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Abstract

A major focus of current work in distri-
butional models of semantics is to con-
struct phrase representations composition-
ally from word representations. However,
the syntactic contexts which are modelled
are usually severely limited, a fact which
is reflected in the lexical-level WSD-like
evaluation methods used. In this paper, we
broaden the scope of these models to build
sentence-level representations, and argue
that phrase representations are best eval-
uated in terms of the inference decisions
that they support, invariant to the partic-
ular syntactic constructions used to guide
composition. We propose two evaluation
methods in relation classification and QA
which reflect these goals, and apply several
recent compositional distributional models
to the tasks. We find that the models out-
perform a simple lemma overlap baseline
slightly, demonstrating that distributional
approaches can already be useful for tasks
requiring deeper inference.

the notion of compositionality as the litmus test of
a truly semantic model. Compositionality is a nat-
ural way to construct representations of linguistic
units larger than a word, and it has a long history
in Montagovian semantics for dealing with argu-
ment structure and assembling rich semantical ex-
pressions of the kind found in predicate logic.
While compositionality may thus provide a
convenient recipe for producing representations
of propositionally typed phrases, it is not a nec-
essary condition for a semantic representation.
Rather, that distinction still belongs to the crucial
ability to support inference. It is not the inten-
tion of this paper to argue for or against composi-
tionality in semantic representations. Rather, our
interest is in evaluating semantic models in order
to determine their suitability for inference tasks.
In particular, we contend that it is desirable and
arguably necessary for a compositional semantic
representation to support inferenogariantly, in
the sense that the particular syntactic construction
that guided the composition should not matter rel-
ative to the representations of syntactically differ-
ent phrases with the same meanings. For example,

1 Introduction we can assert thabhn threw the batindThe ball

A number of unsupervised semantic model¥/as thrown by Johmave the same meaning for
(Mitchell and Lapata, 2008, for example) have relhe purposes of inference, even though they differ
cently been proposed which are inspired at leagyntactically.
in part by the distributional hypothesis (Harris, Ananalogy can be drawn to research in image
1954)—that a word’s meaning can be characteRrocessing, in which it is widely regarded as im-
ized by the contexts in which it appears. Suctportant for the representations of images to be in-
models represent word meaning as one or monariant to rotation and scaling. What we should
high-dimensional vectors which capture the lexant is a representation of sentence meaning that
ical and syntactic contexts of the word’s occurds invariant to diathesis, other regular syntactic al-
rences in a training corpus. ternations in the assignment of argument struc-
Much of the recent work in this area has, fol-ture, and, ideally, even invariant to other meaning-
lowing Mitchell and Lapata (2008), focused onPréserving or near-preserving paraphrases.



Existing evaluations of distributional semantic2 Compositionality and Distributional
models fall short of measuring this. One evalua- Semantics
tion approach consists of lexical-level word sub-

stitution tasks which primarily evaluate a SyS_The idea of compositionality has been central to

tem’s ability to disambiguate word senses within émdet_rsta;ndlng cohr.lt(:m.poraryhr_latural Ian%uagihs e
controlled syntactic environment (McCarthy andantics froman historiographic perspective. ne

Navigli, 2009, for example). Another approach isIdea is often cre_d|ted to Frege, although n fact
to evaluate parsing accuracy (Socher et al., 2015rege had very little to say about compositional-

for example), which is really aformalism—specificIty that had not already been repeated since the
approximation to argument structure analysis.

time of Aristotle (Hodges, 2005). Our modern
These evaluations may certainly be relevant tgqtion of compositiona_lity took shape primarily
specific components of, for example, machiné—,(vIth the work of Tarski (1956), who was actu-

translation or natural language generation sy?—”yI allrgumg thatagent:al dllflference bet_wetﬁntfor-t
tems, but they tell us little about a semantid"2 'anguages and natural languages 1S that hat-

model's ability to support inference. ural language is not compositional. This in turn

