
Hardware Acceleration for Elementary
Functions and RISC-V Processor

Jing Chen

Doctor of Philosophy

School of Computer Science

McGill University

Montreal, Quebec

2020-05-15

A Thesis Submitted to the Faculty of Graduate Studies and Research in
Partial Fulfillment of the Requirements for the Degree of Doctor of

Philosophy

Copyright c© 2020 Jing Chen

DEDICATION

To my beloved parents

ii

ACKNOWLEDGMENTS

First and foremost, I would like to express the gratitude to my supervi-

sor, Prof. Xue Liu, for giving me the freedom, which allowed me to choose

the Ph.D. thesis topics and engage in the Ph.D. thesis research on my own,

without outside interference.

Furthermore, I would also like to express the gratitude to my collaborator,

Prof. Jason H. Anderson and his research team at University of Toronto,

for his extensive knowledge and experience on field-programmable gate array

(FPGA) and high-level synthesis (HLS), which have significantly motivated

my current research.

I am very grateful for the precious chance to study and work at School of

Computer Science in McGill University. I sincerely appreciated the scholar-

ships and travel grants offered by my Department to support my Ph.D. studies,

and academic activities financially. I would like to thank Prof. Luc Devroye for

organizing my proposal exam defense, and Prof. Muthucumaru Maheswaran,

Prof. Clark Verbrugge for serving on my comprehensive/proposal exams, and

doctoral defense committees. I would also like to thank Prof. Brett Meyer

from the ECE Department for his valuable comments to my thesis final re-

vision. Moreover, I would like to thank my course instructors Prof. Bettina

Kemme (Distributed Systems), and Prof. Doina Precup (Machine Learning)

for the wonderful lectures they delivered. In addition, I received kindly help

and support from staffs in my Department and the University, especially Ms.

Ann Jack (Graduate Program Coordinator), Ms. Cheryl Bethelmy (Thesis

and Graduation Administrator) and Prof. Robin Beech (Associate Dean).

I enjoyed the fun days spent together with my friends in McGill. I will re-

member the company they provided during my difficult times. In the end, I

iii

would like to acknowledge my dear parents, for their love, understanding and

never-ending support to my Ph.D. study, and decisions for personal life. It is

a pity that I may not be able to list all persons who supported me during the

past six years, I wish you all a wonderful future!

iv

ABSTRACT

Many scientific applications rely on the evaluation of elementary tran-

scendental functions (e.g. log (x), 1
x
,
√
x, ex). Software math libraries are a

popular approach for realizing such functions, and frequently use series expan-

sion and/or lookup-table-based (LUT-based) methods. However, software ap-

proaches necessarily suffer from the traditional overheads of fetching/decoding

instructions, limited cache sizes, and so on. To this end, we present hardware

accelerators for such functions that deliver high computational throughput,

high accuracy and a small circuit.

We implement the reciprocal (1
x
) and square root (

√
x) functions into

pipelined hardware accelerators on FPGA. The proposed accelerators are de-

signed with iterative, and LUT-based algorithms. Here, the LUT-based al-

gorithm uses approximately 1 KB LUT along with a degree-2 polynomial in-

terpolation. All algorithms are specified using C language, and synthesized

into RTL with the LegUp HLS [5]. In an experimental study, we compare our

LUT-based accelerators with IP cores from the Intel/Altera FPGA vendor.

Results show that our LUT-based accelerators offer considerably better area

usage, while Intel/Altera IP cores operate at a modestly higher throughput.

Both ours and Intel/Altera IP cores achieve 1 ULP error. The LUT-based

algorithm is generic in the sense that it could be used to implement an entire

library of single-precision elementary functions into high-performance hard-

ware accelerators.

We also implement a 32-bit integer RISC-V [32] multi-cycle processor

on FPGA, which consists of 39 user instructions. The processor is specified

using C language, and synthesized into RTL with the LegUp HLS [5]. Cus-

tom testing programs are developed to verify if each instruction adheres to

v

the RISC-V specification. We demonstrate that through changes to the C

specification and HLS constraints, RISC-V processors with different perfor-

mance/area trade-offs can be explored rapidly. One implementation of the

multi-cycle processor uses 795 ALMs (adaptive logic modules) on an Intel/Al-

tera Cyclone V FPGA, and is operable at 124.1 MHz. We believe that, in

the future, integrating high-performance elementary transcendental function

accelerators into a RISC-V soft processor on FPGAs may bring significant

performance benefits to accelerate compute-intensive applications.

vi

ABRÉGÉ

De nombreuses applications scientifiques reposent sur l’évaluation des

fonctions transcendantales élémentaires (par exemple log (x), 1
x
,
√
x, ex). Les

bibliothèques mathématiques de logiciels sont approche populaire pour réaliser

de telles fonctions et utiliser fréquemment des méthodes d’extension de série

et/ou basées sur des tables de recherche (basées sur LUT). Cependant, les

approches logicielles souffrent nécessairement des frais généraux traditionnels

de récupération / décodage instructions, tailles de cache limitées, etc. À cette

fin, nous présentons le matériel accélérateur pour de telles fonctions qui four-

nissent un débit de calcul élevé, haut précision et un petit circuit.

Nous mettons en œuvre la réciproque (1
x
) et racine carrée (

√
x) fonctionne en

accélérateurs matériels pipelinés sur FPGA. Les accélérateurs proposés sont

conçus avec des algorithmes itératifs et basés sur LUT. Ici, l’algorithme basé

sur LUT utilise environ 1 KB LUT avec une interpolation polynomiale de

degré 2. Tous les algorithmes sont spécifiés en langage C et synthétisés en

RTL avec LegUp HLS [5]. Dans une étude expérimentale, nous comparons

nos Accélérateurs basés sur LUT avec cœurs IP du fournisseur Intel / Altera

FPGA. Les résultats montrent que nos accélérateurs basés sur LUT offrent

une surface considérablement meilleure tandis que les cœurs IP Intel / Altera

fonctionnent à un débit légèrement supérieur. Les cœurs IP nôtres et Intel /

Altera obtiennent 1 erreur ULP. Le LUT algorithme est générique dans le sens

où il pourrait être utilisé pour mettre en œuvre un ensemble bibliothèque de

fonctions élémentaires simple précision en accélérateurs matériels haute per-

formance.

Nous implémentons également un processeur multi-cycle RISC-V [32] 32 bits

sur FPGA, qui se compose de 39 instructions d’utilisation. Le processeur est

vii

spécifié utilisant le langage C, et synthétisé en RTL avec LegUp HLS [5]. Des

programmes de tests personnalisés sont développés pour vérifier si chaque in-

struction respecte la spécification RISC-V. Nous démontrons que grâce à des

modifications du spécifications et contraintes HLS, les processeurs RISC-V

avec différents compromis performances / zone peuvent être explorés rapide-

ment. Une mise en œuvre du processeur multi-cycle utilise 795 ALM (modules

logiques adaptatifs) sur un FPGA Intel / Altera Cyclone V et fonctionne à

124,1 MHz. Nous pensons qu’en l’avenir, intégrant la fonction transcendan-

tale élémentaire à haute performance accélérateurs dans un processeur logiciel

RISC-V sur FPGA peut apporter des des avantages en termes de performances

pour accélérer les applications exigeantes en calcul.

viii

TABLE OF CONTENTS

DEDICATION . ii

ACKNOWLEDGMENTS . iii

ABSTRACT . v

ABRÉGÉ . vii

LIST OF TABLES . xii

LIST OF FIGURES . xiv

1 Introduction . 2

1.1 Clarification of Research Contribution 5
1.1.1 My Personal Contributions to the Packages from 1 to 3 5
1.1.2 Algorithm Improvements Compared to Master Thesis 8

1.2 Thesis Organization . 8

2 Background . 10

2.1 What Are Elementary Transcendental Functions? 11
2.2 Why Are Elementary Functions Important? 11
2.3 IEEE-754 Floating-Point Standard 13
2.4 Unit in the Last Place (ULP) 15
2.5 Prevalent Approaches . 16
2.6 Important Properties . 20
2.7 Discussion . 21
2.8 The Rise of the FPGA . 23
2.9 Development of Hardware Design Methodology 25

2.9.1 Design abstraction levels 25
2.9.2 Register-Transfer Level (RTL) and Hardware De-

scription Languages (HDLs) 27
2.9.3 High-Level Synthesis (HLS) 28

2.10 Heterogeneous Computing 29

3 Reciprocal Accelerators . 31

3.1 Publication . 31
3.2 Organization . 31
3.3 Introduction . 32

ix

3.4 Related Work . 33
3.4.1 Non-Iterative Algorithms 33
3.4.2 Iterative Algorithms 36
3.4.3 Clarification Regarding Accuracy 37

3.5 Range Reduction . 38
3.6 Iterative Implementation: Trial Subtraction 39
3.7 Non-Iterative Implementation: Lookup-Table (LUT) 43
3.8 Error Study . 44

3.8.1 Exhaustive testing 44
3.8.2 Error Distribution 45

3.9 Experimental Study . 46
3.9.1 LUT-Based Reciprocal Accelerator 47
3.9.2 Iterative Reciprocal Accelerator 50

3.10 Performance Comparison 51
3.11 Reduced-Precision Variants 53
3.12 HLS C Implementation . 55
3.13 Summary . 57

4 Square Root Accelerators . 59

4.1 Publication . 59
4.2 Organization . 59
4.3 Introduction . 59
4.4 Related Work . 60

4.4.1 Non-Iterative Algorithms 60
4.4.2 Iterative Algorithms 63

4.5 Range Reduction . 65
4.6 Iterative Implementation: Newton-Raphson Method 66

4.6.1 Case Study . 67
4.7 Non-Iterative Implementation: Lookup Table (LUT) 69
4.8 Error Study . 70

4.8.1 Exhaustive testing 70
4.8.2 Error Distribution 71

4.9 Experimental Study . 71
4.9.1 LUT-Based Square Root Accelerator 72
4.9.2 Iterative Square Root Accelerator 73

4.10 Performance Comparison 74
4.11 HLS C Implementation . 76
4.12 Summary . 80

5 RISC-V Soft Processor . 81

5.1 Publication . 81
5.2 Introduction and Organization 81
5.3 Motivation . 82
5.4 Introduction of RISC-V ISA 83

x

5.4.1 Features of the RISC-V ISA 83
5.4.2 Overview of RISC-V ISA 84

5.5 Related Work . 86
5.6 Architecture of RV32I Processor 91

5.6.1 User Register File 91
5.6.2 Harvard architecture 93
5.6.3 Instruction Formats/Functions 93

5.7 HLS C implementation . 97
5.8 Testbenches for RV32I Processor 105

5.8.1 Manually Created Testing Programs 105
5.8.2 Testing Programs Generated from GCC toolflow . . 108

5.9 Experimental Study of RV32I Processor 108
5.9.1 RV32I Multi-Cycle Processor 109

5.10 Performance Comparison 110
5.10.1 Instructions per Cycle (IPC) 112

5.11 Summary . 112

6 Conclusion and Future Work . 113

Appendix . 116

6.1 Testing Program for R-type Instructions: 116
6.2 Testing Program for I-type Instructions: 120
6.3 Testing Program for LS-type Instructions: 124
6.4 Testing Program for B-type Instructions: 129

6.4.1 If-Then Program for Testing B-type Instructions . . 129
6.4.2 While-Loop Program for Testing B-type Instructions: 132
6.4.3 Procedure Call Program for Testing B-type Instruc-

tions: . 137
6.4.4 Nested Procedure Call Program for Testing B-type

Instructions: . 142

References . 148

xi

LIST OF TABLES
Table page

2–1 Frequently-used Elementary Transcendental Functions 11

2–2 Represented Values for Single-Precision Numbers 15

2–3 Cases with 1 ULP Error . 16

2–4 8 KB LUT with high 11-bits as index [49] 19

2–5 24 KB LUT for degree-2 polynomial interpolation [49] 20

2–6 A Variable-Precision DSP Block for Cyclone V Devices [10] . . 24

2–7 Variable-Precision DSP Configurations for Cyclone V Devices [10] 24

3–1 Comparison of the proposed and previous reciprocal implemen-
tations . 34

3–2 Exception Processing for Reciprocal [50] 43

3–3 Error distribution for reciprocal [50] 46

3–4 Intel vs. our LUT-based reciprocal accelerators [50] 48

3–5 Iterative implementations of reciprocal, with and without ex-
ception handling [50] . 51

3–6 Reduced-precision variants of iterative reciprocal [50] 54

3–7 Reduced precision variants of LUT-based reciprocal [50]. 54

4–1 Comparison of our proposed and previous square root imple-
mentations . 62

4–2 Exception handling for square root. [50] 69

4–3 Error distribution for square root [50] 71

4–4 Intel vs. Our LUT-based square root accelerators [50] 72

4–5 Newton’s iterative implementations of square root – with and
without exception handling [50] 74

5–1 Summary of previous 32-bit soft processor implementations . . 87

xii

5–2 Categories of RV32I ISA. 106

5–3 Our RV32I multi-cycle processor 110

5–4 Performance comparison between HLS-interpreted RV32I cores
and RTL implementations of RV32I 111

xiii

LIST OF FIGURES
Figure page

2–1 IEEE-754 single and double-precision floating-point formats [48] 14

2–2 Digital Design Abstraction Levels [6] 26

3–1 Throughput vs. area (eALMs) trade-offs for reciprocal acceler-
ators. [50] . 50

4–1 Throughput vs. area (eALMs) trade-offs for square root accel-
erators [50] . 73

5–1 ISA serves as the interface between software and hardware [62] 82

5–2 RV32I general-purpose user registers [32] 92

5–3 Harvard architecture for RV32I processor 94

5–4 RV32I instruction formats [32] 95

5–5 Area and FMax comparisons between HLS-generated RV32I
cores and RTL implementations of RV32I 111

xiv

Acronyms

ASIC Application Specific Integrated Circuit. 23

AXI4 Advanced extensible Interface 4. 88

CORDIC Coordinate Rotation Digital Computer. 64

DMIPS Dhrystone Million Instructions executed per Second. 89

DRAM Dynamic Random Access Memory. 85

eALM effective Adaptive Logic Module. 47

FPGA Field Programmable Gate Array. 3

GB Giga Byte. 18

GCC GNU Compiler Collection. 84

GPU Graphical Processing Unit. 29

HDL Hardware Description Level. 27

HLS High Level Synthesis. 10

HMMs Hidden Markov Models. 12

IC Integrated Circuit. 25

IDE Integrated Development Environment. 84

IEEE Institute of Electrical and Electronics Engineers. 10

ILP Instruction Level Parallelism. 89

IR Intermediate Representation. 29

LLVM Low Level Virtual Machine. 29, 84

LSB Least Significant Bit. 41

xv

LUT Look-up Table. 2

MMU Memory Management Unit. 90

MSB Most Significant Bit. 43

NOC Network of Chip. 88

OS Operating System. 89

QEMU Quick Emulator. 84

RAM Random Access Memory. 23

RoCC Rocket coprocessor interface. 88

RTL Register Transfer Level. 10

SAR Synthetic Aperture Radar. 65

SIMD Single Instruction Multiple Data. 30

TLB Translation Lookaside Buffer. 90

VHDL Very High-speed Hardware Description Language. 27

xvi

Glossary

Dhrystone An integer computing benchmark. 89

Intel/Altera A leading commercial FPGA vendor. 39

LegUp A HLS startup at University of Toronto. 46

NVIDIA A leading commercial GPU vendor. 83

Quartus A FPGA design software developed by Intel/Altera. 47

Verilog A hardware description language. 27

Xilinx A leading commercial FPGA vendor. 39

1

Chapter 1
Introduction

Many scientific computing applications require frequent evaluation of ele-

mentary transcendental functions, such as logarithms (log x), exponents (ex),

reciprocals (1
x
) and, square roots (

√
x), etc. In the past, researchers imple-

mented such functions within software math libraries (e.g. libm C99 [3]),

typically by using a series approximation (e.g. a Taylor series). To produce

accurate approximations, high-order polynomials are necessary, which require

numerous addition and multiplication operations. Thus, series approximations

may lead to lengthy execution times when high accuracy is a paramount goal.

In order to speed up function evaluation, researchers started to imple-

ment such functions using dedicated hardware accelerators [118, 120, 119, 59].

In the 1980s, the Intel 8087 became the first math co-processor to compute

elementary transcendental functions [97]. However, its performance was less

than satisfactory since the math functions on the co-processor were executed

using micro-code: essentially another software implementation. Subsequently,

as memory became inexpensive, the capacity of memory in computer systems

increased dramatically [27]. Thanks to such memory improvements, look-up

table (LUT) approximation has been extensively used by the software math

libraries, which makes functions evaluation considerably faster and more accu-

rate [107, 108]. Using this method, the function values have been pre-computed

and stored in a LUT. Since a large LUT is likely to cause frequent data swap-

ping between the cache and the main memory (so-called cache thrashing [99]),

the LUT approach may still suffer from lengthy evaluation time.

2

Since the mid-to-late 2000s, CPU clock frequency scaling plateaued at

around 3 GHz due to excessive power density [104]. As a result, it was not

practical to accelerate software math library merely via CPU frequency scaling.

In order to accommodate the growing needs of high-performance computing,

researchers returned to the study of hardware acceleration of elementary tran-

scendental functions. With the fast growth of field-programmable gate array

(FPGA) technology, FPGA-based math function accelerators show numerous

advantages over the software equivalents [57, 58]. As opposed to the design of

the Intel 8087 math co-processor, the core algorithm of function evaluation has

been implemented as hardware circuits instead of using the micro-instructions

of the CPU. With such application-specific hardware, tailored specifically to

the task, hardware math accelerators will have great potential to outperform

software math libraries.

Field-programmable gate arrays (FPGAs) are integrated circuits that are

configurable in the “field” by the end user to implement any digital circuit.

FPGA chips are a $7 billion US dollars industry today, and they are widely

used in industrial, communications, consumer, and other applications. The

advantage of an FPGA over a custom ASIC (whose function is fixed at the

time of manufacture) is that an FPGA can be configured in seconds, and can

later be reconfigured, to implement a different application or to fix bugs, etc.

A recent development in the FPGA domain is that multiple cloud vendors,

including Microsoft, Huawei, and Amazon, have deployed FPGAs into their

clouds, where they are used to implement accelerators, working alongside stan-

dard processors. One can now rent time on a cloud-deployed FPGA, and use

it for application-specific acceleration, from anywhere in the world. Further

details on FPGA technology are provided in the background Chapter 2.

3

To use an FPGA, one has generally needed to have strong skills in com-

puter hardware design. Circuit design for FPGAs involved the use of hardware

description languages (HDLs), primarily Verilog or VHDL, which require the

desired circuit behaviour to be specified at a very low level of abstraction. An

HDL is a textual/software description of a hardware circuit, that describes

hardware behaviours. In an HDL, one describes the hardware functionality

at the register transfer level (RTL), which requires a designer to specify the

circuit behaviour in each hardware clock cycle. While software programs can

be compiled and executed to verify functionality, with an HDL, one must sim-

ulate the behaviour of the specified hardware to verify correctness, using a

logic simulator such as ModelSim.

Recently, high-level synthesis (HLS) hardware design methodologies have

gained popularity as an alternative to using HDLs and the RTL level of design

abstraction. With HLS, one writes a C/C++ software program to specify the

desired behaviour. The program is then compiled (e.g. with gcc) and run on a

standard microprocessor to verify its functionality and correctness. Following

this, one uses an HLS tool to “compile” the C/C++ specification automatically

into a hardware circuit in RTL. HLS allows hardware design to happen at a

higher level of abstraction, and makes hardware accessible to those with solely

software skills. The combination of FPGAs and HLS is quite powerful for

the implementation of hardware accelerators. We elaborate on digital circuit

design methodologies further in Chapter 2.

In the following sections of this chapter, in section 1.1, clarification of

research contribution is presented. The organization of the remainder of the

thesis are summarized in section 1.2.

4

1.1 Clarification of Research Contribution

The purpose of writing this section is to avoid the potential intellectual

property disputes arose from my Ph.D. thesis research in the future. To this

end, I clarify my personal contribution from two other professors (Prof. Xue

Liu, Prof. Jason H. Anderson) for the research presented in my Ph.D. thesis.

