage of risk refers to the potential sentence imposed if the officers are convicted

in a trial, whereas the second refers to the potential harm caused by the officer.

In order to ensure that sentence enhancement and fusion do not lead to the merging of such

incompatible events, I designed an unsupervised method to approximate event coreference

resolution. This method is based on the intuition that different mentions of an event should

contain many of the same participants. Thus, by measuring the similarity of the arguments

in the syntactic contexts of the node in the sentence graph and in the candidate edge, I can

obtain a measure of the likelihood that they refer to the same event. It would be interesting to

integrate existing event coreference resolution systems into this step in the future, such as the

unsupervised method of Bejan and Harabagiu (2010).

I measure the similarity of these syntactic contexts by aligning the arguments in the syn-

tactic contexts and computing the similarity of the aligned arguments. These problems can be

jointly solved as a maximum-weight bipartite graph matching problem (Figure 6.2).
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Context 1: Officers ... risked 25 years to life...

(nsubj, officers)   (dobj, life)

(nsubj, conduct)    (advmod, seriously)   (dobj, life)

sim1((risk, dobj), (risk, dobj))
    × sim2(life, life) = 1.0

sim1((risk, nsubj), (risk, nsubj))
  × sim2(officer, conduct) = 0.38

Context 2: ...conduct seriously risked the lives...

Figure 6.2: Event coreference resolution as a maximum-weight bipartite graph matching prob-
lem. All the nodes share the predicate risk. The edges in black are the optimal matching.

Formally, let a syntactic context be a list of dependency triples (h,r,a), consisting of a

governor or head node h and a dependent argument a in the dependency relation r, where head

node h is fixed across each element of the list. Then, each of the two input syntactic contexts

forms one of the two disjoint sets in a complete weighted bipartite graph where each node

corresponds to one dependency triple.

I define the edge weights according to the similarities of the edge’s incident nodes; i.e.,

between two dependency triples (h1,r1,a1) and (h2,r2,a2). I also decompose the similarity into

the similarities between the head and relation types ((h1,r1) and (h2,r2)), and the arguments

(a1 and a2). The edge weight function can thus be written as:

sim((h1,r1,a1),(h2,r2,a2)) = sim1((h1,r1),(h2,r2))× sim2(a1,a2), (6.3)

where sim1 and sim2 are binary functions that represent the similarities between governor-

relation pairs and dependents, respectively. I train models of distributional semantics using a

large background corpus—the Annotated Gigaword corpus (Napoles et al., 2012). For sim1, I

create a vector of counts of the arguments that are seen filling each (h,r) pair, and define the

similarity between two such pairs to be the cosine similarity between their argument vectors.

For sim2, I create a basic vector-space representation of a word a according to words that are
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found in the context of word a within a five-word context window, and likewise compute the

cosine similarity between the word vectors. These methods of computing distributional similar-

ity are well attested in lexical semantics for measuring the relatedness of words and syntactic

structures (Turney and Pantel, 2010), and similar methods have been applied in text-to-text

generation by Ganitkevitch et al. (2012), though the focus of that work is to use paraphrase

information thus learned to improve sentence compression.

The resulting graph matching problem is solved using the NetworkX package for Python3.

The final similarity score is an average of the similarity scores from Equation 6.3 that partic-

ipate in the selected matching, weighted by the product of the IDF scores of the dependent

nodes of each edge. This final score is used as a threshold that candidate contexts from the

source text must meet in order to be eligible for being merged into the sentence graph. This

threshold is tuned by cross-validation.

6.3.3 Tree Generation

The next major step of the algorithm is to extract an output dependency tree from the expanded

sentence graph. I formulate this as an integer linear program, in which variables correspond to

edges of the sentence graph, and a solution to the linear program determines the structure of an

output dependency tree. I use ILOG CPLEX to solve all of the integer linear programs in the

experiments.

A good dependency tree must at once express the salient or important information present in

the input text as well as be grammatically correct and of a manageable length. These desiderata

are encoded into the linear program as constraints or as part of the objective function.

3http://networkx.github.io/

http://networkx.github.io/
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Objective Function

Based on previous work in sentence compression and sentence fusion, I designed an objec-

tive function that measures the informativeness of the words that are selected as well as the

probability of a syntactic relation being present for a given head word.