In this paper, we propose a general framew orlas the “the contention that an important theo-

for evaluating distributional semantic models tha{e'[Ical d|fferenc<3 exists petween formal and nat-
al languages,” that Richard Montague so fa-

build sentence representations, and suggest w6

evaluation methods that test the notion of strucr-nOUSIy rejected (Montague, 1974). Composi-

turally invariant inference directly. Both rely on ionality also features prominently in Fodor and

determining whether sentences express the Sarﬁglyshyns (1988) rejection of early connection-

semantic relation between entities, a crucial ste'St representations of natural language semantics,

in solving a wide variety of inference tasks IikeWhICh seems to have influenced Mitchell and La-

recognizing textual entailment, information re_palt_a (_20?)8) a(sj \f/vell. ¢ itional i
trieval, question answering, and summarization. h OQI]'C' a?(? do][ms 0 tCOTp.OS' |qna sgman ICS
The first evaluation is a relation classification avc 'ond strved forsyntactic invariance in mean-

task, where a semantic model is tested on its abi'lr—].g representations, which is known as the doc-
ity to recognize whether a pair of sentences bot

Hlne of the canonical form. The traditional justifi-
contain a particular semantic relation, such as

ation for canonical forms is that they allow easy
Company X acquires CompanyThe second task access to a knowledge base to retrieve some de-
is a question answering task, the goal of which i

fired information, which amounts to a form of in-
to locate the sentence in a document that contai %

rence. Our work can be seen as an extension of
the answer. Here, the semantic model must maté

His notion to distributional semantic models with
the question, which expresses a proposition with@amore general notion of representational similar-
missing argument, to the answer-bearing sentent

tg and inference.
which contains the full proposition. There are many regular alternations that seman-
We apply these new evaluation protocols t

<;ics models have tried to account for such as pas-
several recent distributional models, extendin

ive or dative alternations. There are also many
several of them to build sentence representg(-ax'cal paraphrases which can take drastically dif-
tions. We find that the models outperform a sim-

erent syntactic forms. Take the following exam-
ple lemma overlap model only slightly, but thatplefrom Pooq and D.omlngos (2009), in which the
combining these models with the lemma overla ame semantic relation can be expressed by a tran-
model can improve performance. This result iS

itive verb or an attributive prepositional phrase:

likely due to weaknesses in current models’ abil-(l) Utah bordersldaho.
ity to deal with issues such as named entities, * |jiah is next tddaho.
coreference, and negation, which are not empha- -
sized by existing evaluation methods, but it does In distributional semantics, the original sen-
suggest that distributional models of semanticgeence similarity test proposed by Kintsch (2001)
can play a more central role in systems that reserved as the inspiration for the evaluation per-
quire deep, precise inference. formed by Mitchell and Lapata (2008) and most

later work in the area. Intransitive verbs are given



in the context of their syntactic subject, and canwhich words are given in the context of the sur-
didate synonyms are ranked for their approprirounding sentence, and the task is to rank a given
ateness. This method targets the fact that a syhst of proposed substitutions for that word. The
onym is appropriate for only some of the verb’dist of substitutions as well as the correct rankings
senses, and the intended verb sense dependsara elicited from annotators. This task was origi-
the surrounding context. For examplajrn and nally conceived as an applied evaluation of WSD
beamare both synonyms a@fiow, but given a par- systems, not an evaluation of phrase representa-
ticular subject, one of the synonyms (called theions.
High similarity landmark) may be a more appro- Parsing accuracy has been used as a prelimi-
priate substitution than the other (the Low similarnary evaluation of semantic models that produce
ity landmark). So, ithe fireis the subjectglowed syntactic structure (Socher et al., 2010; Wu and
is the High similarity landmark, andeamedhe Schuler, 2011). However, syntax does not always
Low similarity landmark. reflect semantic content, and we are specifically
Fundamentally, this method was designed agterested in supporting syntactic invariance when
a demonstration that compositionality in com-doing semantic inference. Also, this type of eval-
puting phrasal semantic representations does nation is tied to a particular grammar formalism.
interfere with the ability of a representation to The existing evaluations that are most similar in
synthesize non-compositional collocation effectspirit to what we propose are paraphrase detection
that contribute to the disambiguation of homo+tasks that do not assume arestricted syntactic con-
graphs. Here, word-sense disambiguation is inmtext. Washtell (2011) collected human judgments
plicitly viewed as a very restricted, highly lexi- on the general meaning similarity of candidate
calized case of inference for selecting the apprghrase pairs. Unfortunately, no additional guid-
priate disjunct in the representation of a word’'sance on the definition of “most similar in mean-
meaning. ing” was provided, and it appears likely that sub-
Kintsch (2001) was interested in sentence simjects conflated lexical, syntactic, and semantic re-
ilarity, but he only conducted his evaluation onlatedness. Dolan and Brockett (2005) define para-
a few hand-selected examples. Mitchell and Laphrase detection as identifying sentences that are
pata (2008) conducted theirs on a much largen a bidirectional entailment relation. While such
scale, but chose to focus only on this single casgentences do support exactly the same inferences,
of syntactic combination, intransitive verbs andve are also interested in the inferences that can
their subjects, in order to “factor out inessentiabe made from similar sentences that are not para-
degrees of freedom” to compare their various alphrases according to this strict definition — a sit-
ternative models more equitably. This was nouation that is more often encountered in end ap-
necessary—using the same, sufficiently large, umplications. Thus, we adopt a less restricted notion
biased but syntactically heterogeneous sample of paraphrasis.
evaluation sentences would have served as an ade- )
quate control—and this decision furthermore pre3 An Evaluation Framework