During my Ph.D. study, I mainly have accomplished three research packages:

1. Design and implementation of the reciprocal accelerator.

2. Design and implementation of the square root accelerator.

3. Design and implementation of the RISC-V soft processor.

I am grateful to my supervisor, Prof. Xue Liu, for giving me the freedom,

which allowed me to choose my Ph.D. thesis topics and conduct my Ph.D.

thesis research on my own, without outside interference. Prof. Liu did not

offer any guidance or help to: 1) my Ph.D. thesis topics selection, and 2) my

Ph.D. thesis research. Since his research directions are different from mine,

and he is not optimistic about my Ph.D. thesis research topics.

1.1.1 My Personal Contributions to the Packages from 1 to 3

1. Design and implementation of the reciprocal accelerator. The

detailed contributions are summarized as follows:

(a) I design the algorithm of a single-precision (32-bit) reciprocal accel-

erator, which is based on look-up table (LUT ≈ 1 KB) and degree-2

polynomial interpolation. The algorithm is implemented using C

language.

(b) I implement a single-precision (32-bit) reciprocal accelerator using

C language, which is based on the trial-subtraction.

(c) By treating reciprocal results generated by the GNU math.h library

as a golden benchmark, our LUT-based and trial-subtraction accel-

erators are compared with the benchmark via exhaustive testing, to

5

generate error distribution report. It shows both LUT-based and

trial-subtraction accelerators have 1 ULP maximum error.

(d) Besides 1 ULP precision accelerators, I implement reduced-precision

reciprocal accelerators using C language, for applications which are

more critical on speed and circuit area.

(e) The LegUp HLS is applied to interpret the reciprocal accelerators

specified in C software to Verilog implementations.

(f) The Quartus and ModelSim are used to synthesize the Verilog im-

plementations into hardware targeting Intel/Altera Cycle V 45nm

FPGA.

I finished tasks (a), (b), (c), (d) only by myself. Prof. Jason H. Ander-

son helped on task (e). The LegUp HLS tool [5] is provided by Prof.

Anderson’s team at University of Toronto.

2. Design and implementation of the square root accelerator. The

detailed contributions are summarized as follows:

(a) I design the algorithm of a single-precision (32-bit) square root

accelerator, which is based on look-up table (LUT ≈ 1 KB) and

degree-2 polynomial interpolation. The algorithm is implemented

using C language.

(b) I implement a single-precision (32-bit) square root accelerator using

C language, which is based on Newton’s method.

(c) By treating square root results generated by the GNU math.h li-

brary as a golden benchmark, our LUT-based and Newton’s accel-

erators are compared with the benchmark via exhaustive testing, to

generate error distribution report. It shows both LUT-based and

Newton’s accelerators have 1 ULP maximum error.

6

(d) The LegUp HLS is applied to interpret the square root accelerators

specified in C software to Verilog implementations.

(e) The Quartus and ModelSim are used to synthesize the Verilog im-

plementations into hardware targeting Intel/Altera Cycle V 45nm

FPGA.

I finished tasks (a), (b), (c) only by myself. Prof. Jason H. Ander-

son helped on task (d). The LegUp HLS tool [5] is provided by Prof.

Anderson’s team at University of Toronto.

3. Design and implementation of the RISC-V soft processor. The

detailed contributions are summarized as follows:

(a) I read and understand the specification of the 32-bit RISC-V inte-

ger instruction set (RV32I), which mainly focuses on the function

description of the instructions.

(b) I implement a RV32I multi-cycle processor using C language, which

fully realizes the logical and structural functions of the 39 user

instructions.

(c) I test each instruction in the RV32I instruction set to make sure it

executes correctly and adheres to the RISC-V specification.

(d) Custom programs are also created by using RV32I instructions for

further testing, which include:

i. Manually created testing programs in RV32I assembly code.

ii. Testing programs generated from GCC toolflow.

(e) The LegUp HLS is applied to interpret the RV32I implementation

specified in C software to a multi-cycle processor in Verilog.

(f) The Quartus and ModelSim are used to synthesize the processor im-

plementation specified in Verilog into hardware targeting Intel/Al-

tera Cycle V 28nm FPGA.

7

I finished tasks (a), (b), (c) and the part (i) of task (d) only by myself.

Prof. Jason H. Anderson helped on the part (ii) of task (d) and task

(e). The LegUp HLS tool [5] is provided by Prof. Anderson’s team at

University of Toronto.

1.1.2 Algorithm Improvements Compared to Master Thesis

The LUT-based algorithms used to implement reciprocal and square root

accelerators are developed based on the algorithm of implementing the loga-

rithm in my master thesis [48]. Since the algorithm used by the logarithm is

universal, it could be applied to implement an entire library of single-precision,

floating-point elementary functions. Compared to the algorithm presented in

my master thesis, there are four significant innovations in our new LUT-based

algorithm:

1. The LUT compression technique has been improved, so that the LUT is

6-8× smaller without harming accuracy.

2. Worst accuracy of the accelerator has been improved to 1 ULP from 3

ULP.

3. The computation of the degree-2 polynomial interpolation has been re-

duced to two multiplications and two additions from three multiplica-

tions and two additions.

4. The internal computation format changes from ≈70 bits to 32 bits.

1.2 Thesis Organization

The remainder of the thesis is organized as follows: Chapter 2 begins

with a background on the frequently-used elementary transcendental func-

tions and their applications, IEEE-754 single-precision floating-point represen-

tation, ULP (unit in the last place), LUT-based function evaluation method,

FPGA technology, and digital circuit design methodology (RTL, HLS). Chap-

ters 3 and 4 elaborate on the design and implementation of the reciprocal

8

and square root hardware accelerators, respectively. The algorithm design,

accuracy, speed and circuit area of the proposed accelerators are addressed.

Chapter 5 presents the design and implementation of the 32-bit RISC-V soft

processor. First, we give a brief introduction about the RISC-V ISA. Then,

the architecture of the processor, and the testing programs are proposed. In

evaluation, we compare our processor with two open source RISC-V imple-

mentations in terms of speed and area on FPGA. Finally, conclusions and

suggestions for future work are provided in Chapter 6. Seven manually cre-

ated testing programs for the RISC-V processor are listed in the Appendix.

9

Chapter 2
Background

In this chapter, we provide background on elementary transcendental

functions, FPGA technology, and digital circuit design methodologies. In

Sections 2.1 and 2.2, definitions and applications of elementary transcenden-

tal functions are presented. A complete list of frequently-used functions is

shown in Table 2–1. In Sections 2.3 and 2.4, we introduce the IEEE-754

floating-point standard and ULP (unit in the last place) metric, respectively.

In Section 2.5, common approaches which have been extensively used to imple-

ment elementary transcendental functions are presented. We further explain

the pros and cons of such approaches. Then, we propose several important

properties to measure the performance of such functions in section 2.6, and

discuss the relationships and various trade-offs made between those properties

in section 2.7.

The concept of modern FPGA technology is presented in Section 2.8,

as FPGAs are the hardware platform we use for several accelerator imple-

mentations. We introduce the major features and general composition of the

FPGA. Moreover, the architecture of an FPGA and its role in cloud comput-

ing are noted. In Section 2.9, we review the evolution of the methods used to

design and verify hardware. That leads us to take a look at the various ab-

straction levels of FPGA programming, which mainly include register-transfer

level (RTL) and high-level synthesis (HLS) design. We further elaborate on the

HLS technique, which considerably improves the productivity of hardware de-

sign. The concept of heterogeneous computing is discussed in Section 2.10. In

10

this context, computation units in various architectures work collaboratively

to accelerate a broader range of applications.

2.1 What Are Elementary Transcendental Functions?

In mathematics, a transcendental function is a function which cannot

be expressed in terms of a finite composition of the algebraic operations of

addition, subtraction, multiplication, division, raising to a power and root ex-

traction [33, 92, 77, 98]. Examples of transcendental functions include, but are

not limited to, logarithmic (log x), exponential (ex) and trigonometric (sin x)

functions. An elementary function is a one-variable function that is com-

posed of a finite number of algebraic, logarithmic, exponential or, trigonomet-

ric functions through combinations using addition, subtraction, multiplication

or division [25, 92, 77, 98]. Examples of elementary functions are power (x2),

reciprocal (1
x
), square root (

√
x), and so on. To help readers get a general

idea, the frequently-used elementary transcendental functions (or elementary

functions, for short) are shown in Table 2–1. In this thesis, we implement

two frequently-used elementary functions into hardware accelerators, which

are reciprocal and square root.

Table 2–1: Frequently-used Elementary Transcendental Functions
powers x, x2, x3

reciprocal 1
x

roots
√
x, 3
√
x

exponential ex

logarithm log x

trigonometric functions sin(x), cos(x), tan(x), etc.

inverse trigonometric functions arcsin(x), arccos(x), arctan(x), etc.

hyperbolic functions sinh(x), cosh(x), etc.

2.2 Why Are Elementary Functions Important?

Modern computer systems that support floating-point computations usu-

ally require floating-point mathematical libraries (e.g. math.h). The li-

braries include a large collection of elementary functions, such as exponents,

11

logarithms, powers, and roots. Numerous scientific applications rely on the

evaluation of elementary functions, so there are both software [7, 8] and

hardware [2] implementations of these functions. The applications of log-

arithmic, reciprocal, square root and exponential functions are summarized

below:

• The logarithmic function has been used to compute log-likelihood

in Gaussian mixture models for multimedia applications. For example,

a machine learning-based speech recognition system, the ICSI speaker

engine [114], spends 80% of its run time on computing log-likelihood.

Furthermore, machine learning algorithms compute logarithm to sim-

plify their evaluation of loss functions. For example, HMMs (hidden

Markov models) compute logarithm to transform products of loss func-

tions into sums to reduce cost and retain accuracy. In addition, logarithm

and exponent are also frequently-used by web search and data analytics

applications in data centres [61, 79].

• The reciprocal and square root functions have been extensively

used in image and digital single processing applications. In particular,

matrix decomposition, such as QR and LU algorithms, rely on evalu-

ations of reciprocal and square root [91]. Moreover, they are also im-

portant for MIMO (Multiple-Input, Multiple Output) wireless commu-

nication systems [91]. In addition, square root is heavily used in solving

stochastic problems, probabilistic calculations, and numerical approxi-

mation [47].

• The exponential function is a primary function used by scientists.

Most biological systems (e.g. population growth/decline) and investment

strategies can be modelled using exponential functions [35]. In machine

learning applications, the exponential function has been used to evaluate

12

the sigmoid activation function of neural networks, thanks to the non-

linear and differentiable properties of exponents [51]. Furthermore, the

exponential function is used for maximum entropy classifiers since it can

ensure a global minimum for the error functions [88].

2.3 IEEE-754 Floating-Point Standard

There were numerous floating-point formats at the start of the computer

era. The IEEE-754 floating-point standard was widely adopted in 1985. It

describes floating-point representations, arithmetic, rounding rules, exception

handling, etc. In [52], the 2008 revision of the standard, specifications of

frequently-used elementary functions are included. Figure 2–1 illustrates how

single- (32-bits) and double- (64-bits) precision floating-point numbers are

represented by the IEEE-754 2008 standard.

A floating-point number contains three parts: which are the sign, expo-

nent and mantissa. Single-precision has a 1-bit sign, 8-bit exponent and 23-bit

mantissa. There is a radix point between the 22nd and 23rd bit. A hidden

bit before the radix point can be either bit-0 or bit-1, depending on the expo-

nent. Similarly, double-precision has a 1-bit sign, 11-bit exponent and 52-bit

mantissa. The radix point stands between the 51st and 52nd bit. In [52],

the IEEE-754 2008 standard also added 128-bit and 256-bit representations,

which are called quadruple and octuple-precision, respectively. However, they

are not widely supported by hardware yet.

According to the IEEE-754 standard, the decimal value of a single-precision

floating-point number fp can be represented by the sign and the product of

the factor 2e7−0−127 and the mantissa 1.m22−0, as shown by equation 2.1:

fp = (−1)s × 2e7−0−127 × 1.m22−0 (2.1)

13

31 30 23 22 0

.
radix point

exponent (8-bit) mantissa (23-bit)sign

0 or 1

hidden part

63 62 52 51 0

.
radix point

exponent (11-bit) mantissa (52-bit)sign

0 or 1

hidden part

Figure 2–1: IEEE-754 single and double-precision floating-point formats [48]

In this case, sign s is either positive or negative. The value that fp repre-

sents can fall into one of the five categories presented in Table 2–2:

• zero: If the exponent and mantissa are 0x00 and 0x0000, respectively,

then fp represents zero.

• subnormal: If the exponent is 0x00, but the mantissa is not 0x00, then

the exponent represents −126, and the hidden bit before radix point is

bit-0, so fp represents ±2−126 × 0.m (values very close to zero).

• normalized: If the biased exponent e is within the interval (0x00, 0xff),

then the real exponent is e− 127 (need to subtract the bias of 127), and

the hidden bit before the radix point is bit-1, so fp represents ±2e−127 ∗

1.m.

• infinity: If the exponent and mantissa are 0xff and 0x0000, respectively,

then fp represents Infinity.

• not-a-number: If the exponent is 0xff, and the mantissa is not 0x0000,

then fp represents Not-a-Number.

14

Table 2–2: Represented Values for Single-Precision Numbers
Category Sign Exponent Mantissa Value

zero 0 or 1 e=0x00 m=0x0000 ±0.0

subnormal 0 or 1 e=0x00 m6=0x0000 ±2−126 × 0.m

normalized 0 or 1 0x00<e<0xff random ±2e−127 × 1.m

infinity 0 or 1 e=0xff m=0x0000 ±inf

not-a-number 0 or 1 e=0xff m 6=0x0000 ±NaN

In Table 2–2, we observe that the arithmetic of double-precision repre-

sentation is more complicated than that of single-precision for the following

reasons: 1) double-precision has higher precision, it uses 52-bits mantissa, so

double-precision functions need wider bit-width to perform internal computa-

tions to retain the precision; 2) double-precision consists of more floating-point

values on its domain. For example, it has 263 positive floating-point numbers,

which is 232 times more than that of single-precision. Hence, the workload of

doing exhaustive testing on double-precision functions is much heavier; 3) the

primitive LUT of double-precision log x (without any errors) is approximately

32,768 TB. A table of this size can hardly fit into the disk of current computer

systems. After realizing the complexity of the double-precision arithmetic, we

prefer to begin with the single-precision implementation of elementary func-

tions. In fact, a large number of double-precision math function libraries in

software use single-precision computing engines as their kernels.

2.4 Unit in the Last Place (ULP)

In numerical analysis, unit in the last place (ULP) [67] is widely used

as a metric to measure error for floating-point arithmetic. It represents the

space between floating-point numbers as defined by the IEEE-754 standard.

For example, 1 ULP represents the space between two adjacent floating-point

numbers. Table 2–3 shows two 1 ULP testing cases for reciprocal and square

root, respectively. In the first case, x1 represents a single-precision input of

reciprocal, GNUrecip(x1) represents the reciprocal evaluation by the GNU

15

math.h library, and MYrecip(x1) represents our hardware implementation

of reciprocal. In the second case, x2 represents a single-precision input of

square root, GNUsqrt(x2) represents the square root evaluation by the GNU

math.h library, and MYsqrt(x2) represents our hardware implementation of

square root. In this case, MYrecip(x1) has a 1 ULP error with respect to

GNUrecip(x1) since they have the same exponent and the difference of the

mantissas is 0.0000...01. Similarly, MYsqrt(x2) also has a 1 ULP error with

respect to GNUsqrt(x2) when applying the same rule. When we say that

the maximum error of either a reciprocal or square root is 1 ULP in later

sections, it implies that our interpolated evaluations have at most 1 ULP error

with respect to evaluations from the GNU math.h library. Moreover, as will

be demonstrated, for a large percentage of inputs, our hardware accelerators

exhibit no error.

Table 2–3: Cases with 1 ULP Error
Case 1 Sign Exponent Mantissa
x1 0 00000001 00000010000100111101000

GNUrecip(x1) 0 11111100 11111011111000001111000
MYrecip(x1) 0 11111100 11111011111000001110111

Case 2 Sign Exponent Mantissa
x2 0 00000001 00001001000101100011101

GNUsqrt(x2) 0 01000000 00000100100000001111100
MYsqrt(x2) 0 01000000 00000100100000001111101

2.5 Prevalent Approaches

Series expansion and/or look-up tables (LUTs) have been the preva-

lent approaches to realizing elementary functions in both software and

hardware math libraries. In this subsection, we briefly introduce the two

approaches to help readers get a general idea of how elementary functions

have been evaluated. Then, we discuss the pros and cons of such approaches,

and propose a combined approach for our functions evaluation.

16

Series expansion, such as Taylor series [92] (
∑∞

n=0
f (n)(a) (x−a)n

n!
), can

produce highly accurate approximations of elementary functions without us-

ing excessive memory resources. The Maclaurin series expansion of the natural

exponential function (ex) can be expressed as the sum of a degree-n polyno-

mial and a remainder, the so-called Rn(x). Rn(x) represents the error of the

polynomial approximation with respect to the real value of ex. With enough

terms in the series, the Maclaurin approximation will be highly accurate, as

the remainder Rn(x) becomes extremely close to zero.

ex = 1 +
x

1!
+
x2

2!
+
x3

3!
+ · · ·+ xn

n!
+Rn(x) (2.2)

To produce an accurate approximation, a high-order polynomial is usually

adopted. Such polynomial approximation may lead to lengthy evaluation time

in both software and hardware, due to the many additions and multiplications

required. A wide bit-width has sometimes been used to store the accumulated

products generated from computing the polynomial. In addition, choosing a

correct rounding scheme is important for retaining accuracy.

A look-up table (LUT) can also generate accurate evaluations of ele-

mentary functions. In this case, function values have been pre-computed and

stored in a LUT. Hence, each tabulated value corresponds to an approxima-

tion. Evaluating a function is equivalent to searching for and retrieving certain

entries from the LUT. In doing so, it considerably reduces run-time compu-

tations versus a series expansion approach. A LUT-based approach has the

potential to outperform series expansion in terms of execution time; however,

it may suffer from cache thrashing problems in a computer system. Here,

“cache thrashing” refers to the frequent data swapping between the cache and

the main memory. It often happens when the program, data and LUTs are

17

competing for limited cache resources at run-time. Cache-thrashing effects

may worsen when more than one elementary function is being evaluated at

the same time. Generally speaking, the accuracy of the LUT-based approach

is proportionate to the LUT size. The more entries a LUT has, the higher the

accuracy that has been evaluated for an elementary function.

A conjunction of look-up table (LUT) and polynomial is applied

to implement reciprocal and square root functions. In this case, only a fraction

of the function values have been pre-computed and stored in the LUT. The

missing function values are interpolated using relatively low-order polynomi-

als. The combined method has the potential to reduce LUT size, as well as

save run-time computations. To explain the method, we briefly introduce the

algorithm of LUT along with degree-2 polynomial interpolation used by the

logarithm accelerator presented in my master thesis [48]. Since the algorithm

of implementing logarithm is universal, it could be used to implement an entire

library of single-precision, floating-point elementary functions.

A full-precision LUT for log (x) is 8 GB since it has 28×223 = 2G entries,

and each entry uses four bytes. Using the ICSILog algorithm [114], the LUT

is shrunk to 32 MB. The ICSILog algorithm takes advantage of logarithmic

product and power rules, so log(+fp) is transformed into:

log(+fp) = log(2e7−0−127 × 1.m22−0) (2.3)

= log(2e7−0−127) + log(1.m22−0) (2.4)

= e7−0 − 127 + log(1.m22−0) (2.5)

Eqns. 2.3 to 2.5 transform the evaluation of log (+fp) to log (1.m22−0). At

the same time, they shrink the domain of log (+fp) on (0, +∞) to log (1.m22−0)

on [1,2). A LUT for log (1.m22−0) has 223 entries, and each entry uses four

bytes, making it 32 MB in total.