Let X be the set of variables in the program, and let each variable in X take the form xh,r,a,

a binary variable that represents whether an edge in the sentence graph from a head node with

lemma h to an argument with lemma a in relation r is selected. Then, the original objective

function defined by F&S is:

max ∑
xh,r,a∈X

xh,r,a ·P(r|h) · I(a), (6.4)

where P(r|h) is the probability that head h projects the dependency relation r, and I(a) is the

informativeness score for word a as defined by Clarke and Lapata (2008). For the technical

details of how this and other aspects of the linear program described below are implemented,

see Section 6.6.

While this formulation works well for fusing a few core sentences, avoiding redundancy

becomes a bigger issue in the expanded sentence graph, because many occurrences of an im-

portant word appear in the sentence graph. Thus, I modify the objective function to allow it to

only score once for each lemma w in the lexicon Σ:

max ∑
w∈Σ

max
xh,r,a∈Xs.t.a=w

(xh,r,w ·P(r|h) · I(w)) (6.5)

This objective function can be rewritten as a standard linear program by the addition of auxil-

iary variables and constraints.
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Well-formedness Constraints

The first set of constraints are taken directly from F&S, and simply ensure that the set of

selected edges is a well-formed tree; i.e., each selected node except the root has exactly one

governor, and the set of selected nodes is connected. Another constraint specifies the number

of content nodes in the tree, which I set at 11 to correspond to the average number of content

nodes in human-written summary sentences in the data set.

Syntactic Constraints

F&S propose a syntactic constraint to ensure that a subordinating conjunction only appears

in the output sentence if the associated subordinate clause remains a subordinate clause in the

output. I propose two further syntactic constraints. The first ensures that a nominal or adjectival

predicate must be selected with a copular construction at the top level of a non-finite clause.

The second ensures that transitive verbs retain both of their complements in the output; that is,

if there exists at least one subject and one direct object relation from a governor node, then if

one is selected, so must the other4.

Semantic Constraints

Semantic constraints ensure that only noun phrases of sufficiently high similarity which are

not in a hypernym-hyponym or holonym-meronym relation with each other may be joined by

coordination.

6.3.4 Linearization

The final step is to convert the dependency tree from the previous step into the final linear

sequence of words, which is known as linearization or surface realization. While I could have

4I did not experiment with changing the grammatical voice in the output tree, such as introducing a passive
construction if only a direct object is selected, but this is one possible extension of the algorithm.
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used an off-the-shelf surface realization system, I chose to implement my own method, because

much of the ordering information can be inferred from the original source text sentences.

My linearization algorithm proceeds top-down from the root of the dependency tree to the

leaves. At each node of the tree, linearization consists of realizing the previously collapsed

elements such as prepositions, determiners and noun compound elements, then ordering the

dependent nodes with respect to the root node and each other. Restoring the collapsed elements

is accomplished by simple heuristics. For example, the preposition and the determiner always

precede the realization of the noun phrase itself.

The dependent nodes are ordered by a sorting algorithm, where the order between two

syntactic relations and argument nodes (r1,a1) and (r2,a2) is determined as follows. First, if a1

and a2 originated from the same source text sentence, then they are ordered according to their

order of appearance in the source text. Otherwise, I consider the probability P(r1 precedes r2),

and order a1 before a2 iff P(r1 precedes r2) > 0.5. This distribution, P(r1 precedes r2), is

estimated by counting and normalizing the order of the relation types in the source text corpus.

For the purposes of ordering, the governor node is treated as if it were a dependent node with

a special syntactic relation label self. This algorithm always produces an output ordering with

a projective dependency tree, which is a reasonable assumption for English.

6.4 Experiments

6.4.1 Method

Recent approaches to sentence fusion have often been evaluated as an isolated component sep-

arate from their use in a summary of some source text. For example, F&S evaluate the output

sentences by asking human judges to rate the sentences’ informativeness and grammatical-

ity according to a 1–5 Likert scale rating. Thadani and McKeown (2013) combine manual

grammaticality ratings with an automatic evaluation which compares the system output against

gold-standard sentences drawn from summarization data sets. However, this evaluation setting
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still does not reflect the utility of sentence fusion in summarization, because the input sentences

come from human-written summaries rather than the original source text.

I adopt a more realistic setting of using sentence fusion in automatic summarization by

drawing the input or core sentences automatically from the source text, then evaluating the

output of the fusion and enhancement algorithms directly as one-sentence summaries according

to standard summarization evaluation measures of content quality.

Data preparation The experiments are conducted on the TAC 2010 and TAC 2011 Guided

Summarization corpora (Owczarzak and Dang, 2010), on the initial summarization task. To

generate the core sentence clusters for the fusion and enhancement algorithms, I first identify

clusters of similar sentences, then rank the clusters according to their salience. The top cluster

in each document cluster is selected to be the input to the sentence fusion algorithms.