vents the evaluation from testing the desired |nWe now describe a Simple, general framework
variance of the semantic representation. for evaluating semantic models. Our framework

Other lexical evaluations suffer from the sameggnsists of the following components: a seman-
problem. One uses the WordSim-353 datasgic model to be evaluated, pairs of sentences that
(Finkelstein et al., 2002), which contains hu-are considered to have high similarity, and pairs
man word pair similarity judgments that semanyf sentences that are considered to have low simi-
tic models should reproduce. However, the worqiarity_

pairs are given without context, and homography |n particular, the semantic model is a binary
is unaddressed. Also, it is unclear how reliablgynction, s = M(xz,2’), which returns a real-

the similarity scores are, as different annotatorgalued similarity scores, given a pair of arbitrary
may interpret the integer scale of similarity scoreginguistic units (that is, words, phrases, sentences,
differently. Recent work uses this dataset mostl)étc_),x andz’. Note that this formulation of the
for parameter tuning. Another is the lexical parasemantic model is agnostic to whether the models
phrase task of McCarthy and Navigli (2009), inyse compositionality to build a phrase represen-



tation from constituent representations, and evesntology construction, recognizing textual entail-
to the actual representation used. The model iment and question answering.

tested by applying it to each element in the fol- In this task, the high and the low similarity sen-
lowing two sets: tence pairs are constructed in the following man-
ner. First, a target semantic relation, suciCas-

B , p L :
H = {(h, h')| andh’ are linguistic units  (2) pany X acquires Company i¥ chosen, and enti-

with high similarity} ties are chosen for each slot in the relation, such as
L = {(1,1")|l andl’ are linguistic units (3) Company X=Pfizeand Company Y=Rinat Neu-
with low similarity} roscience Then, sentences containing these enti-
ties are extracted and divided into two subsets. In
The resulting sets of similarity scores are: one of them,E, the entities are in the target se-

SH — {M(h,1)|(h, 1) € H} @) mantic relation, while in the othery E, they are

. . , not. The evaluation setd and L are then con-
St ={M 1)) e L} (5)  structed as follows:

The semantic model is evaluated according to
its ability to separateS” and S”. We will de-
fine specific measures of separation for the tasks L=ExNE (7)
that we propose shortly. While the particular def-
initions of “high similarity” and “low similarity”

H=FExFE\{(ee)lecE} (6)

In other words, the high similarity sentence
airs are all the pairs where both express the tar-
depend on the task, at the crux of both our evaILE . pa P
. . L et semantic relation, except the pairs between a
ations is that two sentences are similar if they ex: . . S i
. . . sentence and itself, while the low similarity pairs
press the same semantic relation between a given .
. . L . . are all the pairs where exactly one of the two sen-
entity pair, and dissimilar otherwise. This thresh- .
P . tences expresses the target relation.
old for similarity is closely tied to the argument ) .
. Several sentences expressing the reld#itrer
structure of the sentence, and allows considerable