18

To further shrink the 32 MB full-precision LUT of log (x) for better per-

formance, a degree-2 polynomial interpolation is applied. We keep only part

of the entries in the 32 MB LUT and use a parabola to interpolate the ”miss-

ing” entries. In this case, not all 23-bits mantissa for log(1.m22−0) have been

used as an index to access the new smaller LUT. Table 2–4 demonstrates an

8 KB LUT, which uses the highest 11-bits of the mantissa for table retrieval.

In this scenario, there are only 211 entries, so it is significantly smaller than

the 32 MB LUT, which takes all 23-bit of mantissa as an index. Based on the

Table 2–4, another new LUT to permit a degree-2 polynomial interpolation

for log (1.m22−0) is created, as shown by Table 2–5.

Table 2–4: 8 KB LUT with high 11-bits as index [49]
Entry Index (11-bits) Content (32-bits)

E0 00000...00000︸ ︷︷ ︸
11

log(1.00000...00000︸ ︷︷ ︸
11

00000...00000︸ ︷︷ ︸
12

)

E1 00000...00001 log(1.00000...0000100000...00000)

E2 00000...00010 log(1.00000...0001000000...00000)

.

E2045 11111...11101 log(1.11111...1110100000...00000)

E2046 11111...11110 log(1.11111...1111000000...00000)

E2047 11111...11111 log(1.11111...1111100000...00000)

To use a degree-2 polynomial (y ≈ ax2+bx+c) to interpolate log (1.m22−0),

x refers to the value of 1.m22−0 which is the input of log (1.m22−0), y refers to

the interpolated value of log (1.m22−0), and a, b and c are the corresponding

coefficients. In Table 2–5, each entry stores three coefficients (a, b, c). To

evaluate the coefficients for each entry, assume we have an input x whose in-

dex is larger than entry E0, but smaller than entry E1 (E0 < indexx < E1)

in Table 2–4. In this case, we construct a parabola, and coefficients of the

parabola have been stored into entry E0 as a0, b0, c0 in Table 2–5. Here,

each coefficient uses four bytes, so each entry of Table 2–5 uses 12 bytes. To

interpolate log (1.m22−0), one needs to use the highest 11 bits of the mantissa

19

(1.m22−12) as an index to retrieve the LUT values for three coefficients (a,

b, c), and then use the remaining of the mantissa (1.m11−0) to perform three

multiplications and two additions (y ≈ ax2+bx+c) to obtain the interpolated

value for log (1.m22−0). For interested readers, please refer to the section 2.4

”Interpolation Algorithm” and subsection 2.4.3 ”Parabolic Interpolation” for

more details about parabolic interpolation in my master thesis [48].

Table 2–5: 24 KB LUT for degree-2 polynomial interpolation [49]
Entry Index (11-bits) Content (96-bits)

E0 00000...00000︸ ︷︷ ︸
11

a0 (32-bits), b0 (32-bits), c0 (32-bits)

E1 00000...00001 a1, b1, c1
E2 00000...00010 a2, b2, c2
.

E2045 11111...11101 a2045, b2045, c2045
E2046 11111...11110 a2046, b2046, c2046
E2047 11111...11111 a2047, b2047, c2047

2.6 Important Properties

To design high-performance implementation of elementary functions, there

are numerous properties that we need to pay attention to. In this section, three

important properties are presented:

1. Speed (latency, throughput)

2. Accuracy/Error (ULP)

3. Area (LUT size, degree of polynomial)

Speed: The speed of evaluating elementary functions (in software/hardware

math libraries) is usually measured using latency (ns) or throughput (MHz).

For elementary functions implemented using software, the latency or the num-

ber of CPU cycles is used to represent the time spent on a single function

evaluation. As many elementary functions are implemented into hardware ac-

celerators with pipeline architecture, the throughput of pipeline is applied to

measure how many function evaluations are completed in one second.

20

Accuracy/Error: The IEEE-754 floating-point standard [52] defines

single-/double-precision representations, which enables highly accurate ele-

mentary functions implementation. Using the standard, accuracy or error

(interchangeable) is measured by the ULP (unit in the last place) [64, 93].

Here, 1 ULP error represents the gap between the two adjacent floating-point

numbers. The Intel/Altera math library [12] generates function evaluations

with 1 ULP error. In general, the accuracy is closely related to the algorithm

of function evaluation, say, a higher degree polynomial and/or a larger LUT

usually leads to more accurate results.

Area: The area of an elementary function accelerator in hardware refers

to either the silicon area cost in an ASIC, or the amount of resources con-

sumed in an FPGA. An look-up table is synthesized into RAM blocks, while

the computation of a polynomial is synthesized into adaptive logic modules

(ALMs) and DSP slices on an FPGA. Each DSP slice consists of multipliers

and adders of various bit-widths. For our LUT-based accelerators, to reduce

circuit area, we must try to shrink the table size as much as possible, as it

is desirable to use as little memory as possible, both in an ASIC or FPGA

implementation.

2.7 Discussion

In this section, we explain the impact of applying deep pipelining tech-

nique. As well, we present a discussion on the relationships, and various

trade-offs made between the three properties: speed, accuracy and area.

Impact of deep pipelining: As many elementary function accelerators

are implemented using pipeline architecture, one would apply a deep pipeline

to further increase throughput. To do so, each pipeline stage has been shrunk

aggressively to have extremely small delay, which is equal to the delay a few

21

logic gates. This makes the number of pipeline stages increase, and the inclu-

sion of flip-flops for the additional pipeline stages may increase circuit area. As

the throughput becomes higher, the deep pipeline may exhibit larger circuit

area and longer latency.

Performance trade-offs: Various trade-offs can be made to the ele-

mentary function accelerators in accordance with the requirements of different

applications. For applications that are more tolerant of inaccurate evaluations

(e.g. deep learning [66, 42]), one can trade accuracy for fewer area and/or

faster speed. For our LUT-based reciprocal accelerators (see Chapter 3), ac-

curacy drops from 1 to 3 ULP as the LUT is reduced to half the size (see

Table 3–7). Likewise, after using degree-1 polynomial for interpolation, accu-

racy drops from 1 to 127 ULP. The changes in algorithms help to reduce the

area, at the expense of higher error.

Roughly speaking, none of the three properties (speed, accuracy, area)

is a “free lunch” in terms of the overall performance. To produce accurate

evaluations, one may use a large LUT and/or high-order polynomial, but usu-

ally result in an area increase. Similarly, a faster implementation may also

lead to an area increase, as more computing resources (i.e. DSPs) have been

used to exploit the underlying parallelism in the algorithms. As we know, FP-

GAs have capacity restrictions for their resources (i.e. ALMs, RAMs, DSPs).

It may be desirable, in certain applications, to allow some errors in function

evaluation in order to reduce resource usage. For this purpose, we propose

reduced-precision implementations for our iterative and LUT-based reciprocal

accelerators presented in Chapter 3.

22

2.8 The Rise of the FPGA

The Field-Programmable Gate Array (FPGA) has entered the main-

stream of computing mainly due to the following features [96, 75]: 1) reconfig-

uration capability, 2) high-performance (e.g. throughput/watt) and 3) energy

efficiency. In principle, a circuit implemented on an ASIC [59] will perform at

a higher speed and energy efficiency than an FPGA. However, the functions of

an ASIC cannot be modified after its manufacture. Whereas, it is possible to

change the function of an FPGA by reprogramming it. This reconfigurable fea-

ture of the FPGA offers a flexibility similar to a CPU. While a CPU typically

operates at a higher frequency than an FPGA design, the spatial parallelism

offered by an FPGA allows the performance gap to be recovered in many cases,

e.g. [110, 83, 56, 60].

Modern FPGAs consist of logic elements (containing look-up tables (LUTs)),

random access memory (RAM) blocks, digital signal processing (DSP) blocks

and so on. DSP blocks are mostly used for arithmetic operations. The In-

tel/Altera Cyclone V FPGA, which we use in this work, contains columns of

DSP blocks in the 2D FPGA fabric, with each DSP block containing multi-

pliers, cascaded adders, accumulators, etc, as shown in Table 2–6. Table 2–7

shows the multipliers that a variable-precision DSP block supports. In this

case, the DSP block can be configured as one 27×27, two 18×18 or three

9×9 independent multipliers for computation of various precisions. Users are

able to create custom hardware by configuring the various internal blocks and

interconnect of an FPGA. Any functional change to the hardware requires

re-programming the FPGA.

When the computing resources of an FPGA have been properly config-

ured/programmed, multiple instances of computational units can be realized

23

Table 2–6: A Variable-Precision DSP Block for Cyclone V Devices [10]
Support 9×9, 18×18 and 27×27 bits precision multiplication

Two 64-bit accumulators

A hard preadder of 18- and 27-bit modes

Cascaded output adders

Table 2–7: Variable-Precision DSP Configurations for Cyclone V Devices [10]
Applications Multiplier Size (Bit)

Low precision fixed point computings Three 9 x 9

Medium precision fixed point computings Two 18 x 18

General DSP usage Two 18 x 18 with accumulate

High precision fixed- or floating-point computings One 27 x 27 with accumulate

to exploit the parallelism within applications. Conversely, on a CPU, compu-

tations are typically compiled into a long sequence of instructions on a CPU,

executed in a relatively sequential order. Each instruction passes through a

data path which generally includes instruction fetch, decode, register file ac-

cess, execution and write-back. The generic nature of a CPU makes it easy

to program. With an FPGA, on the other hand, since parallel hardware tai-

lored to the application can be applied, superior energy performance can be

achieved relative to a CPU.

With the significant growth of computing capacity in FPGAs, many ap-

plications are built with FPGA-based custom accelerators. Cloud service

providers, such as Amazon and Microsoft, now deploy FPGA instances in their

cloud or data centre architectures [16, 20]. In the context of cloud comput-

ing, heterogeneous architectures which contain FPGAs and CPUs have been

adopted to accelerate applications. Custom hardware accelerators, together

with CPU systems, are capable of delivering both performance and energy

benefits to a broad range of computation-intensive applications. According to

Amazon’s website [16], an FPGA-assisted processor system in the AWS cloud

24

has the potential of achieving up to 30× speedup for some bioinformatics,

financial risk and data analysis applications.

2.9 Development of Hardware Design Methodology

As summarized in [11], methods to design and verify hardware have

evolved across recent decades. We take the emergence of electronic design

automation as a milestone, dividing hardware development into pre-EDA and

post-EDA periods. In the 1970s or earlier pre-EDA days, most hardware was

hand designed and verified with the human eye [11]. At that time, the function

of integrated circuits (ICs) was relatively simple and human-manageable [11].

As the complexity of the ICs increased in the 1970s, the EDA techniques arose,

providing automated tools to design, debug and simulate hardware [11]. In

the following subsections, we first present various design abstraction levels

offered by EDA in subsection 2.9.1. Then, we proceed to a brief introduction

on RTL and HDLs in subsection 2.9.2. Finally, we elaborate on the HLS in

subsection 2.9.3, which includes its features, upcoming challenges, and general

working flow.

2.9.1 Design abstraction levels

EDA offers different abstraction levels for digital design, as discussed

in [112]. As shown in Figure 2–2, the higher the level of abstraction, the

fewer design details an engineer deals with in hardware. Transistor-level design

is low-level design, where the designer specifies the functionality using tran-

sistors [112]. In logic-level design, gates are the main building blocks, with

which combinational and sequential circuits are built [112]. For more com-

plex digital designs, such as processor designs, the primary building blocks are

multiplexers, counters, adders, registers, and the datapaths connecting them

together [112]. Broadly speaking, when a design is required to specify the

cycle-by-cycle functionality of the circuit, the design methodology is referred

25

Register-
Transfer

Level (RTL)

High-Level
Synthesis (HLS)

Logic Level

Transistor Level

H
igher abstraction levels

Figure 2–2: Digital Design Abstraction Levels [6]

26

to as register-transfer level (RTL). High-level Synthesis (HLS) refers to the

use of high-level programming languages (e.g. C/C++) to specify hardware

circuit behaviour. Compared with RTL design, the HLS design methodology

does not require one to specify the cycle-by-cycle circuit behaviour.

2.9.2 Register-Transfer Level (RTL) and Hardware Description Lan-
guages (HDLs)

In RTL methodology, engineers usually use (HDLs) to specify hardware

circuit behaviour. HDLs have concurrent language constructs to resemble the

parallel behaviour of computations in a hardware circuit. In [17], the process

of implementing a circuit design on an FPGA includes: 1) writing the HDL

code for the design, 2) compiling, simulating and synthesizing the circuit on a

target FPGA, and 3) downloading the programming bitstream to the FPGA.

The reconfigurable nature of FPGAs offers a flexibility which is comparable

to that of the CPU [59]. The advent of EDA and the FPGA broadens the

concept of what is conventionally considered as ”software” [111]. Using HDLs

(e.g. VHDL, Verilog) to program an FPGA dramatically improves efficiency;

however, there remain challenges with this approach:

• Hard to debug. Bugs in HDL code are notoriously difficult to track

down and correct, owning to the low-level of abstraction, even for expe-

rienced hardware engineers.

• Hard to modify. HDL programming requires careful consideration of

circuit details, such as timing constraints, control flow and datapaths.

Thus, modifying/updating HDL code is complex and error prone.

• Hard to learn. There are many more software developers than hard-

ware engineers. As such, hardware expertise is comparatively rare versus

software expertise.

27

2.9.3 High-Level Synthesis (HLS)

In order to overcome the aforementioned challenges, HLS design method-

ologies have gained prominence to reduce the cost and time of hardware de-

sign. HLS lifts the level of abstraction from HDLs to software programming

languages [45]. An HLS tool takes a C/C++ specification as input and then

translates it into HDL (e.g. Verilog) code. Generally, HLS techniques signif-

icantly improve the productivity of FPGA programming, and reduce design-

to-market time for FPGA products [45].

The development of HLS tools can be viewed in four generations [84],

after two generations of failures (starting in the 1980s), the third-generation

HLS tools began to see success in the early 2000s. The main reasons that led

to the success of this generation are:

• Shift to the right input languages. Programming languages (i.e.

C/C++) familiar to software developers were adopted to design hard-

ware circuits [84].

• Quality of the generated HDL was improved. Advanced HLS

tools allow for the generation of improved-quality HDL from software

programming languages. Results from previous HLS tools had been of

inferior quality (e.g. large circuit area, poor speed) [84].

In recent years, HLS has entered the mainstream of FPGA programming.

Much effort has been made by FPGA vendors (e.g. Xilinx VivadoHLS [22])

and university startups (e.g. LegUp Computing [45]) to develop their HLS

tools for commercial or academic use [94].

As discussed in [45], HLS remains an active research area for both indus-

try and academia. A key challenge with current HLS tools is on generating

more highly optimized hardware from a software specification rather than just

functionally correct hardware [45]. Here, “more highly optimized hardware”

28

refers to a low-area cost and/or high-speed/frequency circuits [45]. To pro-

duce more highly optimized hardware, a certain programming style is used for

the C/C++ input. For example, one needs to manually remove the control

flow and replace it with predication or explicitly indicate to the compiler the

specific part of the hardware that needs to be pipelined. In doing so, it is

possible to obtain orders-of-magnitude performance improvements in certain

cases [85]. We elaborate on HLS-specific programming style in Section 4.11.

Recent HLS tools are built based on the LLVM open-source compiler

framework [80]. From [94], we summarize the process of generating an HDL

program from an HLS C/C++ input below:

• Parsing: The C/C++ program is parsed and translated into an inter-

mediate representation (IR) for the compiler.

• IR optimization: The compiler further optimizes the IR before sending

it to the HLS back-end, performing optimizations such as dead code

elimination and loop transformations [70].

• Allocation: The compiler receives and recognizes constraints, such as the

allowed width or number of multipliers available on the FPGA chip.

• Scheduling: The compiler assigns the computations in the IR into time-

steps, which correspond to states of a finite-state machine (FSM). After

this step, the IR is ”timed”.

• Binding: The compiler maps the timed IR onto hardware units.

• HDL generation: C/C++-specified HDL is generated.

2.10 Heterogeneous Computing

A heterogeneous computing system incorporates computational cores of

various types (e.g. CPU, GPU, FPGA). In such a system, performance gains

mainly come from assigning computations to the cores with the most suitable

architecture for acceleration [76]. For example, CPUs are good at dealing

29

with sequential applications (e.g. the operating system), while GPUs and

FPGAs are more efficient at accelerating parallel applications with a large

dataset (e.g. image processing). It is inefficient to have CPUs execute paral-

lel tasks, as single instruction multiple data (SIMD)-styled instructions may

translate into dozens of assembly instructions, which take hundreds of CPU

cycles [122]. Likewise, if sequential tasks are assigned to GPUs or FPGAs,

then the computing power may not only be wasted, but also cause additional

energy consumption [122]. As we know, most machines on the market (i.e. lap-

tops, tablets, smartphones) have a heterogeneous computing architecture. For

example, the iPhone XR model is embedded with six CPUs (two performance

cores and four efficiency cores), four GPUs, eight cores for the neural engine to

accelerate machine learning applications and one image signal processor [23].

In addition, Amazon [16], Microsoft [20] and IBM [1] adopt heterogeneous

architectures in their cloud computing platforms.

The FPGA is becoming prominent in heterogeneous computing thanks

to its design flexibility and high performance. FPGA-based accelerators can

be treated as a co-processor attached to a host CPU. In this scenario, the

host CPU serves as a control unit, executing largely sequential code. An

application-specific accelerator, on the FPGA, would be invoked by the CPU.

30

Chapter 3
Reciprocal Accelerators

3.1 Publication

Main content of this chapter comes from the following published manuscript:

[50] Jing Chen, Xue Liu and Jason H. Anderson, ”Software-Specified

FPGA Accelerators for Elementary Functions”, the 2018 International

Conference on Field-Programmable Technology (FPT’18), full paper.

3.2 Organization

In this chapter, we propose the algorithm designs and implementations

of single-precision floating-point reciprocal hardware accelerators. Section 3.3

presents a brief introduction about this chapter. Next, we introduce prior

work on the reciprocal accelerator in Section 3.4. In Section 3.5, we elabo-

rate on the range reduction, which leverages a math formulation derivation to

simplify reciprocal evaluation. In Sections 3.6 and 3.7, two algorithms are ad-

dressed, which are trial subtraction, and LUT along with degree-2 polynomial

interpolation, respectively. In Section 3.8, accuracy is examined through ex-

haustive testing. An error distribution report is given as well. We compare our

LUT-based accelerator with that of the Intel/Altera FPGA vendor in terms

of speed and area usage in Section 3.9. In Section 3.10, we give a performance

comparison between ours and the state-of-the-art reciprocal implementations.

To obtain better performance (i.e. area, speed), we also generate implementa-

tions with reduced precision in Section 3.11. Finally, we demonstrate the HLS

C programming style in Section 3.12, and summarize our work in Section 3.13.

31

3.3 Introduction

Reciprocals are frequently used in image and digital signal processing

applications [91]. We implement single-precision, floating-point reciprocal ac-

celerators. The algorithms of the proposed accelerators are designed using

C language, and synthesized into hardware targeting on Intel/Altera 45 nm

FPGA by the LegUp HLS [5], Quartus and ModelSim. For IEEE-754 single-

precision non-subnormal inputs, the proposed accelerators are able to produce

results with 1 ULP maximum, and 0.3-0.5 ULP average errors, respectively.

The error distribution is obtained by conducting exhaustive testing on the

domain of reciprocal, and generated results are then compared with reciprocal

of the GNU math.h library.

The reciprocal accelerators are designed with two algorithms, which are

trial subtraction (iterative) and LUT-based (non-iterative). For LUT-based

algorithm, we use a LUT of around 1 KB and degree-2 polynomial interpola-

tion. The novelties of the LUT-based accelerator are: 1) a small LUT, 2) a

low degree of polynomial, and 3) highly accurate results. Since the LUT-based

algorithm is universal, it could be applied to implement an entire library of

single-precision elementary functions into high-performance hardware acceler-

ators.