Sentence alignment is performed by complete-link agglomerative clustering, which re-

quires a measure of similarity between sentences. I define the similarity between two sentences

to be the IDF-weighted cosine similarity between the lemmas of the sentences. The clusters

are scored according to the signature term method of Lin and Hovy (2000), which assigns

an importance score to each term according to how much more often it appears in the source

text compared to some irrelevant background text using a log-likelihood ratio. Specifically,

the score of a cluster is equal to the sum of the importance scores of the set of lemmas in the

cluster.

Evaluation measures I evaluate summary content quality using the word-overlap measures

ROUGE-1 and ROUGE-2, as is standard in the summarization community. I also measure

the quality of sentences at a syntactic or shallow semantic level that operates at the level of

dependency triples by a measure that I call Pyramid BE. Specifically, I extract all of the

dependency triples of the form t = (h,r,a) from the sentence under evaluation and the gold-

standard summaries, where h and a are the lemmas of the head and the argument, and r is the

syntactic relation, normalized for grammatical voice.
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Then, I perform a matching between the set of triples T eval in the sentence under evaluation

and in a reference summary T ref following the Transformed BE method of Tratz and Hovy

(2008). Let xi j be a binary variable corresponding to the ith triple in T eval and the jth triple in

T ref. Then, the matching problem can be written as:

max∑
i, j

I(ti = t j)W (t j)xi j (6.6)

s. t.∀ j,∑
i

xi j ≤ 1

∀i,∑
j

xi j ≤ 1,

where I(ti = t j) is an indicator function that returns one if and only if ti and t j match, and W (ti)

is a weighting function for the dependency triple which is equal to the number of reference

summaries in which t j appears (the total weighting scheme).

This matching is performed between the sentence and every gold-standard summary, and

the maximum of these scores is taken. This score is then divided by the maximum score that is

achievable using the number of triples present in the input sentence, as inspired by the Pyramid

method. This denominator is more appropriate than the original method used in Transformed

BE, which is designed for the case where the evaluated summary and the reference summaries

are of comparable length.

For grammaticality, I parse the output sentences using the Stanford parser, and use the

log likelihood of the most likely parse of the sentence as a coarse estimate of grammaticality.

Parse log likelihoods have been shown to be useful in determining grammaticality (Wagner

et al., 2009), and many of the problems associated with using it do not apply in the evaluation,

because the sentences have a fixed number of content nodes, and contain similar content. While

I could have conducted a user study to elicit Likert-scale grammaticality judgements, such

results are difficult to interpret and the scores depend heavily on the set of judges and the

precise evaluation setting (Napoles et al., 2011).
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Method Pyramid BE ROUGE-1 ROUGE-2 Log Likelihood
Fusion (F&S) 10.61 10.07 2.15 -159.31
Enhancement 8.82 9.41 1.82 -157.46
+Event coref 11.00 9.76 1.93 -156.20

Table 6.1: Results of the sentence enhancement and fusion experiments on TAC 2010 and TAC
2011.

6.4.2 Results and Discussion

The results are presented in Table 6.1. As can be seen, sentence enhancement with coreference

outperforms the sentence fusion algorithm of F&S in terms of the Pyramid BE measure and

the baseline enhancement algorithm, though only the latter difference is statistically significant

(p < 0.0225). In terms of the ROUGE word overlap measures, fusion achieves a better perfor-

mance, but it only outperforms the enhancement baseline significantly (ROUGE-1: p < 0.021,

ROUGE-2: p < 0.012). Note that the ROUGE scores are low because they involve comparing

a one-sentence summary against a paragraph-long gold standard.

The average log likelihood result suggests that sentence enhancement with event coref-

erence produces more grammatical sentences than traditional fusion, and this difference is

statistically significant (p < 0.044).

These results are positive in that they show that sentence enhancement with event corefer-

ence is competitive with a strong previous sentence fusion method in terms of content, despite

having to combine information from more diverse sentences, and that this does not come at

the expense of grammaticality. In fact, it seems that having a greater possible range of output

sentences may even improve the grammaticality of the output sentences.

There is still much room for improvement in the grammaticality of sentences in these mod-

els, however, and this will require modelling contexts larger than individual predicates and

their arguments. To see the importance of considering more than individual predicate-argument

5All statistical significance results in this section are for Wilcoxon signed-rank tests.
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pairs, consider the following output of the sentence enhancement with event coreference sys-

tem:

(6.7) The government has launched an investigation into Soeharto’s wealth by the Attorney

General’s office on the wealth of former government officials.