S . acquires Rinat Neurosciene@ge shown in Exam-
flexibility in the other semantic content that may d

. . . L é)les 810 10. These sentences illustrate the amount
be contained in the sentence, unlike the bidirec- . . . )
of syntactic and lexical variation that the semantic

tional paraphrase detection task. Yet it ensures . )
. L . model must recognize as expressing the same se-
that a consistent and useful distinction for infer- : : . . .
. ) . . - mantic relation. In particular, besides recognizing
ence is being detected, unlike unconstrained sim- )
S synonymy or near-synonymy at the lexical level,
ilarity judgments. o
L models must also account for subcategorization
Also, compared to word similarity assessments. .
o o ifferences, extra arguments or adjuncts, and part-
or paraphrase elicitation, determining whether a . S
. > otﬁspeech differences due to nominalization.
sentence expresses a semantic relation is a muc

easier task cognitively for human judges. This bi(g) pfizer buysRinat Neuroscience to extend
nary judgment does not involve interpreting anu-  npeyroscience research and in doing so

merical scale or coming up with an open-ended  acquires a product candidate for OA.
set of alternative paraphrases. It is thus easier to  (jexical difference)

get reliable annotated data.
Below, we present two tasks that instantiatd9) A month earlier, Pfizer paidn estimated

this evaluation framework and choice of similar-  several hundred million dollars fdsiotech
ity threshold. They differ in that the first is tar- firm Rinat Neurosciencéextra argument,
geted towards recognizing declarative sentences subcategorization)

or phrases, while the second is targeted towards
guestion answering scenario, where one argume
in the semantic relation is queried.

{1 0) Pfizer to Expand Neuroscience Research
With Acquisition oBiotech Company Rinat
Neurosciencénominalization)

3.1 Task 1: Relation Classification Since our interest is to measure the models’

The first task is a relation classification task. Relaability to separateS” and S” in an unsuper-
tion extraction and recognition are central to a vavised setting, standard supervised classification
riety of other tasks, such as information retrievalaccuracy is not applicable. Instead, we employ



the area under a ROC curve (AUC), which doesnanually checked. We use only those cases that
not depend on choosing an arbitrary classificatiohave thus been determined to be correct question-
threshold. A ROC curve is a plot of the true posanswer pairs. As a result of this restriction, this
itive versus false positive rate of a binary classitask is rather more like Task 1 in how it tests a
fier as the classification threshold is varied. Thenodel's ability to recognize lexical and syntac-
area under a ROC curve can thus be seen as ttie paraphrases. This task also involves recog-
performance of linear classifiers over the scoresizing voicing alternations, which were automati-
produced by the semantic model. The AUC cawally extracted by the semantic parser.

also be interpreted as the probability that a ran- An example of a question-answer pair involv-
domly chosen positive instance will have a higheing a voicing alternation that is used in this task is
similarity score than a randomly chosen negativeresented in Example 13.

instance. A random classifier is expected to have

an AUC of 0 5. (13) Q:What does il-2 activate?
A: PI3K
3.2 Task 2: Restricted QA SentencePhosphatidyl inositol 3-kinase

The second task that we propose is a restricted (PI3K) is activated by IL-2.
form of question answering. In this task, the sys- Since there is only one elementihand hence

tem is given a questiop and a documerid CON- g1 or gach question and document, we measure

sisting of a list of sentences, in which one of they,, separation betweet!! andS” using the rank

sentences contains the answer to the question. We .1 score of answer-bearing sentence among

define: the scores of all the sentences in the document.
We normalize the rank so that it is between 0
A ={(q,d)|d e Danddanswers;}  (11) o least similar) and 1 (ranked most simi-
L={(¢,d)|d € D andd does notanswef} |51) Where ties occur, the sentence is ranked as