In evaluation, we compare our accelerators with the state-of-the-art imple-

mentations in terms of algorithm design, accuracy, testing method, through-

put, architecture and platform. In particular, the Intel/Altera reciprocal IP

core is treated as a ”golden” baseline. In comparison with the baseline, our

LUT-based reciprocal accelerators are considerably better in area usage, but

slightly worse in maximum throughput on Cyclone V 45 nm FPGA. Because

the proposed accelerators are specified by C language, it is easy to generate

32

reduced-precision accelerators. In this case, accuracy is traded for faster speed

and/or less area usage.

This work addresses two questions: 1) Can we find better algorithm for

elementary functions design, which produces more accurate results but use a

smaller LUT along with a lower order of polynomial?; 2) Can HLS efficiently

interpret C specification to Verilog code for elementary functions implemen-

tation?

3.4 Related Work

We created a table to summarize the performance of previous reciprocal

implementations. In Table 3–1, there are two columns, which are ”(×, +)”

and ”Width”. In this case, ”(×, +)” represents the number of multiplications

and additions that each reciprocal implementation contains, respectively. In

addition, ”Width” refers to the number of bits that each multiplication and

addition has, respectively. For example, the first row of Table 3–1 tells readers

that Cockburn et al. implements the reciprocal function using two multipli-

cations and additions, respectively. Both the multiplication and addition are

evaluated using a bitwidth of 30.

The methods used to implement reciprocal can be categorized into non-

iterative and iterative approaches. Non-iterative approaches usually leverage

polynomial and/or LUT interpolation. Iterative approaches, such as digit-

recurrence, Newton-Raphson, Goldschmidt algorithms, use several iterations

of multiplications and additions to generate results.

3.4.1 Non-Iterative Algorithms

Cockburn et al. [37] present a unified architecture for six key elementary

functions in single-precision floating-point representation, which are 1
x
,
√
x,

1√
x
, log x, lnx, 2x. The inputs of the six functions are limited to the interval

[1, 2).

33

T
ab

le
3–

1:
C

om
p
ar

is
on

of
th

e
p
ro

p
os

ed
an

d
p
re

v
io

u
s

re
ci

p
ro

ca
l

im
p
le

m
en

ta
ti

on
s

A
u

th
or

s
Y

ea
r

L
U

T
A

cc
u

ra
cy

1

(×
,+

)
W

id
th

E
x
h

au
st

iv
e

T
h
ro

u
gh

p
u

t
P

ip
el

in
e?

M
et

h
o
d

o
lo

g
y

U
L

P
E

rr
or

b
ou

n
d

T
es

ti
n
g
2

(M
H

z)

C
o
ck

b
u

rn
et

al
.3

20
10

83
2

B
1

n
/a

(2
,

2)
(3

0,
30

)
p

ar
ti

al
32

8
ye

s
F

P
G

A

C
o
ck

b
u

rn
et

al
.4

20
10

76
80

B
1

n
/a

(2
,

0)
(2

6,
0)

p
ar

ti
al

30
1

ye
s

F
P

G
A

V
es

ti
as

et
al

.
20

11
43

52
B

n
/a

2
−
5
5
×

1.
10

0.
..
1

(5
,

3)
(1

8,
18

)
?5

29
4.

1
ye

s
F

P
G

A

J
os

e
et

al
.

20
14

46
08

B
1

n
/a

(2
,

2)
(2

4,
48

)
?

43
5

ye
s

F
P

G
A

C
ao

et
al

.
20

15
28

0
B

n
/a

2−
2
5
×

1.
11

0.
..
0

(3
,

3)
(2

8,
?)

?
?

n
o

A
S

IC

L
ib

es
sa

rt
et

al
.

20
17

n
/a

?
?

(6
,

3)
(3

4,
34

)
?

29
4.

1
ye

s
F

P
G

A

M
or

oz
et

al
.

20
18

n
/a

1
n

/a
(5

,
3)

(3
2,

32
)

?
?

n
o

so
ft

w
a
re

In
te

l
IP

20
18

?
1

n
/a

?
?

y
es

25
4-

31
0

y
es

F
P

G
A

O
u

r
w

or
k
6

20
18

≈
10

24
B

1
n

/a
(2

,
2)

(3
2,

64
)

ye
s

19
7-

25
3

ye
s

F
P

G
A

1
A

cc
u

ra
cy

is
gi

ve
n

in
ei

th
er

U
L

P
or

an
u

p
p

er
b

ou
n

d
(i

n
si

n
gl

e-
p

re
ci

si
on

fl
oa

ti
n

g-
p

oi
n
t

fo
rm

at
)

fo
r

ea
ch

w
or

k
p

re
se

n
te

d
in

th
is

ta
b

le
.

2
A

cc
u

ra
cy

is
ob

ta
in

ed
th

ro
u

gh
ex

h
au

st
iv

e
or

p
ar

ti
al

te
st

in
g.

T
h
er

e
ar

e
2
3
2
≈

4
b

il
li

on
te

st
in

g
ca

se
s

fo
r

si
n

gl
e-

p
re

ci
si

o
n

1 x
in

ex
h

a
u

st
iv

e
te

st
in

g.
P

ar
ti

al
te

st
in

g
u

se
s

ra
n

d
om

n
u
m

b
er

s
to

ve
ri

fy
ac

cu
ra

cy
.

T
h

e
ex

h
au

st
iv

e
te

st
in

g
ap

p
ro

ac
h

al
lo

w
s

u
s

to
m

a
ke

a
st

ro
n

g
er

st
at

em
en

t
on

th
e

ac
cu

ra
cy

fo
r

1 x
u

si
n

g
lo

w
-o

rd
er

p
ol

y
n

om
ia

l.
3

R
ec

ip
ro

ca
l

im
p

le
m

en
te

d
u

si
n

g
n

on
-i

te
ra

ti
ve

ap
p

ro
ac

h
.

4
R

ec
ip

ro
ca

l
im

p
le

m
en

te
d

u
si

n
g

it
er

at
iv

e
ap

p
ro

ac
h

.
5

”?
”

re
p

re
se

n
ts

u
n

k
n

ow
n

.
6

O
u

r
L

U
T

-b
as

ed
re

ci
p

ro
ca

l
ac

ce
le

ra
to

r.

34

The reciprocal function is implemented by using both non-iterative and

iterative algorithms. For non-iterative implementation, it leverages a degree-2

polynomial and LUT interpolation. The LUT used for storing coefficients is

equal to 27 × 52 bits ≈ 832 bytes. Using Horner’s rule, it requires a total of

two multiplications and two additions for the polynomial interpolation. With

exhaustive testing on the input interval [1, 2), it offers 1 ULP maximum error.

However, the area and maximum frequency of the proposed reciprocal accel-

erator is not explicitly shown in their paper. For iterative implementation, it

takes advantage of the Newton-Raphson method with one iteration only. By

doing so, a LUT of 212 × 15 = 61,440 bits is provided for the initial approx-

imation. Each iteration requires two multiplications and one bit inversion.

The iterative reciprocal implementation is synthesized to the Xilinx Virtex-4

FPGA; it consumes 155 configurable SLICEs, four block memories and four

DSP48 slices. In addition, one single reciprocal computation requires 10 clock

cycles (33 ns latency) operating at 301 MHz. The maximum error is assumed

to be correctly rounded to 1 ULP.

Jose et al. [71] present a single-precision floating-point arithmetic unit

which supports reciprocal evaluation. The proposed unit leverages a degree-

2 polynomial and LUT interpolation. A LUT of approximately 36 Kbits is

used for the coefficients of the interpolation. The design is fully-pipelined and

processes one reciprocal evaluation per clock cycle. It operates at 435 MHz on

the Xilinx Virtex-7 FPGA. One single reciprocal evaluation takes nine clock

cycles (20.69 ns latency). In addition, the unit consumes 302 LUTs, 327 flip-

flops and two DSP slices on the target FPGA. The global error of the reciprocal

is smaller than 2−28.

Cao et al. [46] propose a hardware implementation of a single-precision

(32-bit) floating-point reciprocal operator. It uses a degree-3 polynomial and

35

a LUT interpolation algorithm. Compared to the degree-2 polynomial inter-

polation [95], it significantly decreases the LUT size. According to their paper,

the maximum error and LUT size are 5.45×10−8 and 2,240 bits, respectively.

The maximum latency of the proposed operator is measured in terms of the

delay of the full adder, t. The reciprocal operator has a maximum latency of

12 t.

FPGA vendors provide highly optimized floating-point accelerators for

basic arithmetic operations and elementary functions. Hence, users can in-

stantiate the required floating-point cores in their design by treating them as

black boxes. The Intel/Altera reciprocal intellectual property (IP) operates at

254-310 MHz and has a latency of 47.2-51.6 ns on the Intel/Altera Cyclone V

FPGA. As a pipelined design, it accepts a new single-precision floating-point

input at every clock cycle. The maximum error of the IP is 1 ULP for the

inputs in the domain. Since the Intel/Altera IP is proprietary, we infer that

it uses a LUT approximation from the large amount of memory usage in their

FPGA synthesis report.

3.4.2 Iterative Algorithms

Vestias et al. [113] implement a decimal divider based on the Newton-

Raphson iterative approach. The initial approximation is evaluated via a

minimax polynomial. Each iteration has two multiplications and one addition.

Two iterations are required to obtain a maximum error of 0.42×10−17 for a

16-bit division. The 16-bit divider is synthesized to a Virtex 4 SX35-12 FPGA:

it consumes 1,478 SLICEs, 2,091 LUTs, 1,820 flip-flops and seven DSPs. In

addition, a 34 Kb LUT is created to store the coefficients of the minimax

polynomial. The maximum frequency of the divider is 294.1 MHz, it requires

112 clock cycles to complete (380.82 ns latency).

36

Libessart et al. [82] propose a fixed-point reciprocal operator. The Newton-

Raphson FPGA implementation needs 3-5 iterations to compute the divi-

sion. Each iteration consists of two multiplications and one subtraction. The

pipelined architecture of the 16-bit fixed-point reciprocal is synthesized to the

Xilinx Virtex-4 SX35 FPGA. Experiments show that it requires 25 clock cy-

cles for one single reciprocal operation operating at 294.1 MHz frequency. The

design consumes 372 LUTs, 568 flip-flops and seven DSPs.

Moroz et al. [91] present a single-precision floating-point reciprocal com-

putation unit in software. The proposed unit is implemented using two mod-

ified Newton-Raphson iterations with a magic constant as the initial approxi-

mation. As a result, the precision of the unit is 23.8 bits (roughly 1 ULP). The

reciprocal unit is tested on the ESP-WROOM-32 system, which contains two

low-power Xtensa 32-bit microprocessors. The two-iteration algorithm takes

255.902 ns to finish on the ESP-WROOM-32 system.

He et al. [69] leverage Goldschmidt’s algorithm to design a double-precision

(64-bit) floating-point divider. A reciprocal LUT is created to calculate the

initial approximation for the subsequent iterations. Similar to the Newton-

Raphson algorithm, Goldschmidt requires two multiplications and one addi-

tion at each iteration. However, the multiplications can be computed inde-

pendently in parallel. Experiments show that the 64-bit divider takes 12 clock

cycles and operates at a frequency of 0.5 GHz.

3.4.3 Clarification Regarding Accuracy

There are 232 ≈ 4 billion numbers defined by the single-precision (32-bit)

floating-point representation. Single-precision elementary functions are those

whose inputs and outputs are both in single-precision representation. To ap-

proximate a single-precision elementary function only via a LUT, a primitive

37

table which stores all 32-bit approximations and is deemed to have full pre-

cision (zero error) is required. However, the full precision table would have 4

billion entries, which is neither practical to be implemented in software nor

hardware. To address this problem, polynomial and/or LUT interpolations

have been adopted to significantly reduce LUT size and restore accuracy. In

order to evaluate the accuracy of elementary functions, two metrics are exten-

sively used: 1) ULP and 2) an upper bound. ULP is discussed in Section 2.4,

and is considered to be a straightforward way to measure accuracy. Hence,

we only elaborate on the accuracy measured by the upper-bound metric and

contrast it with the ULP metric.

Assume that the reciprocal function f(x) = 1
x

has a single-precision input

x1 = 2110 × 1.0...0, where there are 23 zeros in its mantissa. Hence, the result

is f(x1) = 2−110 × 1.0...0. Consider a second single-precision input x2, and

assume that f(x2) = 2−110 × 1.1...1, where there are 23 ones in its mantissa.

We express the error of f(x2) with respect to f(x1) as |f(x1)− f(x2)| = 2−111

× 1.1...10, where only the LSB is 0. The error is approximately 7.703 × 10−34

in decimal, which is a very small value. However, if measuring the error under

ULP, then the error is equal to 223 − 1 ULP. As a result, a small error bound

in decimal may imply a very large error under ULP model.

3.5 Range Reduction

In the trial subtraction method, evaluation of a floating-point reciprocal

is similar to that of floating-point division. In this case, division can be trans-

formed to reciprocal by setting the dividend/numerator to floating-point value

1.0. In the IEEE-754 standard, 1.0 in single-precision format is represented as

38

(−1)0 × 20 × 1.022−0. Thus, the reciprocal of fp can be represented as:

1

fp
=

(−1)0 × 20 × 1.022−0

(−1)s × 2e7−0−127 × 1.m22−0
(3.1)

= (−1)s × 2127−e7−0 × 1.022−0

1.m22−0
(3.2)

As shown in Eqn. 3.1, the sign of reciprocal 1
fp

is the same as that of fp. The

exponent of reciprocal 1
fp

is the negation to that of fp. The mantissa of recip-

rocal 1
fp

is equal to performing 23-bits fixed-point division between mantissas

of value 1.0 and fp. Hence, we only need to calculate term 1.022−0

1.m22−0
rather than

term (−1)0×20×1.022−0

(−1)s×2e7−0−127×1.m22−0
. The transformation of Eqn. 3.1 to 3.2 shrinks the

domain of computing reciprocal 1
fp

. To comply with floating-point accelerators

from FPGA vendors (e.g. Xilinx, Intel/Altera) and the FloPoCo [54], both

reciprocals do not support subnormal inputs; instead, subnormal inputs are

flushed to zero.

3.6 Iterative Implementation: Trial Subtraction

Trial subtraction is a digit-recurrence algorithm which leads to long eval-

uation time. For example, 25 iterations/cycles are required to compute the

term 1.022−0

1.m22−0
in Eqn. 3.2 to obtain 1 ULP maximum error. A case study of

trial subtraction is given below.

Case Study

Assume we would like to evaluate the reciprocal of 2.5 (1
2.5

) in single-

precision representation. Here, the binary floating-point value 2.5 is repre-

sented by Eqn. 3.3:

(2.5) = 0, 10000000, 01000000000000000000000 (3.3)

sign = 0 (3.4)

exponent = 10000000 = (128− 127)decimal = (1)decimal (3.5)

mantissa = 1.01000000000000000000000 (3.6)

39

In the above, we use commas to separate sign, exponent and mantissa in

Eqn. 3.3. Here, the exponent represents decimal value 1 after subtracting bias

127. Also, there is a “leading-1” for the mantissa. The steps used to compute

the reciprocal in trial subtraction are as follows:

1) Compute sign and exponent. The sign of 1
2.5

is the same as that

of input 2.5, while the exponent of 1
2.5

is the negation to that of input 2.5.

Eqn. 3.7 shows the biased exponent of 1
2.5

.

1

2.5
(exponent) = (−1)decimal + (127)decimal = (01111101)binary (3.7)

2) Compute mantissa. Apply the trial subtraction algorithm to com-

pute the term 1.022−0

1.m22−0
. To demonstrate the process step by step, X represents

1.022−0 (mantissa of floating-point 1.0), and Y represents 1.m22−0 (mantissa

of floating point 2.5).

X = 1, 00000000000000000000000 (3.8)

Y = 1, 01000000000000000000000 (3.9)

X HLS = 00000000100000000000000000000000 (3.10)

Y HLS = 00000000101000000000000000000000 (3.11)

The “leading-1s” in both X and Y represents the hidden bit in front of the

radix point of the mantissa. In HLS C software, a 32-bit unsigned integer type

is used to represent X and Y as shown by Eqns. 3.10 and 3.11 . In this case,

25 iterations/cycles are needed to obtain 1 ULP error for the final value of

reciprocal. In the first iteration/cycle, we perform subtraction X − Y as a

32-bit unsigned integer. As the result is negative, X is shifted one bit left,

40

and the least significant bit (LSB) of quotient Q is set to “bit-0”.

(X << 1) : 00000001000000000000000000000000 (3.12)

Y : 00000000101000000000000000000000 (3.13)

Q : 00000000000000000000000000000000 (3.14)

In the second iteration/cycle, we perform trial subtraction again on (X << 1)

and Y to obtain a positive result. We replace X << 1 with (X << 1) − Y ,

then shift the quotient Q one bit left, and finally set the LSB of Q to “bit-1”.

(X << 1)− Y : 00000000011000000000000000000000 (3.15)

Y : 00000000101000000000000000000000 (3.16)

Q : 00000000000000000000000000000001 (3.17)

After 25 iterations/cycles of trial subtraction, we have the following result for

quotient Q:

Q : 00000001100110011001100110011001 (3.18)

In our case, the “leading-0” appears at the 24th bit of the quotient Q. This

facilitates exponent adjustment in the next step.

3) Exponent adjustment. The reciprocal of 1
2.5

is a normal number

defined by the IEEE-754 standard, which implies that there is a “leading-1”

at the 23rd bit of the mantissa. Since the biased exponent of 1
2.5

(Eqn. 3.7)

falls into the interval of [-125, +126], quotient Q is shifted one bit to scale as

the mantissa, making the “leading-1” appear at the 23rd bit. After that, the

biased exponent of 1
2.5

is subtracted by 1 accordingly.

1

2.5
(exponent) = (125)decimal = (01111101)binary (3.19)

(Q >> 1) : 000000001100110011001100110011001 (3.20)

41

4) Rounding. After the quotient Q is scaled to the mantissa in Eqn. 3.20,

the LSB of Q is removed after rounding. To restore accuracy, we tried three

rounding schemes: 1) round to zero (truncation); 2) round to nearest, ties away

from zero; and 3) round to nearest, ties to even. Both 2) and 3) are intended to

give results with fewer errors than 1) in theory, but may produce larger circuit

area when implemented into hardware. In our case, rounding schemes 2) and

3) produce the same error (1 ULP) as 1) through exhaustive testing. Therefore,

rounding scheme 1) has been adopted due to the smaller hardware overhead.

To obtain results of 0 ULP (no error) in the trial subtraction algorithm, one

needs to have approximately 50 iterations/cycles to compute the quotient Q

in Eqn. 3.18 along with rounding scheme 2).

Q after rounding : 00000000110011001100110011001100 (3.21)

5) Result Reconstruction. We concatenate the mantissa with the bi-

ased exponent and sign to form the final result for 1
2.5

shown by Eqn. 3.22. For

inputs of reciprocals, when their biased exponent is either 253 or 254, some

outputs become subnormals (extremely small values close to zero) according

to the IEEE-754 standard.

1

2.5
(result) : 0, 01111101, 10011001100110011001100 (3.22)

6) Exception handling. For reciprocal inputs whose values are subnor-

mal, (± zero), (± infinity) or NaN defined by the IEEE-754 standard, there

is an exception handling demonstrated by Table 3–2. For example, if input

is + zero (positive zero), then the corresponding output is + infinity (posi-

tive infinity). In the IEEE-754 standard, the 32-bit encoding for + infinity

is 0x7f800000 in hexadecimal representation. To comply with the reciprocal

implementation of the Intel/Altera math library, subnormal inputs are flushed

42

to zero. Hence, the reciprocal of a subnormal is +/- infinity. In addition, to

comply with results from the GNU C math.h library, when inputs of the

reciprocal function are NaNs, outputs are fp ‖ 0x00400000.