This sentence suffers from coherence problems because two of the expected slots in the domain

are duplicated. The first is the subject of the investigation, which is expressed by two prepo-

sitional objects of investigation with the prepositions into and on. The second, more subtle

incoherence is in the body that is responsible for the investigation, which is expressed both by

the subject of launch (The government has launched an investigation), and the by-prepositional

object of investigation (an investigation ... by the Attorney General’s office). Clearly, a model

that makes fewer independence assumptions about the relation between different edges in the

sentence graph is needed.

6.5 Discussion

In this chapter, I introduced sentence enhancement as a method to incorporate information from

multiple points in the source text into one output sentence in a fashion that is more flexible than

previous sentence fusion algorithms. The results of my experiments show that the sentence

enhancement method is competitive with a previous syntax-based sentence fusion approach in

content quality and generates more grammatical summary sentences as well.

As suggested by the studies in Chapter 3, human summary writers do not restrict themselves

to the source text, performing text reformulations that seem to be captured by considering in-

domain articles external to the source text. More sophisticated semantic techniques will be

needed in order to exploit such in-domain articles for text-to-text generation in summarization.
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6.6 Appendix: ILP Encoding

Below, I describe how the novel objective function and syntactic constraints in the integer linear

programming formulation of sentence generation are implemented.

6.6.1 Informativeness Score

The word informativeness function I(a) depends on the frequency of the word in question, as

well as the syntactic depth at which the word a is found in the source text, in terms of the level

of embedding by the number of clause boundaries crossed from the root of the tree:

I(a) =
depth(a)

max_depth
freq(a)× log

FALL

Fa
, (6.8)

where depth(a) is the syntactic depth of the argument node a in the parse tree of the sentence

by the number of clause boundaries crossed on the path to the root of the tree, max_depth

is the maximum depth of the sentence, freq(a) is the frequency of word a in the document

cluster, FALL is the total count of content words in the entire corpus, and Fa is the total count

of word a in the corpus. The first factor captures the intuition that words that are more deeply

embedded tend to be more important, at least in news text, where there are many uninformative

reporting verbs near the top of a parse tree such as said or announced. The other factors are an

instantiation of tf-idf as a method of determining term importance.

6.6.2 Objective Function

My modified objective function better avoids redundancy when deciding on the most informa-

tive tree to extract from the expanded sentence graph:

max ∑
w∈Σ

max
xh,r,a∈Xs.t.a=w

(xh,r,w ·P(r|h) · I(w)) (6.9)

Since this is an integer linear program, the inner max must be factored out of the objective
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function by the introduction of auxiliary variables and constraints. First, I introduce an auxil-

iary variable yh,r,a for each original variable xh,r,a. Call the set of these auxiliary variables Y .

I rewrite the objective function in terms of these auxiliary variables, removing the inner max

function:

max ∑
yh,r,a∈Y

yh,r,a ·P(r|h) · I(a). (6.10)

I then add constraints in order to relate the auxiliary variables to their corresponding original

variables, and to ensure that each lemma is only scored once. For the former, I constrain the

auxiliary variables to be at most the value of the original:

yh,r,a ≤ xh,r,a. (6.11)

Then, I add a constraint for each lemma w in the lexicon Σ, such that at most one auxiliary

variable may be “on” for each lemma:

∀w ∈ Σ, ∑
yh,r,a∈Y s.t.a=w

yh,r,w ≤ 1. (6.12)

The modified objective is equivalent to the original if the program is solved optimally, as the

auxiliary variables will be set such that only the highest scoring yh,r,a variable for each lemma

a contributes a positive value to the objective function.

6.6.3 Syntactic Constraints

Nominal and adjectival predicate In Stanford’s collapsed dependency representation, nom-

inal and adjectival predicates are indicated by a nsubj relation from the predicate head to the

argument, and a cop relation to the copular, usually some form of the verb to be. I add a con-

straint to ensure these pairs are selected together, and furthermore that the construction is found

at the top level of a finite clause.
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Transitive verbs In order to ensure transitive verbs take both of their expected arguments,

I need to implement the constraint for each relevant node that the number of dependents with

the relation nsubj is greater than 0 if and only if the number of dobj children is greater than 0.