(12) it it were in the median position among the tied

In other words, the sentences are divided into tWBentences.. If the quegtl_on—an_swer pairs are zero-
subsets; those that contain the answey $tould Indexed by@’. a.nswer(l) is the |nde?< of the sen-
be similar tog, while those that do not should betence containing the answer for tii pair, and

dissimilar. We also assume that only one sentenégngﬂi(zt)h IS t?he number of seFtercljces Ln the do:z—
in each document contains the answerfsoon- ument, then the mean normalized rank score of a

tains only one sentence. system is:
Unrestricted question answering is a difficult answer (7)

problem that forces a semantic representation to norm.rank = 'ZE 1—- W

deal sensibly with a number of other semantic is-

sues such as coreference and information aggré- Experiments

gation which still seem to be out of reach for,

contemporary distributional models of meaningwe drew a number of recent distributional seman-

Since our focus in this work is on argument s,trucEIC models to compare in this Paper. we f|r§t de-
ribe the models and our reimplementation of

ture semantics, we restrict the question—answeS

pairs to those that only require dealing with paraE em, before describing the tasks and the datasets

phrases of this type used in detail and the results.

To do so, we semi-automatically restrict theg 1 Distributional Semantic Models

question-answer pairs by using the output of aOVe tested four recent distributional models and a

unsupervised clustering semantic parser (Poqgmma overlap baseline, which we now describe
and Domingos, 2009). The semantic parser clu§/—v ' '

. : . e extended several of the models to compo-
ters semantic sub-expressions derived from a de:,

itionally construct phrase representations usin
pendency parse of the sentence, so that those stb- y P P 9

. .~ component-wise vector addition and multiplica-
expressions that express the same semantic re- . .

: ) tion, as we note below. Since the focus of this pa-
lations are clustered. The parser is used to an-

. Per is on evaluation methods for such models, we
swer questions, and the output of the parser & ! ) " !
id not experiment with other compositionality

(14)



operators. We do note, however, that componené distributional representation of v,, the repre-
wise operators have been popular in recent litesentation of: in context,d’, is given by
ature, and have been applied across unrestricted

r_ -1
syntactic contexts (Mitchell and Lapata, 2009), @ =0, © Ry(r™") 7
so there is value in evaluating the performance of R, (r) = Z f(e,r,b) - ve, (18)
these operators in itself. The models were trained e f(erb) >0

on the Gigaword corpus (2nd ed., ~2.3B words). _ o
All models use cosine similarity to measure thévhere Ry(r) is the vector describing the selec-

similarity between representations, except for thional preference of wordlin relationr, f(c, 7, b)
baseline model. is the frequency of this dependency tripteis a

frequency threshold to weed out uncommon de-
Lemma Overlap This baseline simply repre- pendency triples (10 in our experiments), and
sents a sentence as the counts of each lemmaa vector combination operator, here component-
present in the sentence after removing stojise multiplication. We extend the model to com-
words. Let a sentence consist of lemma-tokens pyte sentence representations from the contextu-

mi,...,my,. The similarity between two sen- gjized word vectors using component-wise addi-
tences is then defined as tion and multiplication.
M(z,2") = #In(x,2') + #In(z',2) (15) TFP Thater et al. (2010)’s model is also sensi-
2| tive to selectional preferences, but to two degrees.
#In(z, ') = Z L (m;) (16) For example, the vector faratchmight contain
i1 a dimension labelled GBJ, OBJ- 1, t hr ow),

which indicates the strength of connection be-
wherel,/(m;) is an indicator function that returns yyeen the two verbs through all of the co-
Lif m; € 2/, and0 otherwise. This definition occurring direct objects which they share. Unlike
accounts for multiple occurrences of alemma. Egp, TFP’s model encodes the selectional prefer-
M&L Mitchell and Lapata (2008) propose gences in a single vector using frequency coun_ts.
framework for compositional distributional se-We extend thg mode.l.to the sentgnge Igvel with
mantics using a standard term-context vectdromponent-wise addition and multiplication, and

space word representation. A phrase is reprd/0rd vectors are contextualized by the depen-
sented as a vector of context-word counts (actfl€NCy neighbours. We use a frequency threshold

ally, pmi-scaled values), which is derived compo—Of 10 and a pmi threshold of 2 to prune infrequent

sitionally by a function over constituent vectors Word and dependencies.