Table 3–2: Exception Processing for Reciprocal [50]
Input Output Encoding

subnormal +,- Infinity 0x7f800000/0xff800000

+,- zero +,- Infinity 0x7f800000/0xff800000

+,- infinity +,- Zero 0x00000000/0x80000000

NaN NaN fp ‖ 0x00400000

3.7 Non-Iterative Implementation: Lookup-Table (LUT)

A LUT along with polynomial interpolation is an alternative way to im-

plement elementary functions. Compared to the iterative method, the LUT-

based approach offers different resource-usage trade-offs. It requires less evalu-

ation time and a smaller circuit area in hardware. In the LUT-based approach,

function values are pre-computed and stored in a LUT, so that function eval-

uation is equivalent to table retrieval. In this case, the LUT size is critical,

since a large table leads to cache thrashing and extra area cost in software and

hardware. To shrink the LUT size, we do not store all function values in the

LUT. Missing values are restored through polynomial interpolation.

Recall that we need to compute the term 1.022−0

1.m22−0
for reciprocal in Eqn. 3.2,

whose domain is [1:2) and range is (1
2
: 1]. To compute 1.022−0

1.m22−0
, a LUT is created

and divided into 128 intervals as log2(128) = 7. Within any interval, a degree-

2 polynomial (y = a ·x2 + b ·x + c) is used to interpolate those missing values.

Here, a, b and c are scalar coefficients which are stored in the LUT, and their

values vary for intervals. Since log2(128) = 7, the seven most significant bits

(MSBs) of the mantissa (i.e. m22−16) are used to address the LUT, while

the remaining 16-bits (i.e. m15−0) are treated as x for degree-2 polynomial

43

interpolation. In order to have better performance and a lower area cost, we

need to keep the LUT and degree of polynomial as small as possible.

To compute the coefficients for degree-2 polynomial interpolation, we use

the Chebyshev polynomial approximation [109] through the mpmath Python

library. The chebyfit function in the library computes coefficients for each

interval given a polynomial degree of a function (i.e. reciprocal). To further

reduce the number of multiplications for polynomial interpolation, we have

y = a ·x2 + b ·x + c as y = x · (a ·x + b) + c by applying Horner’s rule.

Exception handling of the LUT-based approach is the same as that of the

iterative method.

3.8 Error Study

In this section, we analyze the accuracy of the reciprocal accelerators

through exhaustive testing. To better show the accuracy, error distributions

are given to trial subtraction and LUT approaches, respectively. Apart from

the maximum and average errors, we also calculate the percentage of evalua-

tions that have 0 or 1 ULP error.

3.8.1 Exhaustive testing

We perform exhaustive testing on the domain of reciprocal to obtain an

overall error distribution. As subnormal numbers and zero are excluded, there

are approximately 4×109 input cases for reciprocal. Previous work [36] pro-

duces an error report by testing a certain number of random inputs (i.e. 2×107

input cases) on the domain of the logarithm function. However, it is still pos-

sible that inputs other than the tested cases may produce a larger error. Thus,

an error report that is not generated by exhaustive testing may not be able

to find the maximum error in the domain of a function. On the other hand,

our error distribution guarantees that every valid input of reciprocal complies

with the maximum and average errors we stated in Table 3–3. In addition,

44

reciprocal evaluations generated by the GNU math.h library are treated as

a golden benchmark.

3.8.2 Error Distribution

In Table 3–3, only normal inputs (exponent varies from 1 to 254) are

shown. For other inputs, such as subnormal or zero, the results can be found

in exception handling Table 3–2. The first half of Table 3–3 demonstrates

the error distribution of reciprocal in the trial subtraction algorithm. The

first column represents the biased exponent: we split normal inputs into 254

intervals by the biased exponent. The second and third columns represent

the maximum and average errors for each interval, respectively. The last two

columns represent number of 0 or 1 ULP cases at each interval. Percentages

in these two columns denote the percentage of evaluations which have either

0 or 1 ULP error, for a total of 8,388,608 testing cases. We combine intervals

1 to 252 into one entry in Table 3–3 because they have the same accuracy. To

simplify, the input sign is omitted, so each interval represents both positive

and negative numbers. From this data, we conclude the maximum error of

reciprocal is 1 ULP, while the average error is 0.5 ULP because the number of

0 or 1 ULP cases each accounts for approximately 50.0% of total testing cases.

Similarly, the second half of Table 3–3 demonstrates the error distribution

of the LUT-based reciprocal. In this case, we exclude inputs with biased

exponents of 253 and 254 because the evaluation of reciprocal falls into the

subnormal numbers. In the LUT-based approach, although the maximum

error is still 1 ULP, the average error has been improved to 0.31 ULP, and the

percentage of evaluations which have 0 ULP is 68.7%. The reciprocal from

Intel/Altera is guaranteed to have 1 ULP error at most.

45

Table 3–3: Error distribution for reciprocal [50]
Trial Subtraction Reciprocal

Exp Max Error Avg Error 0 ULP 1 ULP
(ULP) (ULP) (50.01%) (49.99%)

1 to 252 1 0.50 4,194,910 cases 4,193,698 cases
253 1 0.50 4,194,555 cases 4,194,053 cases
254 1 0.50 4,194,647 cases 4,193,961 cases

LUT-Based Reciprocal
Exp Max Error Avg Error 0 ULP 1 ULP

(ULP) (ULP) (68.7%) (31.3%)
1 to 252 1 0.31 5,767,024 cases 2,621,584 cases

3.9 Experimental Study

In this section, we demonstrate the performance of the LUT-based and

trial subtraction reciprocal accelerators in terms of speed and area usage on

Intel/Altera 45nm FPGA. To show the efficiency of our designs, we carefully

compare the performance of our LUT-based accelerator with that of the In-

tel/Altera IP cores, targeting the same FPGA device (Cyclone V).

LegUp HLS [5] allows us to generate pipelined reciprocal accelerators,

whose maximum throughput can be specified by user based on various appli-

cation requirements. We experimented with five different clock period con-

straints: 20, 15, 10, 5 and 2 ns. The Verilog circuit interpreted by the HLS

is influenced by such constraints: as the clock period decreases, the accelera-

tors are supposed to have a finer-grained pipeline architecture. In Table 3–4,

we present our accelerators in three configurations: 1) the accelerator with

the fastest maximum throughput, 2) the accelerator with the smallest circuit

area, and 3) the accelerator in the midway. To clarify, the midway accelerator

usually has lower maximum throughput and larger circuit area than that of

1) and 2), respectively.

46

For the Intel/Altera reciprocal IP core generator, it is also possible to

specify a target maximum throughput. Here, we make their accelerators tar-

get 150, 200 and 250 MHz. Although the algorithm used to implement the

Intel/Altera IP core is not disclosed, it is highly likely that they use polyno-

mial interpolation/approximation and a LUT-based approach because memory

blocks are being used. We also note that cores from Intel/Altera are based on

RTL design (i.e. hand-designed using HDL and/or a circuit diagram), while

our accelerators are designed using a higher level of abstraction (i.e. C lan-

guage). Both RTL and HLS accelerators accept one new input to the pipeline

architecture per clock cycle.

3.9.1 LUT-Based Reciprocal Accelerator

In Table 3–4, we compare our accelerators with Intel/Altera IP cores. All

accelerators are synthesized into hardware using Quartus version 16.1 and tar-

geted to the Intel/Altera Cyclone V 45nm FPGA. For performance, we show

maximum throughput and pipeline depth. For circuit area, we show adap-

tive logic modules (ALMs), memory bits (Mbits), DSPs and effective ALMs

(eALM). ALMs in Cyclone V comprise a fracturable six-input LUT with two

extra inputs. An ALM can implement any six-input function, any two four-

input functions, and several other combinations. DSP units in Cyclone V can

implement three narrow 8×8 multiplies, two 18×18 multiplies, or one wide

27×27 multiply [10]. To explain, ALMs represent the number of soft logic

elements used by the circuit, Mbits represent the memory bits consumed by

the LUT, and DSP slices offer adders and multipliers of various widths. Here,

eALM represents the total number of soft logic elements used by the circuit.

In this case, the area consumed by the DSPs and memories is translated into

effective ALMs. Based on data presented in the literature [100, 116], each

47

Table 3–4: Intel vs. our LUT-based reciprocal accelerators [50]

Intel/Altera FP FUNCTIONS
Throughput Latency ALMs Mbits DSPs eALMs

Smallest 254.9 12 163 30,208 3 348.67
Midway 280.5 14 192 30,208 3 377.67
Fastest 310.1 22 273 30,208 6 548.67

Our Work (handling exceptions)
Throughput Latency ALMs Mbits DSPs eALMs

Smallest 197.16 9 150 10,112 2 273.78
Midway 195.47 10 157 10,112 2 280.78
Fastest 253.68 15 203 10,112 2 326.78

Our Work (no exception handling)
Throughput Latency ALMs Mbits DSPs eALMs

Smallest 184.71 8 136 10,112 2 259.78
Midway 183.89 9 139 10,112 2 262.78
Fastest 222.92 12 168 10,112 2 291.78

M10K memory block is equivalent to 31.89 ALMs and each DSP unit is equiv-

alent to 30 ALMs. Both ours and Intel/Altera accelerators achieve 1 ULP

maximum error. We perform exhaustive testing only on the C specification

of our accelerator, while HLS-interpreted Verilog circuits are simulated with

ModelSim to verify functional and timing correctness.

The top part of Table 3–4 shows the results for the Intel/Altera IP cores,

and the two bottom parts show the results of our LUT-based accelerators. For

the fastest accelerator, we observe that the Intel/Altera reciprocal accelera-

tor operates at 310.1MHz, has 22 cycles of pipeline depth, and consumes 273

ALMs, 30.2K Mbits and six DSP slices, leading to the total circuit area of ap-

proximately 548.67 eALMs. Our fastest reciprocal accelerator with exception

handling operates at 254 MHz, has fifteen cycles of pipeline depth and, con-

sumes 203 ALMs, 10.1K Mbits and two DSP slices, so the total circuit area

is approximately 326.78 eALMs. Similarly, for the smallest accelerator, we

observe that Intel/Altera reciprocal accelerator operates at 254.9 MHz, has 12

cycles of pipeline depth and, consumes 163 ALMs, 30.2K Mbits and three DSP

48

slices, so the total circuit area is approximately 348.67 eALMs. Our small-

est reciprocal accelerator with exception handling operates at 197.16MHz, has

nine cycles of pipeline depth and, consumes 150 ALMs, 10.1K Mbits and two

DSP slices, so the total circuit area is approximately 273.78 eALMs. In both

cases, Intel/Altera offers a slightly better maximum throughput, but our accel-

erator has a shorter pipeline depth and considerably less circuit area in ALMs,

Mbits and DSPs. Such advantages may be beneficial in real-time applications.

Our midway reciprocal accelerator has larger circuit area and lower maximum

frequency than the smallest and fastest accelerators, respectively. Table 3–4

also presents our accelerators which exclude exception handling. We observe

that the accelerators without exception handling offer a slightly lower maxi-

mum frequency, but have a shorter pipeline depth and a lower circuit area in

ALMs than ones with exception handling.

Figure 3–1 illustrates maximum throughput and eALMs (circuit area) for

Intel/Altera and our reciprocal accelerators (with and without exception han-

dling). In Figure 3–1, maximum throughput is shown on the vertical axis, and

eALMs are shown on the horizontal axis. Blue dots represent Intel/Altera

implementations, while orange and grey dots represent our implementations

with and without exception handling, respectively. We observe the same re-

sults as those of Table 3–4, i.e. that Intel/Altera implementations operate at

slightly higher throughput, and our implementations have considerably less

circuit area. The Cyclone V FPGA is considered to be low-end, so many ap-

plications that run on such a device do not need to operate at a frequency

which exceeds 250 MHz.

We believe that the Intel/Altera reciprocal accelerators presented in Ta-

ble 3–4 are developed by a large IP team. Furthermore, they are highly op-

timized for the target FPGA platform, so that they can fully take advantage

49

0	

50	

100	

150	

200	

250	

300	

350	

0	 100	 200	 300	 400	 500	 600	

FM
ax
	(M

Hz
)	

eALMs	(area)	

reciprocal	

Intel	

HLS	(exceptions)	

HLS	(no	exceptions)	

Figure 3–1: Throughput vs. area (eALMs) trade-offs for reciprocal accelera-
tors. [50]

of the underlying resources and features of the FPGA architecture. The per-

formance of our accelerators are competitive with that of the Intel/Altera IP

cores. We observe that our accelerators are better in pipeline depth and circuit

area, but are slightly worse in maximum frequency. The reasons that we are

able to design the competitive reciprocal accelerator are: 1) better algorithm:

we use a small LUT and low-degree polynomial to generate highly accurate

(1 ULP) results for reciprocal, which leads to a significant reduction to circuit

area (especially memory usage), and 2) HLS tool: LegUp HLS efficiently inter-

prets the algorithm design of reciprocal (specified in C language) into Verilog

code, and then map it to the target FPGA.

3.9.2 Iterative Reciprocal Accelerator

Table 3–5 demonstrates our reciprocal accelerators in the trial subtrac-

tion method. The left columns show results with exception handling, while

the right columns show results without exception handling. As above, we

present three configurations, which are accelerator with the smallest circuit

50

Table 3–5: Iterative implementations of reciprocal, with and without exception
handling [50]

With exceptions Without exceptions
Throughput Latency ALMs Throughput Latency ALMs

Smallest 126.58 15 842 121.24 14 819
Midway 213.77 28 1,027 214.68 27 976
Fastest 234.14 81 2,294 236.18 78 2,184

area, accelerator with fastest throughput, and accelerator in the midway. We

observe that there are neither DSP slices nor memory bits consumed in the

iterative implementations. Thus, iterative implementations are entirely built

with ALMs (soft logic). For implementations with exception handling, we

observe that throughput ranges from 126.58 to 234.14 MHz, pipeline depth

ranges from 15 to 81 cycles, and ALMs range from 842 to 2,294. For im-

plementations without exception handling, we observe that throughput basi-

cally remains the same, but there are reductions in pipeline depth and ALM

consumption. In comparison with the LUT-based implementations shown in

Table 3–4, iterative implementations have longer pipeline latency and more

ALM usage (approximately six to 13 times larger). However, we believe that

iterative implementations are feasible alternatives when the target application

requires neither DSP nor memory (i.e. low-power embedded applications),

or the target FPGA platform contains neither DSP slices nor memory blocks

(e.g. FPGAs from Lattice Semiconductor [4]).

3.10 Performance Comparison

In this section, we compare our LUT-based with the state-of-the-art recip-

rocal implementations mentioned in section 3.4. The last one row in Table 3–1

refers to our LUT-based accelerator. We observe that our LUT is smaller than

most implementations. Cockburn et al. propose a LUT-based reciprocal ac-

celerator, which uses 832 B LUT and has a maximum error of 1 ULP. However,

the error is obtained only through exhaustive testing on interval [1, 2). Cao

51

et al. also leverage a smaller LUT, but they take advantage of degree-3 poly-

nomial interpolation, which requires more usages of multiply and add. The

throughput of their work is measured by delay of a full adder. Unfortunately,

we are not sure about the accuracy of their work. In fact, the testing method

for most implementations is not explicitly mentioned in the respective papers.

Both Intel IP and our proposed accelerators achieve 1 ULP maximum error

through exhaustive testing. The two error bounds which are given in decimal

are translated into single-precision floating-point format. It is worth remind-

ing the reader that a small error bound in decimal may imply a very large

error under ULP (see Section 3.4.3).

It is difficult to give a fair and quantitative comparison among various

implementations of reciprocal in terms of area usage and throughput, as they

are targeted to different platforms. As a proxy for area complexity, we report

the number and width of multiplications and additions performed. In this

case, our proposed accelerator has lower multiplication and addition usage

than the majority. It has two 32-bit multiplications, one 32-bit addition and

one 64-bit addition. The throughput of our accelerator is not remarkable in

comparison with other implementations, as Cyclone V is considered to be a

low-end low-cost FPGA. However, the pipeline architecture adopted by our

accelerator accepts a new input of reciprocal at every clock cycle. Hence, we

say the initiation interval (II) of the pipeline is equal to 1. However, it may

not be true that other pipeline accelerators in Table 3–1 also have II = 1.

Finally, it is worth reinforcing that the algorithms of our reciprocal ac-

celerators are designed by C language, rather than in manually designed RTL

hardware. Our accelerators, therefore, are straightforward to change and mod-

ify, and the C specification, combined with HLS, allows a range of area/per-

formance trade-offs to be explored rapidly. It also validates LegUp HLS [5]

52

can interpret C specification of elementary function into Verilog code in an

efficient way.

3.11 Reduced-Precision Variants

A large number of applications, such as signal or image processing, do not

require absolutely accurate evaluations. In the field of approximate computing,

researchers trade the accuracy of designs for faster speed or area reduction.

In [72, 121], accuracy-adjustable adders are proposed for applications with

varying accuracy. Since the algorithms of our accelerators are designed by C

language, it is easy for them to be modified for implementations with lower

accuracy. This is useful for applications which are critical in resource usage,

but more tolerant of inaccurate evaluations. In this scenario, Table 3–6 shows

the results of reduced-precision implementations for iterative reciprocal accel-

erators. To simplify, we present only two reduced-precision variants, which

offer 32 and 1024 ULP maximum error. Reduced-precision variants are cre-

ated by reducing the number of iterations used in trial subtraction. The top

half of Table 3–6 gives results in which fast speed is a priority. In this case,

clock period constraints have been shrunk aggressively to better pipeline our

designs. The bottom half gives results in which small circuit area is a priority.

Compared to Table 3–5, we observe that throughput increases while pipeline

latency and area decrease as precision is reduced in Table 3–6. Notice that the

throughput-objective accelerators have longer pipeline latency and are built

with more soft logic units than area-objective accelerators. Part of the reason

is that the throughput-objective implementations have finer-grained pipeline

architecture.

Table 3–7 shows the results for reduced-precision implementations of

LUT-based reciprocal accelerators. The top half of the table shows results

53

Table 3–6: Reduced-precision variants of iterative reciprocal [50]
Throughput Latency ALMs Accuracy

Throughput objective
243.55 61 1688 32 ULP
251.51 46 1197 1024 ULP

Area objective
126.73 11 637 32 ULP
129.05 9 473 1024 ULP

Our work 213.77 28 1,027 1 ULP

Table 3–7: Reduced precision variants of LUT-based reciprocal [50].
Throughput Latency ALMs Mbits DSPs Accuracy

Degree-1 poly
193.61 5 78 6656 1 127 ULP
194.51 6 82 6656 1 127 ULP
196.58 7 91 6656 1 127 ULP

Half-size table
222.12 7 115 5056 2 3 ULP
211.19 8 124 5056 2 3 ULP
221.68 9 127 5056 2 3 ULP

Intel/Altera 310.1 22 273 30,208 6 1 ULP
Our work 253.68 15 203 10,112 2 1 ULP

of accelerators which use the same LUT, but degree-1 polynomial for interpo-

lation. The bottom half gives results of accelerators which use the same degree

of polynomial, but a LUT that is half the size. In addition, the top and bottom

implementations have a maximum error of 127 ULP and 3 ULP, respectively.

We observe that degree-1 polynomial implementations operate at roughly 200

MHz and, use 78-91 ALMs, 6,656 memory bits and one DSP. The half-size-

LUT implementations operate at roughly 220 MHz and use 115-127 ALMs,

5,056 memory bits and use two DSPs. Compared with the 1 ULP precision

results, LUT-based reduced-precision implementations achieve a slightly lower

frequency, but use significantly fewer ALMs and almost half-size memory us-

age. Also, we note that degree-1 polynomial (y = a ·x + b) implementations

only use one DSP slice, as one multiplication and addition are required in

this case. It is easy to modify the C specification to create reduced-precision

implementations to accommodate speed- or resource- sensitive applications.

54

3.12 HLS C Implementation

In this section, we show the HLS C programming style by presenting a

number of coding examples to demonstrate how it is slightly different from tra-

ditional C programming. The HLS C specifications of floating-point reciprocal

accelerators are implemented by using fixed-point data types and arithmetic.

For example, 32-bit unsigned integer types are used for inputs of the accel-

erators. We perform bit-mask operations to extract the sign, exponent and

mantissa. Thus, 8-bit, 16-bit and 32-bit unsigned integer types have been

used accordingly. All floating-point computations are then implemented as

fixed-point arithmetic.

• Top design. Floating-point accelerators are instantiated as C functions.