For a particular transitive verb node n in the expanded sentence graph, let the sets of vari-

ables in X that represent the nsubj children be denoted as Xn,nsubj. Then, I introduce a variable

hn,nsubj that has value 1 if and only if at least one variable in Xn,nsubj is 1:

∀x ∈ Xn,nsubj,hn,nsub j ≥ x (6.13)

hn,nsub j ≤ ∑
x∈Xn,nsubj

x. (6.14)

I likewise introduce constraints for Xn,dobj and hn,dob j. Then, I simply enforce that:

hn,nsubj = hn,dobj. (6.15)

6.6.4 Semantic Constraints

I followed F&S in disallowing noun phrases that are in a hyponym/hypernym or holonym/meronym

relation from being coordinated, as indicated by WordNet. I also disallowed noun phrases

whose heads are dissimilar, according to the distributional semantic model described in Sec-

tion 6.3.2. Here, “dissimilar” means the cosine similarity falls below the observed average of

conjunct similarity, which was 0.3317. Rather than embed these constraints into the ILP as

F&S, I precomputed the results, and simply added a constraint to the ILP to disallow conjunc-

tion between each pair of nodes that may not be conjoined.



Chapter 7

Conclusion

This dissertation has examined a number of issues in distributional semantics and automatic

summarization, as well as the relationship between them. Below, I recapitulate the contribu-

tions of this dissertation and describe possible future research directions from each of these

perspectives.

7.1 Summary of Contributions

7.1.1 Distributional Semantics

In terms of distributional semantics, one contribution of this dissertation is a novel evaluation

framework which is based on first principles about the role of semantic representations in NLP

systems. The key point is that semantic representations should be evaluated by their ability to

support inference, rather than theory-internal considerations such as whether the representation

is constructed compositionally or according to syntactic structure. This functional view of

semantics contrasts with previous evaluations based on correlations with human judgements of

word pair similarity, whose applicability to downstream applications is unclear.

A related contribution is to show empirically that current distributional semantic methods

can be useful for complex NLP tasks. This is first demonstrated in two instantiations of the
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above evaluation framework, involving relation classification and question answering. In these

experiments, methods that are informed by a distributional semantic model consistently out-

perform those that are not.

Then, additional evidence is provided by the novel Distributional Semantic Hidden Markov

Model (DSHMM), which incorporates distributional semantic word vector representations as

emissions into a generative probabilistic content model. DSHMM with contextualized distri-

butional semantic vectors outperforms other unsupervised methods in two domain modelling

experiments on slot induction and extractive multi-document summarization. Furthermore, the

contextualization procedure that is a part of many current distributional semantic models is

important to the overall system’s performance.

There are several apparent reasons for the success of this approach. First, distributional

semantic models are typically trained on a corpus that is much larger than the amount of data

available in a target domain, thus injecting some notion of domain-general knowledge into

the inference process. Second, the contextualization process allows word-sense and syntactic

information to be implicitly incorporated, but does not further add to the model complexity.

I have also demonstrated how distributional semantics can be applied specifically to auto-

matic summarization at several points throughout this dissertation. It was used in the analysis

of whether paraphrasing can account for the lower signature caseframe density in Section 3.3.2,

in the learning of DSHMM for extractive multi-document summarization in Chapter 5, and in

the abstractive sentence enhancement algorithm proposed in Chapter 6.

7.1.2 Abstractive Summarization

In terms of the other main topic of this dissertation, abstractive summarization across multiple

domains, one contribution has been to identify the limiting plateau of the centrality-based ex-

tractive paradigm. A study of current summarization systems shows that compared to human

summary writers, they are overfitted to the central or representative parts of the source text.

At the same time, current automatic systems are still very far away from the type of synthetis
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or abstraction that is present in the model summaries. Advances in sentence compression and

sentence fusion only partially address the issues of extraction, because a significant portion of

model summaries cannot be found in the source text at all.

Instead of focusing on better optimizing centrality measures, I have argued for more use

of domain knowledge in automatic summarization. I have supported this argument by further

studies that elucidates some of the linguistic factors involved in using in-domain articles outside

of the source text. In particular, I find that human summary writers find predicates that are more

specific to the semantic content that they wish to convey, and identify several features that could

be useful in a future automatic system for making use of in-domain text.

One step on the path towards using non-source-text material in an automatic summary is

to be able to combine information from multiple points within the source text with diverse

contexts, unlike traditional sentence fusion which requires highly similar contexts as inputs.

The sentence enhancement algorithm that I proposed demonstrates the feasibility of this step

in a text-to-text generation setting, resulting in more informative summary sentences. Interest-

ingly, the success of the algorithm relies on an event coreference resolution algorithm based on

distributional semantics.