such as component-wise addition or multiplicapgl  Dinu and Lapata (2010) (D&L) assume
tion. This model ignores syntactic relations ang, global set of latent senses for all words, and
is insensitive to word-order. models each word as a mixture over these latent

EQP Erk and Padd (2008) introduce a strucSenses. The vector for a wotgdin the context of

tured vector space model which uses syntactic g@-wordc; is modelled by

pendencies to model the selectipnal preferenges (ts ;) = Pzt ¢), . Plekcltie;)  (19)
of words. The vector representation of a word in
context depends on the inverse selectional prefewhere 2, x are the latent senses. By mak-
ences of its dependents, and the selectional prefg independence assumptions and decomposing
erences of its head. For example, suppcasteh probabilities, training becomes a matter of esti-
occurs with a dependeridall in a direct object mating the probability distribution®(z|t;) and
relation. The vector focatchwould then be in-  P(c;|z;) from data. While Dinu and Lapata
fluenced by the inverse direct object preference010) describe two methods to do so, based
of ball (e.g. throw, organizg, and the vector for on non-negative matrix factorization and latent
ball would be influenced by the selectional prefDirichlet allocation, the performances are similar,
erences otatch(e.g.cold, drift). More formally, so we tested only the latent Dirichlet allocation
given wordsa andb in a dependency relation, method. Like the two previous models, we ex-
tend the model to build sentence representations



Pfizer/Rinat N. Yahoo/Inktomi Besson/Paris Antoinettefia Average

Overlap | 0.7393| 0.6007 | 0.7395| 0.8914| 0.7427
Models trained on the entire GigaWord

M&L add 0.6196 0.5387 0.5259 0.7275| 0.6029
M&L mult 0.9036 0.6099 0.6443 0.8467| 0.7511
D&L add 0.9214 0.8168 0.6989 0.8932| 0.8326
D&L mult 0.7732 0.6734 0.6527 0.7659| 0.7163
Models trained on the AFP section

E&P add 0.7536 0.4933 0.2780 0.6408| 0.5414
E&P mult 0.5268 0.5328 0.5252 0.8421| 0.6067
TFP add 0.4357 0.5325 0.8725 0.7183| 0.6398
TFP mult 0.5554 0.5524 0.7283 0.6917| 0.6320
M&L add 0.5643 0.5504 0.4594 0.7640| 0.5845
M&L mult 0.8679 0.6324 0.4356 0.8258| 0.6904
D&L add 0.8143 0.9062 0.6373 0.8664| 0.8061
D&L mult 0.8429 0.7461 0.645 0.5948| 0.7072

Table 1: Task 1 results in AUC scores. The values in bold mtdithe best performing model for a particular
training corpus. The expected random baseline performarnts.

Entities: {X, Y} \ + N tion for comparison. Note that the AFP portion
Relation: acquires of Gigaword is three times larger than the BNC
{Pfizer, Rinat Neuroscienge 41 50 corpus (~100M words), on which several previ-
{Yahoo, Inktom} 115 433 ous syntactic models were trained. Because our
Relation: was born in main goal is to test the general performance of the
{Luc Besson, Par}s 6 126 models and to demonstrate the feasibility of our
{Marie Antoinette, Vienna 39 105 evaluation methods, we did not further tune the

parameter settings to each of the tasks, as doing

Table 2: Task 1 dataset characteristibsis the total . . . .
so would likely only yield minor improvements.

number of sentences+ is the number of sentences
that express the relation. 43 Task1

We used the dataset by Bunescu and Mooney
from the contextualized representations. We s€2007), which we selected because it contains
the number of latent senses to 1200, and train fenultiple realizations of an entity pair in a target
600 Gibbs sampling iterations. semantic relation, unlike similar datasets such as
the one by Roth and Yih (2002). Controlling for
the target entity pair in this manner makes the task
We reimplemented these four models, followingmore difficult, because the semantic model cannot
the parameter settings described by previous wokkake use of distributional information about the
where possible, though we also aimed for consisntity pair in inference. The dataset is separated
tency in parameter settings between models (fonto subsets depending on the target binary rela-
example, in the number of context words). For thgon (Company X acquires CompanyoY Person

non-baseline models, we followed previous workx was born in Place Yand the entity pair (e.g.,
and model only the 30000 most frequent lemmata¢ahooandnktomj (Table 2).