For example, the reciprocal accelerator in the trial subtraction method is

instantiated as trial recip(). The following code snippet shows the

structure of the top design. Two queues are created: one is for reading

inputs to trial recip(), and the other is for writing outputs pro-

duced by trial recip() to verify functional correctness. The while

loop statement constantly checks the input queue, and writes results to

the output queue.

// define two queues for input and output, respectively

void fpCore(FIFO* inputQ, FIFO* outputQ){

...

// constantly read an input from input queue

while (1) {

// read an single-precision (32-bits) input

uint32_t input = fifo_read(inputQ);

// feed the input to square root accelerator,

// and then get an output as result

uint32_t output = trial_recip(input);

// write the output to output queue

55

fifo_write(outputQ, output);

}

}

• Bit-mask operation. Given a single-precision floating-point number

SP , the following code snippet shows how to extract the sign (1 bit),

exponent (8-bits) and mantissa (23-bits) from SP . In this case, we in-

clude the stdint.h library, which defines new data types that explicitly

specify bitwidth and the signed/unsigned attribute, such as uint32 t,

uint16 t and uint8 t. By doing this, we can precisely control the

bitwidth for each variable in bit-mask operations. Otherwise, the HLS

tool sometimes assigns a data type with unexpected bitwidth to those

variables.

// <stdint.h> library defines new data types, such as

// uint32_t, to replace unsigned int

#include <stdint.h>

// sp is a single-precision (32-bits) floating-point input

uint8_t sign = sp >> 31;

uint16_t exp = (sp & 0x7f800000) >> 23;

uint32_t mantissa = sp & 0x007fffff;

• Replacing conditional statements and logical operators. We

manually replace all if-then-else statements with the alternative

expression <cond>?<val1>:<val2>. In doing so, the HLS tool can

generate more efficient Verilog code from the C specification without in-

serting unnecessary control flow. The HLS tool automatically removes

redundant control flow, but we sometimes manually optimize compli-

cated conditional statements for better performance. Likewise, all log-

ical operators (||, &&) are replaced with bitwise operators (|, &).

If this is not done, the HLS tool occasionally mis-inserts control flow

56

to places where the logical operators appear. Commented code in the

following code snippet shows if-then-else statements and logical op-

erators in a traditional C program, while the code below demonstrates

an HLS-style C program after making the corresponding replacements.

Note that in versions later than LegUp HLS version 5.5, manual replace-

ments to if-then-else statements and logical operators are no longer

required, as the HLS tool has been improved to perform such changes

internally and automatically.

/*

if (!c1 && !c2)

xn = xn + 0x01800000;

else

xn = xn;

*/

xn = (!c1 & !c2)? (xn + 0x01800000) : xn;

3.13 Summary

In this chapter, we presented single-precision floating-point reciprocal

hardware accelerators. The accelerators are designed with two algorithms: 1)

iterative (trial subtraction), and 2) LUT along with degree-2 polynomial inter-

polation. The algorithms are implemented by C language, and synthesized into

hardware using the LegUp HLS, Quartus and Modelsim. Through exhaustive

testing, we find that the maximum errors of both the iterative and LUT-based

accelerators are 1 ULP, which is equivalent to Intel/Altera IP cores. In evalu-

ation, we compare the performance of our LUT-based reciprocal accelerators

with that of Intel/Altera IP cores, which are both targeted to the Cyclone V

45nm FPGA. Results show that Intel/Altera IP cores win slightly in through-

put, but our accelerators win considerably in terms of pipeline latency, circuit

57

area, especially memory usage. For iterative accelerators, although the per-

formance is not as good as the LUT-based ones, they are still attractive to

embedded applications targeted at low-end FPGAs since no DSP units are

used. In addition, we also propose accelerators with reduced-precision options

for applications with more emphasis on speed and area than precision. In

this case, we trade accuracy for higher throughput and a fewer circuit area.

In general, we consider the performance of our reciprocal accelerators to be

promising, since Intel/Altera IP cores are developed by a large team and are

undoubtedly highly optimized toward their own FPGAs.

58

Chapter 4
Square Root Accelerators

4.1 Publication

Main content of this chapter comes from the following published manuscript:

[50] Jing Chen, Xue Liu and Jason Anderson, ”Software-Specified FPGA

Accelerators for Elementary Functions”, the 2018 International Confer-

ence on Field-Programmable Technology (FPT’18), full paper.

4.2 Organization

In this chapter, we propose the algorithm designs and implementations

of single-precision (32-bit) floating-point square root hardware accelerators.

Section 4.3 presents a brief introduction about this chapter. We review prior

work on square root accelerators in Section 4.4. In Section 4.5, we elabo-

rate on the range reduction, which leverages a math formulation derivation to

simplify the square root evaluation. In Sections 4.6 and 4.7, two algorithms

are addressed, which are Newton Raphson’s method, and LUT along with

degree-2 polynomial interpolation, respectively. In Section 4.8, accuracy is

examined through exhaustive testing. An error distribution report is given as

well. We compare our LUT-based accelerator with Intel/Altera square root

IP core in terms of speed and area usage in Section 4.9. In Section 4.10, we

give a performance comparison between ours and the state-of-the-art square

root implementations. Finally, we demonstrate the HLS C programming style

in section 4.11, and summarize our work in Section 4.12.

4.3 Introduction

Square roots are frequently used in digital signal processing applica-

tions and wireless communication system [47, 91]. The proposed square root

59

accelerators are designed with two algorithms, which are Newton’s method (it-

erative) and LUT-based approach (non-iterative). For LUT-based algorithm,

we use a LUT of around 1 KB and degree-2 polynomial interpolation. Since

the LUT-based algorithm is universal, it could be applied to implement an

entire library of single-precision elementary functions into high-performance

hardware accelerators. Based on exhaustive testing on the domain of square

root, the accelerators are able to produce results with 1 ULP maximum and

0.25-0.27 average errors, respectively, compared with square root from GNU

math.h library. The algorithms are implemented by C language, and syn-

thesized into hardware targeting on Intel/Altera 45 nm FPGA by the LegUp

HLS [5], Quartus and ModelSim. Similar to the reciprocal accelerators, we

compare ours with the state-of-the-art implementations in terms of algorithm

design, accuracy, testing method, throughput, architecture and platform.

4.4 Related Work

Table 4–1 gives readers a good understanding of previous square root

implementations. In this case, the accuracy is given either in ULP or by an

error bound in decimal. However, we translate error bounds from decimal

to single-precision floating-point format. Recall that a small error bound in

decimal may imply a very large error under ULP (see section 3.4.3). There are

numerous algorithms for implementing floating-point square root. Generally,

they can be categorized as non-iterative and iterative algorithms.

4.4.1 Non-Iterative Algorithms

This usually leverages polynomial and/or LUT approximation for square

root evaluation. Kwon and Draper [78] present a pipelined, multiply/di-

vide/square root fused floating-point computation unit by using Taylor series

expansion and LUT approximation. In this case, a degree-3 Taylor series and

448 B LUT are adopted. Since the fused unit was synthesized to 90 nm CMOS

60

fabrication technology, the area usage of the fused unit is reported in µm2 (as

an ASIC) with a clock frequency of under 500 MHz. We observe that the area

of the multiply/divide fused unit is 37722.8 µm2 while the area of the multi-

ply/divide/square root unit is 45339.0 µm2. There is an approximately 20%

increase in area for the multiply/divide/square root unit when extended from

the multiply/divide unit. Unfortunately, the accuracy for the square root unit

alone is not mentioned in the paper.

Dinechin et al. [53] implement square root based on polynomial approxi-

mation only. Both inputs and outputs of are single-precision (32-bit) floating-

point numbers. The square root has been correctly rounded to 0.5 ULP accu-

racy and uses degree-2 polynomial approximation. It operates at 237 MHz and

takes 12 clock cycles (50.6 ns latency) to complete a single square root com-

putation. The implementation is incorporated into the open-source FloPoCo

framework [2].

Intel/Altera square root intellectual property (IP) operates at 263-310

MHz and takes 30.4-51.6 ns latency on the Intel/Altera Cyclone V FPGA.

As a pipelined design, it accepts a new single-precision floating-point input

at every clock cycle. The maximum error of the IP is 1 ULP for the inputs

in the domain. Since the Intel/Altera IP is proprietary, we infer that it uses

LUT approximation from the large amount of memory usage in their FPGA

synthesis report.

Savas et al. [102] propose a single-precision floating-point square root unit.

The hardware implementation uses two degree-2 polynomial and three LUTs,

which take 528 bytes. The total number of arithmetic operations for LUT

approximation and polynomial interpolation is five integer multiplications,

seven integer additions and one shift operation. The square root unit is tested

61

T
ab

le
4–

1:
C

om
p
ar

is
on

of
ou

r
p
ro

p
os

ed
an

d
p
re

v
io

u
s

sq
u
ar

e
ro

ot
im

p
le

m
en

ta
ti

on
s

A
u

th
or

s
Y

ea
r

L
U

T
A

cc
u

ra
cy

1

(×
,+

)
W

id
th

E
x
h

au
st

iv
e

T
h

ro
u

gh
p

u
t

P
ip

el
in

e?
M

et
h

o
d

o
lo

g
y

U
L

P
E

rr
or

b
ou

n
d

T
es

ti
n
g?

2
(M

H
z)

K
ow

n
,

D
ra

p
er

20
08

44
8

B
?3

?
(1

4,
5)

?
?

50
0

y
es

A
S

IC

D
in

ec
h

in
et

al
.

20
10

n
/a

0.
5

n
/a

(2
,

2)
(1

7,
?)

?
19

.7
5

n
o

F
P

G
A

S
u

re
sh

et
al

.
20

13
n

/a
20

48
n
/a

(0
,

78
)

(0
,

52
)

?
6.

6
n

o
F

P
G

A

H
as

n
at

et
al

.
20

17
n

/a
20

48
n

/a
(8

,
3)

?
p

ar
ti

al
19

4.
12

2
ye

s
F

P
G

A

C
h

an
d

u
,

20
17

n
/a

?
?

?
?

?
25

n
o

F
P

G
A

M
ar

ad
i

L
i

et
al

.
20

17
?

n
/a

2−
2
0
×

1
.0

00
..
.1

?
?

p
ar

ti
al

97
.5

n
o

F
P

G
A

S
at

p
u

te
20

18
n

/a
?

?
?

?
?

50
n

o
F

P
G

A

In
te

l
IP

20
18

?
1

n
/a

?
?

ye
s

26
3-

31
0

ye
s

F
P

G
A

S
av

as
et

al
.

20
19

52
8

B
1

n
/a

(5
,

7)
?

p
ar

ti
al

24
0

ye
s

F
P

G
A

O
u

r
w

or
k
4

20
18

≈
10

24
B

1
n

/a
(2

,
2)

(3
2,

64
)

ye
s

10
4-

24
4.

92
ye

s
F

P
G

A

1
A

cc
u

ra
cy

is
gi

ve
n

in
ei

th
er

U
L

P
or

an
u

p
p

er
b

ou
n

d
(i

n
b

in
ar

y
fl

oa
ti

n
g-

p
oi

n
t

fo
rm

at
)

fo
r

ea
ch

w
or

k
p

re
se

n
te

d
in

th
is

ta
b

le
.

2
A

cc
u

ra
cy

is
ob

ta
in

ed
th

ro
u

gh
ex

h
au

st
iv

e
or

p
ar

ti
al

te
st

in
g.

T
h

er
e

ar
e

2
3
1
≈

2
b

il
li

on
s

te
st

in
g

ca
se

s
fo

r
si

n
gl

e-
p

re
ci

si
o
n
√
x

in
ex

h
a
u

st
iv

e
te

st
in

g.
P

ar
ti

al
te

st
in

g
u

se
s

ra
n

d
om

n
u

m
b

er
s

to
ve

ri
fy

ac
cu

ra
cy

.
T

h
e

ex
h

au
st

iv
e

te
st

in
g

ap
p

ro
ac

h
al

lo
w

s
u

s
to

m
a
ke

a
st

ro
n

g
er

st
a
te

m
en

t
on

th
e

ac
cu

ra
cy

fo
r
√
x

u
si

n
g

lo
w

-o
rd

er
p

ol
y
n

om
ia

l.
3

”?
”

re
p

re
se

n
ts

u
n

k
n

ow
n

.
4

O
u

r
L

U
T

-b
as

ed
sq

u
ar

e
ro

ot
ac

ce
le

ra
to

r.

62

with 224 (16,777,216) single-precision floating-point inputs to obtain less

than 1 ULP error. Furthermore, the hardware implementation is verified by

implementation on the Xilinx UltraScale FPGA. Results show that the five-

stage pipelined design operates at 240 MHz and has a latency of 20.8 ns to

complete a single square root evaluation.

4.4.2 Iterative Algorithms

These approximate the square root via a number of calculation iterations.

Each iteration is intended to give a more accurate result toward the final

square root evaluation. For iterative approaches (e.g. Newton’s method),

finding a good starting point can effectively reduce the number of iterations

required to generate a result of certain accuracy for the square root. The

non-restoring method approximates the square root through a series of steps.

The method initially computes a starting point x0 = 2n−1 for a 2n-bit number

x. Then, it approximates the real value of
√
x through n − 1 steps [43].

This method has been widely adopted to implement square root due to its

simplicity. Satpute et al. [101] propose a single-precision (32-bit) floating-

point square root implementation using the non-restoring method. It operates

at 50 million samples per second (MSPS), and uses 84 LUTs and 141 SLICEs

on the Xilinx Spartan 3E FPGA. However, the accuracy of the square root

evaluation is not mentioned in their paper. Moreover, Suresh et al. [105] apply

a non-restoring algorithm to their square root computing unit, which achieves

an accuracy rate of 12 out of 23-bits in the mantissa (2048 ULP). The unit

operates at 203.25 MHz and takes 31 clock cycles to complete. In addition, the

unit consumes 819 LUTs, 276 SLICEs and 531 registers on the Xilinx Virtex-6

FPGA.

Hasnat et al. [68] present a fast implementation of single-precision (32-

bit) floating-point square root. The design was coded in VHDL and leverages

63

a modified Quake’s algorithm [103, 44]. Here, the Quake’s algorithm refers

to a modified Newton’s method, which targets to a 3D video game so-called

Quake. It adopts magic numbers to make good guess for the starting point.

The work is synthesized to the Xilinx Virtex 5 XC5VLX85T-3FF1136 FPGA.

Experiments show that the design operates at 194.122 MHz and takes 12 cycles

to get 12-bit accuracy (maximum error is 2048 ULP) for input ranges in [1,

2). In addition, the area consumed is 199 LUTs, 24 registers.

Chandu and Maradi [47] present an efficient square root computation

unit based on the Vedic algorithm [106]. The Vedic algorithm is an iterative

algorithm to find square root based on fast manual calculation. Neither input

nor output comply with the IEEE-754 floating-point standard. In this case,

they used a 32-bit (16-bit + 16-bit) floating-point input, and a 16-bit (8-bit

+ 8-bit) floating-point output. The design was coded in Verilog HDL, and

synthesized to the Xilinx XST SPARTAN 6 family XC6SLX25T FPGA. The

accuracy of the unit was not discussed. In addition, the square root unit

consumes 360 LUTs and, operates at approximately 25 MHz.

The Coordinate Rotation Digital Computer (CORDIC) algorithm [89],

invented by Jack E. Volder, has been extensively used in fields such as signal

and image processing. CORDIC is an iterative algorithm that simply leverages

shift-add operations for the computation of trigonometric functions, division,

square root, etc. Although the latency of evaluating CORDIC may be long,

the simplicity of the algorithm facilitates hardware implementation.

Xilinx square root intellectual property (IP) [14, 15, 102] is implemented

using the CORDIC algorithm. After synthesizing to the Xilinx Virtex Ultra-

scale FPGA, the IP consumes 448 LUTs and 786 flip-flops. In addition, the IP

operates at 568 MHz and has a latency of 44.0 ns to complete a single square

64

root operation. The IP is implemented in a 25-stage pipeline and accepts a

new input every clock cycle.

Li et al. [81] implement a floating-point square root based on the CORDIC

algorithm. The unit has 12 iterative layers for SAR (Synthetic Aperture

Radar) imaging processing. Since the square root unit targets small numerical

values, 200 random values with a range of [0, 100] are used to verify accuracy.

Results show that all errors do not exceed 10−6. The design was coded in

VHDL and synthesized on the Xilinx XC7VX690T FPGA. The proposed unit

consumes 1279 LUTs, 953 registers and requires four clock cycles to complete

the computation, while operating at 390 MHz.

In addition to the aforementioned works, Mopuri et al. [90] discuss a

CORDIC-based method to implement square root, where inputs are complex

numbers. Bagala et al. [40] propose a square root algorithm based on a bino-

mial series for 16-bit binary numbers.

4.5 Range Reduction

Similar to reciprocal, we also perform range reduction for square root.

For a floating-point input fp, we have the equation of
√

fp as follows:

√
fp =

√
(−1)s × 2e7−0−127 × 1.m22−0 (4.1)

To obtain valid results for square root, we assume that the sign of the fp is

positive ((−1)s = 1); then, we have:

√
+fp =

√
2e7−0−127 ×

√
1.m22−0 (4.2)

= 2(e7−0−127)/2 ×
√

1.m22−0 (4.3)

or = 2(e7−0−127−1)/2 ×
√

2×
√

1.m22−0 (4.4)

65

We have two equations 4.3 and 4.4 for the results of square root, depending on

whether the biased exponent (e7−0 − 127) is even or odd. When (e7−0 − 127)

is an even number, then it is easy to compute
√

2e7−0−127 as 2(e7−0−127)/2 in

Eqn. 4.3. However, when (e7−0−127) is an odd number, then (e7−0−127−1) is

an even number. Thus, we compute
√

2e7−0−127 as 2(e7−0−127−1)/2, and multiply

√
1.m22−0 by

√
2 in Eqn. 4.4. Looking at Eqns. 4.3 and 4.4, we realize that our

major work is to compute
√

1.m22−0, whose range is [1 :
√

2). Eqn. 4.3 or 4.4

shrinks the domain of square root to 1.m22−0. To comply with floating-point

accelerators from FPGA vendors (e.g. Xilinx, Intel/Altera) and the FloPoCo

open-source library [54], our square root also does not support subnormal

inputs – such inputs are flushed to zero.

4.6 Iterative Implementation: Newton-Raphson Method

Newton-Raphson method (Newton’s method) is an iterative approach to

find roots of a continuous function y = f(x); that is, the method finds the

locations, xa, xb, . . . , for which y evaluates to 0. Newton’s method begins by

making an initial guess, x0, for a root. Then, at the guess location, f(x0) and

the first-order derivative f ′(x0) are evaluated. A new/better guess, x1, is then

computed as:

x1 = x0 −
f(x0)

f ′(x0)
(4.5)

x1 is the intersection of the line which is tangent to f(x0) and the x-axis.

xn+1 = xn −
f(xn)

f ′(xn)
(4.6)

Repeating the process in Eqn. 4.6 yields a successively better/equal approxi-

mation after each iteration. To evaluate square root
√

fp, we apply Newton’s

method to the function f(x) = x2 - fp, (fp > 0). Observe that, for this func-

tion, f(x) = 0 when x =
√

fp. Thus, the Newton’s iterative equation is as

66

follows:

xn+1 =
1

2
(xn +

fp

xn
) (4.7)

For the starting point x0, we use the following rough approximation from [24]:

log2(fp) = log2(2
e7−0−127 × 1.m22−0) (4.8)

= log2(2
e7−0−127) + log2(1.m22−0) (4.9)

≈ log2(2
e7−0−127) (4.10)

It is easy to obtain fp ≈ 2e7−0−127 in Eqn. 4.10. Since
√

fp ≈ 2e7−0−127/2,

we need to subtract the exponent of fp by 127, then divide it by two and

finally adjust the value back to the biased exponent. Based on Eqn. 4.7, each

iteration requires one division, one addition and one shift operation.

4.6.1 Case Study

In this section, a concrete example is given to evaluate the square root of

22.5 using Newton’s method. We have Newton’s iterative equation as follows:

xn+1 =
1

2
(xn +

22.5

xn
) (4.11)

To approximate the starting point x0, we use the methodology stated in Eqns.