7.2 Limitations and Future Work

7.2.1 Distributional Semantics in Probabilistic Models

One of the central arguments of this dissertation is that models of distributional semantics

have not been properly evaluated for their ability to support semantic inference for complex

NLP applications. This dissertation has addressed these issues with novel evaluation methods

and techniques to embed distributional semantics into automatic summarization, which lays

the foundation for the development for more sophisticated distributional semantic models than

the established ones used in this work, such as the simple component-wise contextualization

methods.
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The incorporation of distributional semantics into DSHMM is possible because of the flexi-

bility of generative probabilistic models. This modularity and exhibited by DSHMM lends itself

to many other possible extensions. Some examples include further investigation into variations

on the structure of the graphical model, a non-parametric method to learn the number of do-

main components, more careful modelling of the discourse transitions between clauses beyond

a simple first-order Markov independence assumption, etc. It would also be worth investigating

whether an approach similar to DSHMM could be beneficial for other NLP tasks that rely on

probabilistic modelling, such as parsing, discourse modelling, or machine translation.

7.2.2 Abstractive Summarization

The results of the studies in Chapter 3 lays the groundwork for a future system which makes

use of in-domain articles outside of the source text. A major challenge will be to incorporate

more semantic knowledge in order to select appropriate source-text-external components and

to preserve the inferences that can be drawn from the source text.

A wide-coverage and semantically precise abstractive summarization system opens up av-

enues of future research; many of the issues that have been investigated in the past several years

for extractive summarization can now be revisited in the context of an abstractive system. For

example, whereas there is relatively little that can be done in terms of creating a coherent ex-

tractive summary, in an abstractive setting, many more options are possible, such as by using

cohesive devices like pronouns and discourse cues.

Another important question is how to best evaluate abstractive summarization systems.

Current automatic measures such as ROUGE were validated primarily on extractive automatic

systems’ correlation with human responsiveness judgements. It is an open question whether

these correlations extend to comparisons of abstractive systems, or between extractive and

abstractive systems. Furthermore, most existing evaluations do not consider the ability of sum-

maries to synthesize and aggregate information in the source text. A more targeted evaluation

is needed to focus on the specific aspects of summarization systems that require abstraction.



Bibliography

Proceedings of the Fourth Message Understanding Conference (MUC-4), 1992. Morgan Kauf-

mann.

DUC 2007 guidelines, 2007. URL http://duc.nist.gov/duc2007/tasks.html.

Marco Baroni and Alessandro Lenci. Distributional memory: A general framework for corpus-

based semantics. Computational Linguistics, 36(4):673–721, 2010.

Marco Baroni and Roberto Zamparelli. Nouns are vectors, adjectives are matrices: Represent-

ing adjective-noun constructions in semantic space. In Proceedings of the 2010 Conference

on Empirical Methods in Natural Language Processing, pages 1183–1193. Association for

Computational Linguistics, 2010.

Marco Baroni, Raffaella Bernardi, and Roberto Zamparelli. Frege in space: A program for

compositional distributional semantics. Linguistic Issues in Language Technology, 9:5–110,

2014.

Regina Barzilay and Michael Elhadad. Using lexical chains for text summarization. In Pro-

ceedings of the ACL Workshop on Intelligent Scalable Text Summarization, pages 10–17,

1997.

Regina Barzilay and Lillian Lee. Catching the drift: Probabilistic content models, with applica-

tions to generation and summarization. In Proceedings of the Human Language Technology

Conference of the North American Chapter of the Association for Computational Linguis-

tics: HLT-NAACL 2004, pages 113–120, 2004.

130

http://duc.nist.gov/duc2007/tasks.html


BIBLIOGRAPHY 131

Regina Barzilay and Kathleen R. McKeown. Sentence fusion for multidocument news sum-

marization. Computational Linguistics, 31(3):297–328, 2005.

David Bean and Ellen Riloff. Unsupervised learning of contextual role knowledge for coref-

erence resolution. In Proceedings of the Human Language Technology Conference of the

North American Chapter of the Association for Computational Linguistics: HLT-NAACL

2004, pages 297–304, 2004.

Cosmin A. Bejan and Sanda Harabagiu. Unsupervised event coreference resolution with rich

linguistic features. In Proceedings of the 48th Annual Meeting of the Association for Com-

putational Linguistics, pages 1412–1422. Association for Computational Linguistics, 2010.

Yoshua Bengio, Holger Schwenk, Jean-Sébastien Senécal, Fréderic Morin, and Jean-Luc Gau-

vain. Neural probabilistic language models. In Dawn Holmes and Lakhmi Jain, editors,

Innovations in Machine Learning, volume 194 of Studies in Fuzziness and Soft Computing,

pages 137–186. Springer Berlin / Heidelberg, 2006.