Context vectors are constructed using a symmet- The dataset was constructed  semi-
ric window of 5 words, and their dimensions rep-automatically using a Google search for the
resent the 3000 most frequent lemmatized contexfyo entities in order with up to seven content
words excluding stop words. Due to resource limwords in between. Then, the extracted sentences
itations, we trained the syntactic models over thgere hand-labelled with whether they express the
AFP subset of Gigaword (~338M words). We alsqarget relation. Because the order of the entities
trained the other two models on just the AFP porhas been fixed, passive alternations do not appear

4.2 Training and Parameter Settings



Pure models Mixed models ing off to word vectors from the GENIA corpus

All SUbsei‘ All Subset when a word vector could not be found in the

Overlap | 0.8770 0.7291) 0.8770 0.7291 Gigaword-trained model. We could not do this
Models trained on the entire GigaWord for the D&L model, since the global latent senses

M&L add | 0.7467 0.6106 0.8782 0.7523 that are found by latent Dirichlet allocation train-
M&L mult | 0.5331 0.5690 0.8841 0.7678 ing do not have any absolute meaning that holds
D&Ladd | 0.6552 0.5716 0.8791 0.7539 across multiple runs. Instead, we found the 5

D&L mult | 0.5488 0.5255 0.8841 0.7466 words in the Gigaword-trained D&L model that
Models trained on the AFP section were closest to each novel word in the GENIA
E&P add | 0.4589 0.4516 0.8748 0.7375 corpus according to cosine similarity over the co-
E&P mult | 0.5201 0.5584 0.8882 0.7719 occurrence vectors of the words in the GENIA

TFPadd | 0.6887 0.6443 0.8940 0.7871 corpus, and took their average latent sense distri-
TFP mult | 0.5210 0.5199 0.8785 0.7432 putions as the vector for that word.

Mé&L add | 0.7588 0.6206 0.8710 0.7371 Unlike in Task 1, there is no control for the
M&L mult | 0.5710 0.5540 0.8801 0.7540 named entities in a sentence, because one of the
D&L add | 0.6358 0.5402 0.8713 0.7305 entities in the semantic relation is missing. Also,
D&L mult | 0.5647 0.5461 0.8856 0.7683 distributional models have problems in dealing
with named entities which are common in this

Table 3: Task 2 results, in normalized rank scores, rOUS h as the names of genes and broteins
Subsetis the cases where lemma overlap does ngtOrPus, suc € es ot genes proteins.

achieve a perfect score. The two columns on the right© address these issues, we tested hybrid models
indicate performance using the sum of the scores froMyhere the similarity score from a semantic model
the lemma overlap and the semantic model. The exs added to the similarity score from the lemma
pected random baseline performanceis 0.5. overlap model.

The results are presented in Table 3. Lemma
overlap again presents a strong baseline, but the
hybridized models are able to outperform simple
lemma overlap. Unlike in Task 1, the E&P and
FP models are comparable to the D&L model,

in this dataset.

The results for Task 1 indicate that the D&L ad-
dition model performs the best (Table 1), thoug
the lemma oyerlap model presents a surprising nd the mixed TFP addition model achieves the
strong baseline. The syntax-modulated E&P an .

. est result, likely due to the need to more pre-
TFP models perform poorly on this task, even . L . o
. cisely distinguish syntactic roles in this task. The
when compared to the other models trained on t

AFP subset. The M&L multiplication model out- &L addition model, which achieved the best

performs the addition model, a result which cor-ﬁ]etr;?;:gzic?r;?szizﬁ dlt;:gﬁz tnooshze(;z)r:;i:zgf”—
roborates previous findings on the lexical substi- ' b

tution task. The same does not hold in the D&I_tatlon procedure for the D&L model, which could

latent sense space. Overall, some of the datas%% dbsorreissonably trained on such a small, special-
(YahooandAntoinett¢ appear to be easier for the pus.
models than otherdfizerandBessol, but more 5§ Related Work

entity pairs and relations would be needed to in- _
vestigate the models’ variance across datasets. Turney and Pantel (2010) survey various types of
vector space models and applications thereof in