4.8, 4.9 and, 4.10 from [24]. Here, we give x0 in binary floating-point and

decimal representations:

x0 = 0, 10000001, 00110100000000000000000 (binary) (4.12)

= 4.8125 (decimal) (4.13)

67

We know that x0 is a rough approximation to
√

22.5. To obtain a better

approximation, we apply Eqn. 4.11 to compute x1:

x1 =
1

2
(x0 +

22.5

x0
) (4.14)

= 0, 10000001, 00101111100111000100001 (binary) (4.15)

= 4.743912 (decimal) (4.16)

After the first iteration of Newton’s approximation, we further apply Eqn. 4.11

to compute x2 and x3.

x2 =
1

2
(x1 +

22.5

x1
) (4.17)

= 0, 10000001, 00101111100101000010001 (binary) (4.18)

= 4.7434163 (decimal) (4.19)

x3 =
1

2
(x2 +

22.5

x2
) (4.20)

= 0, 10000001, 00101111100101000010001 (binary) (4.21)

= 4.7434163 (decimal) (4.22)

We observe that Newton’s approximation converges on x2 after two iterations

of computation. In this case, x2 has 0 ULP error compared with the square

root of 22.5 generated by the GNU math.h library. However, three iterations

are required to achieve a 1 ULP error approximation for all square root inputs

(as will be demonstrated below in the accuracy analysis section). For an input

value which is subnormal, (± zero, ± infinity or NaN), we apply the exceptions

listed in Table 4–2. For example, if an input is a negative number, then the

corresponding output is NaN (Not-a-Number). In the IEEE-754 standard,

the 32-bit encoding for NaN is 0xffc00000 in hexadecimal. However, to match

68

the results from the GNU C math.h library, when inputs of the square root

function are NaNs, the output is fp ‖ 0x00400000.

Table 4–2: Exception handling for square root. [50]
Input Output Encoding

+subnormal +zero 0x00000000

+zero +zero 0x00000000

+infinity +infinity 0x7f800000

negative NaN 0xffc00000

NaN NaN fp ‖ 0x00400000

4.7 Non-Iterative Implementation: Lookup Table (LUT)

In addition to Newton’s iterative approximation, we also implement

square root by using a LUT along with polynomial interpolation. Here, we

borrow the techniques of implementing a LUT-based reciprocal, as described

in the previous chapter. Compared with iterative implementation, the LUT-

based square root is faster in evaluation time and smaller in circuit area.

Recall that for square root, as shown in both Eqns. 4.3 and 4.4, we need

to compute
√

1.m22−0, whose domain is [1:2) and range is [1:
√

2). Similar

to the LUT-based reciprocal, to compute
√

1.m22−0, a LUT is created and

divided into 64 intervals. Within any interval, a degree-2 polynomial (y =

a ·x2 + b ·x + c) is used to interpolate the missing values. Here, a, b, and c

are scalar coefficients, and they are different for each of the intervals. We use

the 6 MSBs of mantissa (i.e. m22−17) to address the LUT for coefficients (a,

b, c), while the remaining 17-bits of the mantissa (i.e. m16−0) are treated as

x for the degree-2 polynomial interpolation.

Recall from Eqn. 4.4 that, there is an additional multiplication to
√

1.m22−0

by
√

2, when the biased exponent is odd. In this case, we tried two kinds of

approximation to
√

2 ·
√

1.m22−0 for precision: 1)
√

2 · (a ·x2 + b ·x+ c), and 2)

(
√

2 · a) ·x2 + (
√

2 ·b) · x + (
√

2 · c). However, the latter approximation yields

higher precision. The former approximation is implemented as an additional

69

multiply with
√

2 to the result of polynomial interpolation. The latter approx-

imation multiplies each coefficient of polynomial interpolation by
√

2. Thus,

it actually uses two sets of coefficients, depending on whether the biased ex-

ponent is an even or odd number. The latter approximation achieves higher

precision because it avoids rounding errors caused by an additional multiply,

but it suffers from the cost of doubling the LUT size by storing two sets of

coefficients.

Similar to the LUT-based reciprocal, we use Chebyshev polynomial ap-

proximation to compute coefficients (a, b, c) for each interval. In addition, we

use Horner’s rule to reduce one multiplication for degree-2 polynomial interpo-

lation from y ≈ a ·x2+b ·x+c to y ≈ ax · (x+b)+c. Exception handling of the

LUT-based approach is the same as that of Newton’s iterative approximation.

4.8 Error Study

In this section, we analyze the accuracy of the square root accelerators

through exhaustive testing. Similar to the error study of the reciprocal accel-

erators, error distributions are presented in terms of maximum/average error

and the percentage of evaluations which have 0 or 1 ULP error.

4.8.1 Exhaustive testing

We also perform exhaustive testing on the domain of square root to ob-

tain an overall error distribution. Our square root accelerator does not support

subnormals, and there are roughly 16,777,214 subnormal numbers according

to the IEEE-754 standard. Thus, valid inputs of square root are approxi-

mately 2×109 cases, which exclude subnormal and negative numbers. Similar

to reciprocal, we treat square root evaluations generated by the GNU math.h

library as a golden benchmark, and we compare our Newton’s and LUT-based

approaches with the benchmark, to generate an overall error distribution.

70

4.8.2 Error Distribution

Table 4–3 shows the error distribution of the square root implementations.

To simplify, we only show results of normal inputs according to the IEEE-

754 standard. For Newton’s iterative approximation, we observe that 75% of

inputs produce no error (0 ULP), while the remaining 25% of inputs produce 1

ULP error. In this case, maximum and average error are 1 ULP and 0.25 ULP,

respectively. The LUT-based implementation shows two results depending on

whether the biased exponent is odd or even. If it is odd, then 73% of inputs

produce no error (0 ULP), and 27% of inputs produce 1 ULP. We observe

that the maximum and average errors are 1 ULP and 0.27 ULP, respectively.

Similarly, if the biased exponent is even, maximum and average errors are 1

ULP and 0.24 ULP, respectively. Finally, in terms of average error, Newton’s

iterative approximation sometimes has a slightly higher average error than

that of LUT-based implementations: 0.25 ULP vs. 0.24-0.27 ULP.

Table 4–3: Error distribution for square root [50]
Newton’s Square Root

Exp Max Error Avg Error 0 ULP 1 ULP
all 1 ULP 0.25 ULP 75% 25%

LUT-Based Square Root
Exp Max Error Avg Error 0 ULP 1 ULP
odd 1 ULP 0.27 ULP 73% 27%
even 1 ULP 0.24 ULP 76% 24%

4.9 Experimental Study

We compare our square root accelerators with Intel/Altera IP cores, in

terms of speed and circuit area. Similar to the reciprocal accelerators shown

in Table 3–4, three configurations of square root accelerators are produced:

fastest core, smallest core and core in-between. All cores are targeted to the

Intel/Altera Cyclone V 45 nm FPGA. Also, they are synthesized into hardware

using the LegUp HLS, Quartus and ModelSim. We present the performance of

71

Table 4–4: Intel vs. Our LUT-based square root accelerators [50]

Intel/Altera FP FUNCTIONS
Throughput Latency ALMs Mbits DSPs eALMs

Smallest 263.1 8 83 15,872 2 238.67
Midway 277.9 9 100 15,872 2 255.67
Fastest 310.1 16 178 15,872 3 363.67

Our work (handling exceptions)
Throughput Latency ALMs Mbits DSPs eALMs

Smallest 104 6 94 10,624 2 217.78
Midway 149.84 6 112 10,624 2 235.78
Fastest 244.92 10 162 10,624 2 285.78

Our work (no exception handling)
Throughput Latency ALMs Mbits DSPs eALMs

Smallest 98.75 5 89 10,624 2 212.78
Midway 163.61 7 117 10,624 2 240.78
Fastest 191.39 8 135 10,624 2 258.78

square root cores in terms of maximum throughput, latency (pipeline depth),

ALMs, memory bits (Mbits), DSPs and equivalent ALMs (eALMs).

4.9.1 LUT-Based Square Root Accelerator

Table 4–4 compares our LUT-based accelerators with Intel/Altera IP

cores. For the fastest cores, we observe that the Intel/Altera IP core oper-

ates at 310.1 MHz, has 16 cycles of pipeline depth, and consumes 178 ALMs,

15.8K Mbits and three DSPs, for a total circuit area of approximately 363.67

eALMs. Our fastest accelerator with exception handling operates at 244.92

MHz, has 10 cycles of pipeline depth and, consumes 162 ALMs, 10.6K Mbits

and two DSPs, for a total circuit area of approximately 285.78 eALMs. Simi-

larly, for the smallest core, we observe that the Intel/Altera IP core operates at

263.1 MHz, has eight cycles of pipeline depth and, consumes 83 ALMs, 15.8K

Mbits and two DSPs, for a total circuit area of approximately 238.67 eALMs.

Our smallest accelerator with exception handling operates at 104 MHz, has

six cycles of pipeline depth and, consumes 94 ALMs, 10.6K Mbits and two

DSPs, for a total circuit area of approximately 217.78 eALMs. In both cases,

72

0	

50	

100	

150	

200	

250	

300	

350	

0	 50	 100	 150	 200	 250	 300	 350	 400	

FM
ax
	(M

Hz
)	

eALMs	(area)	

square	root	

Intel	

HLS	(exceptions)	

HLS	(no	exceptions)	

Figure 4–1: Throughput vs. area (eALMs) trade-offs for square root accelera-
tors [50]

the Intel/Altera IP cores again provide a higher throughput, and also consume

fewer ALMs in some cases. However, our accelerators offer a reduced pipeline

depth and, fewer memory bits, DSPs and eALMs. Table 4–4 also presents the

accelerators without exception handling. We observe that there are reductions

in pipeline depth and ALMs after exception handling has been removed.

Figure 4–1 illustrates the performance of Intel/Altera IP cores and our

accelerators (with and without exception handling). Again, the blue dots

represent Intel/Altera implementations, while orange and grey dots represent

our implementations with and without exception handling, respectively. In

this case, Intel/Altera implementations operate at a higher throughput, and

also have less circuit area in some cases. On the other hand, our accelerators

operate at a lower throughput, and have less circuit area in most cases.

4.9.2 Iterative Square Root Accelerator

Table 4–5 shows the results of square root implementations using New-

ton’s iterative approximation. There are two groups: the left-hand group

shows the results with exception handling, while the right-hand group shows

73

Table 4–5: Newton’s iterative implementations of square root – with and
without exception handling [50]

With exceptions Without exceptions
Throughput Latency ALMs Throughput Latency ALMs

Smallest 106.1 29 1,776 104.82 28 1,716
Midway 167.34 57 2,231 159.72 55 2,015
Fastest 216.54 169 5,409 217.49 165 4,749

the results without exception handling. For square root, with exception han-

dling, we observe that the throughput is 106-216 MHz, pipeline depth is 29-169

cycles, and ALMs are 1,776-5,409. Without exception handling, we observe

that maximum throughput is 104-217 MHz, pipeline depth is 28-165 cycles,

and ALMs are 1,716-4,749. After exception handling is removed, there are

reductions in pipeline depth and ALM usage.

As expected, iterative implementations of square root operate at a lower

throughput, have longer pipeline depth, and use considerably more ALMs.

However, iterative implementations are entirely built on soft logic (ALMs), and

require neither Mbits nor DSP units. For applications for which ALM usage is

critical, LUT-based implementations are superior, owing to the fact that ALM

usage in Newton’s iterative approximation is nine to 24 times that of the LUT-

based approach. However, from the perspective of Mbit/DSP usage, Newton’s

iterative approximation is preferred because it does not require memory blocks

or DSP units.

4.10 Performance Comparison

Table 4–1 demonstrates performance of our proposed and previously men-

tioned square root accelerators. The last row in the table refers to our LUT-

based accelerators. In Table 4–1, we observe that most implementations have

n/a in the column of LUT. This is because for an iterative implementation, is

not necessary to have LUT for evaluation. Kown and Draper uses a smaller

74

LUT than us, but they require roughly many more multiplications and addi-

tions vs. our approach. In addition, accuracy is not explicitly mentioned in

their paper. Similarly, Savas et al. also present a smaller LUT, but requires

more multiplications and additions. Both Intel IP and our proposed accelera-

tors achieve 1 ULP maximum error through exhaustive testing. We note that

Dinechin et al. apparently offers better accuracy, however, it is not clear if

they also perform exhaustive testing to verify the accuracy. Similarly, Savas

et al. claim an error of 1 ULP through partial testing.

To give a fair and quantitative comparison among various implementa-

tions of square root, evaluation is quantified by presenting the number and

width of multiplication and addition operations. In this case, our LUT-based

implementation uses fewer multiplications and additions than the majority of

the prior work. It has two 32-bit multiplications, one 32-bit addition and one

64-bit addition. The accelerator proposed by Suresh et al. has 78 52-bits ad-

ditions without using any multiplications. The maximum throughput of our

LUT-based accelerator is higher than all FPGA-based implementations ex-

cept Intel/Altera IP cores. Kown and Draper’s work has highest throughput

in Table 4–1. However, their accelerator is based on an ASIC instead of an

FPGA.

It is worth to note that non-pipelined implementations generally have

lower throughput than pipelined ones. For example, the accelerator presented

by Li et al. operates at a frequency of 390 MHz and requires four clock

cycles to complete one single computation of square root. In this case, the

throughput is approximately 97.5 MHz although the accelerator operates at a

fairly high frequency. In our case, the LUT-based accelerator adopts pipelined

architecture, and the pipeline accepts a new input of square root at every clock

cycle. Hence, the initiation interval (II) of our proposed accelerator is equal

75

to one (II = 1). However, it may not be true that other pipeline accelerators

in the table also have II = 1.

4.11 HLS C Implementation

In this section, we present a number of HLS C code snippets for the square

root accelerators. For performance optimization, we replace floating-point

division with fixed-point subtraction in Newton’s iterative implementation,

which helps to reduce ALM usage dramatically. Likewise, avoiding the use of

conditional statements and floating-point addition also results in large ALM

usage reductions. In addition, modifications have been made to the interpreted

Verilog code from HLS to reduce DSP usage on target FPGA.

• Loop unrolling. Recall that we use Newton’s approximation to im-

plement the iterative square root accelerator. In LegUp HLS version

5.5, we need to manually unroll all loop statements, and remove all the

corresponding control flow as well. The following code snippet shows an

unrolled loop for three iterations of Newton’s approximation. In versions

later than LegUp HLS 5.5, a manual loop unroll is no longer required,

as the tool has been enhanced to perform unrolling automatically.

/*

for(i = 1; i < = 3; i++)

{

div = divide(a, xn); // a/xn

xn = add(xn, div); // xn + a/xn

xn = xn - 0x00800000; // xn/2

}

*/

// 1st iteration

div = divide(a, xn);

xn = add(xn, div);

xn = xn - 0x00800000;

76

// 2nd iteration

div = divide(a, xn);

xn = add(xn, div);

xn = xn - 0x00800000;

// 3rd iteration

div = divide(a, xn);

xn = add(xn, div);

xn = xn - 0x00800000;

The commented code shows the loop implementation for Newton’s ap-

proximation in traditional C. To simplify, we skip the process of finding

the starting point for xn. xn is implemented as a 32-bit unsigned inte-

ger, but treated as 32-bit floating-point number. The divide and add

functions implement floating-point division and addition in fixed-point

arithmetic. Here, we use xn - 0x00800000 to replace xn/2, since

fixed-point subtraction is less expensive than floating-point division. By

doing so, we observe an approximately 200- to 300- ALM usage reduction

in the HLS synthesis report.

• Reducing ALM usage. Recall that we manually replace the if-then-else

statements with the expression <cond>?<val1>:<val2>. LegUp HLS

translates a <cond>?<val1>:<val2> statement into a multiplexer,

which consumes soft logic (ALMs). To reduce ALM usage, we need to

avoid the use of conditional statements as much as possible. Note that in

versions later than LegUp HLS 5.5, manual replacement of if-then-else

is no longer required, as the HLS tool has been improved to perform such

changes internally and automatically. The following code snippet shows

how to do floating-point addition by using fixed-point arithmetic in an

area-wise manner for Newton’s approximation. For floating-point ad-

dition, fp1 + fp2, one needs to complete in four steps: 1) compare the

77

magnitudes of fp1 and fp2, then scale the number with less magnitude,

2) add the mantissas of fp1 and fp2, 3) adjust the result according to the

IEEE-754 standard, and 4) perform rounding. In our case, we imple-

ment floating-point addition by assuming the exponent of fp1 is greater

or equal to that of fp2. In doing so, the control flow used to do a com-

parison between fp1 and fp2 in the first step is eliminated, which results

in a significant reduction in ALM usage.

// a, b are both single-precision (32-bit) floating-point

numbers

uint32_t add(uint32_t a, uint32_t b)

{

...

// a_exp, b_exp represent exponents of a, b respectively

diff_exp = a_exp - b_exp;

result_exp = a_exp;

// a_mantissa, b_mantissa represent mantissas of a,b

respectively

b_mantissa = b_mantissa >> diff_exp;

result_mantissa = a_mantissa + b_mantissa;

...

}

• Rounding. After the second multiplication of degree-2 polynomial

interpolation (y ≈ (a ·x + b) ·x + c), we shift the product value =

(a ·x + b) ·x right by 23-bits. The following code snippet shows the

crude rounding scheme we adopt. Before doing the right shift, we need

to look at the 22nd bit of the product value = (a ·x+ b) ·x. After that,

we need to perform the 23-bit shift right. If the 22nd bit is bit-1, then

78

the shifted product is incremented. Otherwise, the shifted product re-

mains the same. We use a similar rounding scheme for the final addition

with coefficient c for degree-2 polynomial interpolation.

// check if 22nd bit of product is bit-0 or bit-1

unsigned char roundUp = (value >> 22) & 0x1;

// shift the product right by 23-bit

value = value >> 23;

// if the 22nd bit of product is bit-1, then round up to (

value + 1); otherwise, round down to (value);

value = (roundUp) ? value + 1 : value;

• Reducing DSP usage. For Intel/Altera Cyclone V FPGA, one DSP

slice can implement a 27 × 27-bit multiplication at most on the Cy-

clone V FPGA we target. Thus, multiplication with a wider bitwidth

requires more than one DSP slice. This may lead to more ALM usage

due to additional soft logic being needed to accumulate intermediate

products. For DSP usage considerations, we need to keep operands of

multiplication below 27-bits. Recall that degree-2 polynomial interpo-

lation, y ≈ (a ·x + b) ·x + c, is used for LUT-based implementations.

Coefficient a is represented using 27 bits because it does not have a large

variance in its exponent. Variable x is the 16 or 17 least significant

bits (LSBs) of the mantissa. Hence, the first multiplication, a ·x, easily

meets the 27-bit requirement. Likewise, the second multiplication is also

kept within the 27-bit boundary.

Owing to the fact that we use 32-bit unsigned types in C language, 0s

appear in all MSBs for operands of multiplication. We observe that the

HLS tool translates operands of multiplication into 32-bit wide signals

in Verilog. Similarly, Quartus does not recognize those leading 0s in

79

operands of multiplication, leading to additional DSP usage after trans-

lating into hardware on the target FPGA. To this end, we manually

modify the HLS-interpreted Verilog code to narrow down the bitwidth

used for operands, making each multiplication in the degree-2 polyno-

mial interpolation use only one DSP slice.

It is well known that C code must be structured in a specific style to

produce a high-quality circuit in Verilog via HLS. Regarding the manual

changes to the interpreted Verilog, it was a few lines change to adjust

the bitwidths in a file with thousands of lines of HLS-interpreted Verilog

code. Such minor tweaks to code are normal for the state-of-the-art

HLS.