Taylor Berg-Kirkpatrick, David Burkett, and Dan Klein. An empirical investigation of sta-

tistical significance in NLP. In Proceedings of the 2012 Joint Conference on Empirical

Methods in Natural Language Processing and Computational Natural Language Learning,

pages 995–1005, Jeju Island, Korea, July 2012. Association for Computational Linguistics.

Patrick Blackburn and Johan Bos. Representation and Inference for Natural Language: A First

Course in Computational Semantics. CSLI, 2005.

William Blacoe and Mirella Lapata. A comparison of vector-based representations for semantic

composition. In Proceedings of the 2012 Joint Conference on Empirical Methods in Natu-

ral Language Processing and Computational Natural Language Learning, pages 546–556.

Association for Computational Linguistics, 2012.

David M. Blei, Andrew Y. Ng, and Michael I. Jordan. Latent Dirichlet allocation. The Journal

of Machine Learning Research, 3:993–1022, 2003.

Razvan C. Bunescu and Raymond J. Mooney. Learning to extract relations from the web using



BIBLIOGRAPHY 132

minimal supervision. In Proceedings of the 45th Annual Meeting of the Association for

Computational Linguistics, volume 45, pages 576–583, 2007.

Jaime Carbonell and Jade Goldstein. The use of MMR, diversity-based reranking for reordering

documents and producing summaries. In Proceedings of the 21st Annual International ACM

SIGIR Conference on Research and Development in Information Retrieval, pages 335–336.

ACM, 1998.

Giuseppe Carenini, Raymond Ng, and Adam Pauls. Multi-document summarization of eval-

uative text. In Proceedings of the European Chapter of the Association for Computational

Linguistics (EACL), pages 305–312, 2006.

Giuseppe Carenini, Raymond T. Ng, and Xiaodong Zhou. Summarizing emails with con-

versational cohesion and subjectivity. In Proceedings of ACL-08: HLT, pages 353–361,

Columbus, Ohio, June 2008. Association for Computational Linguistics.

Asli Celikyilmaz and Dilek Hakkani-Tur. A hybrid hierarchical model for multi-document

summarization. In Proceedings of the 48th Annual Meeting of the Association for Compu-

tational Linguistics, pages 815–824, Uppsala, Sweden, July 2010. Association for Compu-

tational Linguistics.

Nathanael Chambers and Dan Jurafsky. Template-based information extraction without the

templates. In Proceedings of the 49th Annual Meeting of the Association for Computational

Linguistics: Human Language Technologies, pages 976–986, Portland, Oregon, USA, June

2011. Association for Computational Linguistics.

Jackie Chi Kit Cheung and Gerald Penn. Evaluating distributional models of semantics for

syntactically invariant inference. In Proceedings of the 13th Conference of the European

Chapter of the Association for Computational Linguistics, pages 33–43, Avignon, France,

April 2012. Association for Computational Linguistics.

Jackie Chi Kit Cheung and Gerald Penn. Towards robust abstractive multi-document summa-

rization: A caseframe analysis of centrality and domain. In Proceedings of the 51st Annual



BIBLIOGRAPHY 133

Meeting of the Association for Computational Linguistics, pages 1233–1242, August 2013a.

Jackie Chi Kit Cheung and Gerald Penn. Probabilistic domain modelling with contextualized

distributional semantic vectors. In Proceedings of the 51st Annual Meeting of the Association

for Computational Linguistics, pages 392–401, August 2013b.

Jackie Chi Kit Cheung and Gerald Penn. Unsupervised sentence enhancement for automatic

summarization. In Proceedings of the 2014 Conference on Empirical Methods on Natural

Language Processing (EMNLP 2014), October 2014.

Jackie Chi Kit Cheung, Hoifung Poon, and Lucy Vanderwende. Probabilistic frame induction.

In Proceedings of the 2013 Conference of the North American Chapter of the Association

for Computational Linguistics: Human Language Technologies, pages 837–846, June 2013.

James Clarke and Mirella Lapata. Global inference for sentence compression: An integer

linear programming approach. Journal of Artificial Intelligence Research(JAIR), 31:399–

429, 2008.

Trevor Cohn and Mirella Lapata. Sentence compression beyond word deletion. In Proceedings

of the 22nd International Conference on Computational Linguistics (Coling 2008), pages

137–144, Manchester, UK, August 2008. Coling 2008 Organizing Committee.