4.4 Task?2 computational linguistics. We summarize below

We used the question-answer pairs extracted @ynumber of other word- or phrase-level distribu-
the Poon and Domingos (2009) semantic parsé@nal models.

from the GENIA biomedical corpus that have Several approaches are specialized to deal with
been manually checked to be correct (295 pairsftomography. The top-dowmulti-prototypeap-
Because our models were trained on newspapBfoach determines a number of senses for each
text, they required adaptation to this specialize¥ord, and then clusters the occurrences of the
domain. Thus, we also trained the M&L, E&Pword (Reisinger and Mooney, 2010) into these

and TFP models on the GENIA corpus, backSenses. A prototype vector is created for each
of these sense clusters. When a new occurrence



of a word is encountered, it is represented as r@sults demonstrate that compositional distribu-
combination of the prototype vectors, with the detional models of semantics already have some
gree of influence from each prototype determinedtility in the context of more empirically complex
by the similarity of the new context to the exist-semantic tasks than WSD-like lexical substitution
ing sense contexts. In contrast, the bottomeup tasks, in which compositional invariance is a req-
emplarbased approach assumes that each occuiisite property. Simply computing lemma over-
rence of a word expresses a different sense of ti&p, however, is a very competitive baseline, due
word. The most similar senses of the word are ade issues in these protocols with named entities
tivated when a new occurrence of it is encounterednd domain adaptivity. The better performance
and combined, for example with a kNN algorithmof the mixture models in Task 2 shows that such
(Erk and Pad6, 2010). weaknesses can be addressed by hybrid seman-

The models we compared and the above wortic models. Future work should investigate more
assume each dimension in the feature vector carefined versions of such hybridization, as well as
responds to a context word. In contrast, Washteixtend this idea to other semantic phenomena like
(2011) uses potential paraphrases directly as dioreference, negation and modality.
mensions in hisexpectation vectors Unfortu- We also observe that no single model or com-
nately, this approach does not outperform variposition operator performs best for all tasks and
ous context word-based approaches in two phrasitasets. The latent sense mixture model of Dinu
similarity tasks. and Lapata (2010) performs well in recognizing

In terms of the vector composition function,semantic relations in general web text. Because
component-wise addition and multiplication areof the difficulty of adapting it to a specialized
the most popular in recent work, but there exdomain, however, it does less well in biomedi-
ist a number of other operators such as tensaal question answering, where the syntax-based
product and convolution product, which are remodel of Thater et al. (2010) performs the best.
viewed by Widdows (2008). Instead of vectorA more thorough investigation of the factors that
space representations, one could also use a matdan predict the performance and/or invariance of
space representation with its much more expres:given composition operator is warranted.
sive matrix operators (Rudolph and Giesbrecht, In the future, we would like to evaluate other
2010). So far, however, this has only been apmodels of compositional semantics that have been
plied to specific syntactic contexts (Baroni andecently proposed. We would also like to collect
Zamparelli, 2010; Guevara, 2010; Grefenstettenore comprehensive test data, to increase the ex-
and Sadrzadeh, 2011), or tasks (Yessenalina aternal validity of our evaluations.
Cardie, 2011).

Neural networks have been used to learn bothCknowledgments

phrase structure and representations. In Sochengf would like to thank Georgiana Dinu and Ste-
al. (2010), word representations learned by neyan Thater for help with reimplementing their

ral network models such as (Bengio et al., 2006nodels.  Saif Mohammad, Peter Turney, and
Collobert and Weston, 2008) are fed as input intghe anonymous reviewers provided valuable com-
a recursive neural network whose nodes represegients on drafts of this paper. This project was

Syntactic constituents. Each node models both tl’ﬁjpported by the Natural Sciences and Engineer-
probability of the input forming a constituent anding Research Council of Canada.

the phrase representation resulting from composi-

tion.
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