Ronan Collobert and Jason Weston. A unified architecture for natural language processing:

Deep neural networks with multitask learning. In Andrew McCallum and Sam Roweis,

editors, Proceedings of the 25th International Conference on Machine Learning, pages 160–

167. Omnipress, 2008.

Cleo Condoravdi, Dick Crouch, Valeria de Paiva, Reinhard Stolle, and Daniel G. Bobrow.

Entailment, intensionality and text understanding. In Graeme Hirst and Sergei Nirenburg,

editors, Proceedings of the HLT-NAACL 2003 Workshop on Text Meaning, pages 38–45,

2003.

John M. Conroy, Judith D. Schlesinger, and Dianne P. O’Leary. Topic-focused multi-document

summarization using an approximate oracle score. In Proceedings of the COLING/ACL 2006



BIBLIOGRAPHY 134

Main Conference Poster Sessions, pages 152–159, Sydney, Australia, July 2006. Association

for Computational Linguistics.

Terry Copeck and Stan Szpakowicz. Vocabulary agreement among model summaries and

source documents. In Proceedings of the 2004 Document Understanding Conference (DUC),

2004.

Cristian Danescu-Niculescu-Mizil, Justin Cheng, Jon Kleinberg, and Lillian Lee. You had me

at hello: How phrasing affects memorability. In Proceedings of the 50th Annual Meeting on

Association for Computational Linguistics, pages 892–901, July 2012.

Hoa T. Dang. Overview of DUC 2005. In Proceedings of the Document Understanding Con-

ference, 2005.

Hal Daumé and Daniel Marcu. Bayesian query-focused summarization. In Proceedings of

the 21st International Conference on Computational Linguistics and 44th Annual Meeting

of the Association for Computational Linguistics, pages 305–312, Sydney, Australia, July

2006. Association for Computational Linguistics.

Hal Daumé III and Daniel Marcu. A noisy-channel model for document compression. In Pro-

ceedings of the 40th Annual Meeting on Association for Computational Linguistics, pages

449–456. Association for Computational Linguistics, July 2002.

Marie-Catherine de Marneffe, Bill MacCartney, and Christopher D. Manning. Generating

typed dependency parses from phrase structure parses. In Proceedings of the Fifth Inter-

national Conference on Language Resources and Evaluation (LREC’06), pages 449–454,

2006.

Marie-Catherine de Marneffe, Anna N. Rafferty, and Christopher D. Manning. Finding contra-

dictions in text. In Proceedings of ACL-08: HLT, pages 1039–1047, Columbus, Ohio, June

2008. Association for Computational Linguistics.

Paramveer S. Dhillon, Dean Foster, and Lyle Ungar. Multi-view learning of word embeddings

via CCA. In Proceedings of the Twenty-Fifth Annual Conference on Neural Information



BIBLIOGRAPHY 135

Processing Systems (NIPS 2011), volume 24, pages 199–207, 2011.

Georgiana Dinu and Mirella Lapata. Measuring distributional similarity in context. In Pro-

ceedings of the 2010 Conference on Empirical Methods in Natural Language Processing,

pages 1162–1172, 2010.

William B. Dolan and Chris Brockett. Automatically constructing a corpus of sentential para-

phrases. In Proceedings of the Third International Workshop on Paraphrasing, pages 9–16,

2005.

Bonnie J. Dorr, Christof Monz, Stacy President, Richard Schwartz, and David Zajic. A method-

ology for extrinsic evaluation of text summarization: Does ROUGE correlate? In Pro-

ceedings of the ACL Workshop on Intrinsic and Extrinsic Evaluation Measures for Machine

Translation and/or Summarization, pages 1–8, 2005.

Micha Elsner and Deepak Santhanam. Learning to fuse disparate sentences. In Proceedings

of the Workshop on Monolingual Text-To-Text Generation, pages 54–63. Association for

Computational Linguistics, 2011.

Micha Elsner, Joseph Austerweil, and Eugene Charniak. A unified local and global model

for discourse coherence. In Human Language Technologies 2007: The Conference of the

North American Chapter of the Association for Computational Linguistics; Proceedings of

the Main Conference, pages 436–447, Rochester, New York, April 2007. Association for

Computational Linguistics.

Katrin Erk and Sebastian Padó. A structured vector space model for word meaning in context.

In Proceedings of the Conference on Empirical Methods in Natural Language Processing,

pages 897–906, 2008.

Katrin Erk and Sebastian Padó. Exemplar-based models for word meaning in context. In

Proceedings of the ACL 2010 Conference Short Papers, pages 92–97, 2010.
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