4.12 Summary

In this chapter, we present single-precision floating-point square root

hardware accelerators. Two algorithms for computing square root are de-

signed: 1) iterative (Newton’s method), and 2) LUT along with degree-2

polynomial interpolation. Similar to the reciprocal hardware accelerators, the

square root accelerators are synthesized into hardware targeting Intel/Altera

45 nm FPGA using the Legup HLS, Quartus and Modelsim. We treat square

root results from the GNU C math.h as a baseline; our accelerators achieve

1 ULP maximum error in comparison with the baseline through exhaustive

testing. In evaluation, we compare the performance of our LUT-based accel-

erators with the state-of-the-art implementations, particular Intel/Altera IP

cores. Results show that our accelerators win in pipeline latency and circuit

area, especially memory and DSP usage. However, Intel/Altera IP cores win

slightly in maximum throughput.

80

Chapter 5
RISC-V Soft Processor

5.1 Publication

Main content of this chapter comes from the following submitted manuscript:

Jing Chen, Jason H. Anderson, ”High-Level Synthesis of a Lightweight

FPGA-Based RISC-V Processor”, the 30th International Conference on

Field-Programmable Logic and Applications (FPL’2020), under re-

view.

5.2 Introduction and Organization

In this chapter, we propose a 32-bit RISC-V multi-cycle processor im-

plementation based on FPGA, which is a full realization of a 32-bit integer

base instruction set (RV32I) and has 39 user instructions. The processor de-

sign is implemented using C language, and synthesized into hardware targeting

Intel/Altera 28 nm FPGA using the LegUp HLS, Quartus and Modelsim. Cus-

tom testing programs are developed to verify if each instruction adheres to the

RISC-V specification. In addition, we compare the proposed processor with

two open source RISC-V implementations in terms of maximum frequency,

circuit area, etc.

In Section 5.3, we present the motivation of adopting the RISC-V ISA. In

Section 5.4, we give an brief introduction to the RISC-V ISA, which includes

background, software ecosystem and ISA features. Previous soft processor im-

plementations are discussed in Section 5.5. The architecture of the proposed

RV32I multi-cycle processor is elaborated in Section 5.6. We show representa-

tive HLS-C code snippets in Section 5.7 to demonstrate several optimizations

81

Figure 5–1: ISA serves as the interface between software and hardware [62]

made to the RV32I processor. Custom testing programs are described in Sec-

tion 5.8. Lastly, we discuss the performance (i.e. area, frequency) of the RV32I

multi-cycle processor in Section 5.9. We give a performance comparison be-

tween ours and two open source RISC-V implementations in Section 5.10, and

conclude this chapter in Section 5.11.

5.3 Motivation

An ISA (Instruction Set Architecture) is a software/hardware interface

for the computer system as shown in Figure 5–1. It comprises an entire set

of assembly commands that order the CPU to realize specific functions. The

ISA defines almost everything for building the CPU architecture, such as the

number and function of registers, arithmetic/logical operations, subroutine

calling and stack manipulation conventions, etc. The various implementations

of an ISA may differ in throughput, area and power consumption.

RISC-V is an open-source ISA that arose from research at the University

of California, Berkeley, commencing in 2010. RISC-V has garnered signifi-

cant attention in recent years, and the ISA has a rapidly expanded software

ecosystem (e.g. compilers, debuggers, etc.). For this research, we opted for the

82

RISC-V [32] ISA for the following reasons: 1) open-source (unlike Intel and

ARM ISAs, which are proprietary), 2) extensible, 3) efficient in all domains

of computing, including server and mobile/embedded [32], 4) efficient for all

implementation technologies [32], including ASIC and FPGA.

5.4 Introduction of RISC-V ISA

RISC-V [32] is an open and free RISC ISA for education, research

and commercial purposes. The RISC-V Foundation, a non-profit organiza-

tion, was founded in 2015 and now has more than 500 members (including

IBM, Google, and Nvidia) globally. Early funding for the development of the

RISC-V project came from DARPA (The Defense Advanced Research Projects

Agency). The RISC-V Foundation aims to build a collaborative community to

promote RISC-V ISA and drive the development of the related software/hard-

ware ecosystem. Unlike other ISAs, which target certain types of applications,

the RISC-V ISA is developed to accommodate all domains of computing, such

as server, mobile and embedded applications. For example, the NVIDIA Fal-

con processor [13] operates at a frequency of approximately 3 GHz. It achieved

a 2× performance improvement and area reduction after adopting a 64-bit

RISC-V ISA. Likewise, one can obtain high-performance, energy-efficient re-

alizations from the RISC-V ISA regardless of micro-architecture (i.e. out-

of-order) or implementation technology adopted (i.e. FPGA, ASIC, custom

hardware).

5.4.1 Features of the RISC-V ISA

The RISC-V ISA is extensible and configurable. Most existing

ISAs have a fixed number of instructions. Adding new instructions to an ISA

may degrade a processor’s execution performance because patches to the ISA

need to be made. In the extreme, adding new instructions to an ISA may

require a complete redesign, if there are not enough operation codes for the

83

future instructions. RISC-V, on the other hand, has been designed in way

that is extensible to new/future instructions.

RISC-V can be configured as base plus extended instruction sets. Here,

extension sets include integer multiply/divide (M), atomic (A), single-precision

(F), double-precision (D) and quad-precision (Q) floating-point, etc. In ad-

dition to the complete extension sets, there are sufficient operation codes re-

served for future instructions. Moreover, the RISC-V ISA can be configured as

a 32-bit, 64-bit or 128-bit architecture, depending on the target computing do-

main. One can therefore think of the RISC-V ISA as a “family” of processors,

with various datapath widths and functional capabilities.

The ecosystem of RISC-V ISA is growing rapidly. The ecosys-

tem of an ISA refers to both the software and hardware which allow system

developers to leverage new devices or platforms easily [115]. For software

ecosystem, an ISA defines a series of software development tools, such as ISA

simulator, compilers, debuggers, operating systems. The software ecosystem

of RISC-V includes, but is not limited to, the GCC/LLVM compiler, Linux OS

and QEMU as a simulator [32]. There is ongoing continued development in all

of these areas: compiler/IDE/library, operating system, simulator/toolchain,

etc [32].

5.4.2 Overview of RISC-V ISA

Most traditional ISAs have not been designed for instruction expansion.

Hence, they may suffer from inefficient instruction decoding and execution as

their instruction set grows. The RISC-V ISA overcomes this issue by proposing

the idea of an extensive instruction set.

84

RISC-V is configured as base plus extension instruction sets. [62]

The base instruction sets (RV32I/RV64I/RV128I) realize the minimum imple-

mentation of a RISC processor. A base set handles arithmetic/logical oper-

ations, branch, jump and link, memory read/write, etc. The extension in-

struction sets (M/A/C/F/D/Q) provide special instructions for complicated

functions. For example, the extension “M” consists of instructions for doing

integer multiplication and division. To configure a RISC-V ISA, one needs to

choose one base and zero or more extension instruction sets.

Base instruction sets can be configured as a 32-bit, 64-bit or 128-bit

system. By doing so, a system is able to accommodate computing in various

domains.

1. RV32I: 32-bit base integer instruction set, which is sufficient to support

compiler and operating system. RV32I has 47 instructions in total, which

include 39 user and eight system instructions.

2. RV64I/RV128I: 64-bit/128-bit base integer instruction sets, which are

developed on the base of RV32I. RV64I/RV128I provide more integer

registers and a wider address space (i.e. 64-bit). RV128I was invented

for warehouse-scale computers, which contain more than 1PB of DRAM.

Extension instruction sets support single, double, and quad floating-

point arithmetic. Those extensions aim to accelerate custom applications,

such as image/audio processing, deep learning, etc [62].

1. F extension: a single-precision (32-bit) floating-point instruction set. It

defines basic operations for floating-point numbers, such as status check,

load/store, value comparison, rounding, etc. As well, it provides instruc-

tions that perform addition, subtraction, multiplication and division for

floating-point numbers.

85

2. D/Q extensions: double (64-bit)/quad (128-bit)-precision floating-

point instruction sets. Instructions from D/Q extensions are similar to

those of the F extension, except that the operands/outputs are double/quad-

precision numbers.

5.5 Related Work

There are numerous soft-processor implementations on FPGAs, as shown

in Table 5–1, which can generally be categorized as vendor-specific and non-

vendor-specific ones [117]. FPGA-vendor-specific cores, such as NiosII [28]

and MicroBlaze [19], have low resource usage and unremarkable operating

frequency due to the adoption of simple fixed-pipeline architectures. The

frequency of the NiosII can be tuned to 240 MHz on the Intel/Altera Stratix

IV FPGA [117]. Since most vendor-specific soft processors are not open source,

it prevents researchers from doing in-depth investigations of the architecture

to further explore resource/speed optimizations and accelerator integration.

The LEON3/LEON4 [26], non-vendor-specific cores, are open source but were

originally designed for an ASIC implementation. Although LEON3/LEON4

can be implemented on an FPGA, they are not well suited to the underlying

FPGA architecture [87].

Given the flexibility of the RISC-V ISA, there is an increasing number

of FPGA implementations for the RISC-V processor. As mentioned above,

the RISC-V consists of various extensions, such as multiply and divide (M),

atomic (A), compression (C), single-precision (F), double-precision (D) and

quad-precision (Q) floating-point. In the following sections, we briefly intro-

duce some popular RISC-V soft processor implementations in terms of the

supported instruction sets, architecture, operating frequency, etc.

86

Table 5–1: Summary of previous 32-bit soft processor implementations
Vendor-Specific Cores

Cores Frequency FPGA? Vendor Word Open
(MHz) Length Source?

NiosII 240 Yes Intel 32-bit No

MicroBlaze 232-724 Yes Xilinx 32-bit No

Non-Vendor-Specific Cores

Cores Frequency FPGA? Pipeline? RISC-V? Open
(MHz) Source?

LEON3/4 125 Yes 7-stage No Yes

Rocket 25-100 Zynq 5-stage I/M/A/F/D Yes

GRVI 375 Kintex UltraScale Yes I No

OCRA 75 Zynq 4-/5-stage I/M Yes

PicoRV32 172 Zynq 4-/5-stage I/M/C Yes

FWRISCV 89 Cyclone V No I Yes

VexRISCV 170-233 Artix 7 Yes I/M/C/A Yes

Taiga 232-236 Arria 10 Yes I/M/A Yes

BRISCV unknown Yes 5-/7-stage I/F Yes

RISC-V Rocket processor. The Rocket chip [38] is an open-source,

general-purpose processor generator which is written in the Chisel [39] hard-

ware construction language. The Rocket chip features two processor gener-

ators: one is an in-order core generator (the Rocket), while the other is an

out-of-order core generator (the BOOM). The Rocket core supports RV32G

and RV64G, while the BOOM core only supports RV64G. Here, “G” refers to

the RISC-V ISA extensions (I, M, A, F, D). In addition, the Rocket core has

a five-stage pipeline architecture. Both the Rocket and BOOM cores support

virtual memory and non-blocking caches. The Rocket core can be deployed

to the Xilinx Zynq-7000 series FPGAs, achieving clock frequencies of 25-100

MHz for various configurations on the FPGA. Three mechanisms are available

to integrate custom accelerators into the Rocket or BOOM cores: 1) integrate

the accelerators directly into the five-stage pipeline by extending the RISC-V

ISA; 2) incorporate the accelerators into a co-processor and communicate with

87

the RISC-V core via a RoCC interface; and 3) implement the accelerators as

independent cores and connect them to the memory system.

GRVI/Phalanx. Gray [65] implemented an FPGA-efficient RISC-V

RV32I soft processor, the GRVI RV32I. The RV32I is the 32-bit RISC-V in-

teger instruction set. The design goal of the GRVI RV32I processor was to

minimize the area usage and maximize the operating frequency. Evaluation

shows that the GRVI RV32I consumes 320 LUTs and runs at up to 375 MHz

on the Xilinx Kintex UltraScale FPGA. In addition, the processor has 0.7

MIPS/LUT. Here, MIPS refers to millions of instructions per second. Since

the design of the GRVI core is not open source, we cannot do an in-depth in-

vestigation on the fixed-pipeline architecture. Phalanx is a framework which

consists of processor and accelerator clusters. The clusters communicate via

the Hoplite NOC [73, 74] in the FPGA. A Phalanx which contains 400 GRVI

RV32I cores was implemented on the Xilinx Kintex UltraScale KU404 FPGA.

In this case, there were 10 × 5 clusters of eight GRVI RV32I cores in the Pha-

lanx. In total, the peak throughput of the 400 cores reaches 100,000 MIPS

(million instruction per second).

ORCA [29] is a platform-independent open-source RISC-V implementa-

tion. It can be configured to either RV32I or RV32IM. ORCA has a fixed-

pipeline architecture and supports a data cache and local memory. It can

be configured as either a four- or five-stage pipeline processor. A five-stage

ORCA processor operates at 75 MHz on the Xilinx ZYNQ, or 218 MHz on

the Intel Arria 10 FPGA.

PicoRV32 was proposed by Wolf et al. [30]. It is open source and im-

plements the RISC-V RV32IMC instruction sets. PicoRV32 supports the an

AXI4 interface [9] and local memory. It has been observed that the resource

usage of PicoRV32 is between the four-stage and five-stage ORCA cores. In

88

addition, PicoRV32 runs at 172 MHz on the Xilinx ZYNQ, or 299 MHz on the

Intel Arria 10 FPGA.

Featherweight (FWRISCV, for short) [18] is a multi-cycle RISC-V

implementation. The design of FWRISCV is optimized for FPGAs. FWRISCV

supports the RV32I instruction set and various exceptions specified by the

RISC-V ISA. An experiment shows that FWRISCV consumes 616 ALMs, 241

registers and 4,096 memory bits when targeted to the Intel/Altera Cyclone

V FPGA. Its maximum frequency is approximately 89 MHz. In addition, it

is reported that FWRISCV achieves 0.15 DMIPS/MHz. Here, DMIPS/MHz

refers to how many complete Dhrystone runs can be done per second. Dhrys-

tone is a well-known integer benchmark, so DMIPS/MHz is used to measure

the computing capacity for integer programs.

VexRISCV [21] is an open-source, 32-bit RISC-V soft processor. The

VexRISCV ISA implements the RV32IMCA instruction set. The Atomic ex-

tension (“A”) provides atomic load and store instructions that allow multiple

RISC-V threads running with shared-memory and enforces a memory con-

sistency model [32, 63]. As such, VexRISCV supports caches and a MMU

(Memory Management Unit). In addition, VexRISCV can be configured for

various implementations. The smallest core (RV32I) runs at 233 MHz, and

consumes 494 LUTs and 505 flip-flops on the Xilinx Artix 7 FPGA. The full

core (RV32IMA, Linux OS) runs at 170 MHz and consumes 2530 LUTs and

2013 flip-flops on the same FPGA board. When instruction level parallelism

(ILP) is considered, the smallest core has 0.52 DMIPS/MHz, and the full core

has 1.21 DMIPS/MHz.

Taiga is a 32-bit RISC-V FPGA soft processor [86, 87], supporting the

RISC-V Integer and the Multiply/Divide and Atomic extensions (RV32IMA).

89

Taiga is designed to support shared-memory systems, TLBs (translation looka-

side buffers), caches and MMUs (memory management units), which are nec-

essary to build a Linux OS upon. In addition, Taiga features a variable-

length pipeline design, wherein the ALU (arithmetic logic unit) consists of

multiple parallel variable-latency computing units. This architecture not only

supports out-of-order execution, but also facilitates a more tightly-coupled in-

tegration of accelerators. Taiga’s performance was evaluated on the Xilinx

ZYNQ X7CZ020 and Intel Arria 10 (GX115) FPGAs. It was observed that

Taiga’s resource usage (with different configurations) is equivalent to OCRA

and PicoRV32. Furthermore, Taiga’s operating frequency is higher OCRA’s,

but lower than PicoRV32’s, which runs at 109-120 MHz on the ZYNQ, or

232-236 MHz on the Arria 10 FPGA, respectively. However, Taiga’s IPC (in-

structions per cycle) is at least two times higher than that of PicoRV32. When

Taiga is integrated with one-to-four accelerator cores, it shows a 3-6% drop in

the operating frequency. One advantage of a processor with a variable-length

pipeline is the ability to integrate multiple accelerators without significantly

changing the frequency.

BRISCV. The Boston University RISC-V Processor Set (BRISC-V) [31,

34, 41] is a parameterized design for RISC-V ISA processors. The design of

BRISC-V is implemented as Verilog HDL modules such that the processor

architecture can be changed by different parameter settings. As such, BRISC-

V can be configured as various RISC-V cores, for example, an RV32I single-

cycle core, an RV32I five-stage pipeline core, an RV32I seven-stage pipeline

core and an RV32IF out-of-order core. Those cores support parameterized

cache subsystems, which means the size, associativity and levels of the cache

can be configured by parameters as well. We have chosen the ORCA, PicoRV32

90

and FWRISCV cores for comparison since they can generate RV32I cores with

both simple and complex architectures.

5.6 Architecture of RV32I Processor

In this section, the architecture of the RV32I multi-cycle processor is

elaborated. We first introduce the user register file, highlighting the specific

function of each register. Then, we present the configuration of the memory

system that adopts a Harvard architecture. Finally, we describe the RV32I

instructions in terms of their format and functions.

5.6.1 User Register File

As shown in Figure 5–2, the RV32I processor contains 32 general purpose

user registers, and each register has a bitwidth of 32. The functions of some

registers are described below. Registers that are not mentioned serve as general

purpose registers.

x0 (constant zero): The content of register x0 is a constant zero.

Register x0 is mainly used for conditional operand comparison of branch in-

structions (e.g. BNE, BEQ).

x1, x5 (returning address): Register x1 keeps the returning address of

jump and link instructions (e.g. JAL, JALR) when a procedure call is invoked.

Register x5 serves as an alternative link register as well.

x2 (stack pointer): Register x2 serves as a stack pointer, and the value

of x2 decreases as the stack grows. Here, stack and heap together contain 256

words.

x10-17 (saved registers): When a procedure call is invoked, regis-

ters x10-x17 are used to transfer parameters and returning values of the

procedure. Contents of registers x10-x17 are pushed into stack before the

procedure begins, and then restored after the procedure is terminated.

91

Figure 5–2: RV32I general-purpose user registers [32]

92

x6-8, x28-31 (temporary variables): Registers x6-8 and x28-31 can

be used to hold temporary variables/results of internal computation within a

procedure call.

pc (program counter): pc is considered as the 33rd register; however,

it is transparent to users. The function of pc is to hold the address of the

instruction currently being executed.

5.6.2 Harvard architecture

A Harvard architecture uses separate memory to store program and data,

with each memory having its own data bus for read/write operations. Fig-

ure 5–3 illustrates the program and data memories for our RV32I processor.

In order to simplify the HLS synthesis and simulation process, program and

data memories are both configured as 512-words × 32-bits. To do so, program

memory is instantiated as array imem[512] in the HLS C specification. Sim-

ilarly, data memory is instantiated as an array dmem[512]. However, data

memory is logically divided into two parts: 1) 256-words × 32-bit static data

section; and 2) 256-words × 32-bit dynamic data section. In such cases, global

variables and structures reside in the static data section. Stack and heap hold

temporal variables, structures and addresses within a procedure call.

5.6.3 Instruction Formats/Functions

The RV32I processor comprises six instruction formats (R/I/S/B/U/J)

as shown by Figure 5–4. We observe that the instruction formats of RV32I are

simple and clean. For example, all instruction operation codes ("opcode" for

short) are of fixed-length (7 bits) and placed at fixed-location ins[6..0].

Also, the placements of all source and destination registers (i.e. rs1, rs2,

rd) are in fixed-locations across all types of instructions. These are attractive

features which allow for fast decoding and efficient execution of instructions

93

program
memory

(512-words)

static
data

(256-words)

dynamic
data

(256-words)

heap

stack

RV32I processor

Figure 5–3: Harvard architecture for RV32I processor

94

for a processor. In the following sections, we elaborate on each of the six

instruction types in terms of format and function.

Figure 5–4: RV32I instruction formats [32]

R-type instructions

The R-type instruction format is designated for three-register instruc-

tions, such as ADD rd, rs2, rs1, where rs1 and rs2 serve as resource

registers and rd is the destination register. All R-type instructions have

opcode ”0010011”, which has a bitwidth of 7 and is placed at LSBs (least

significant bits)[6..0]. Segments funct3 and funct7 are used to further

differentiate instructions after they are mapped into the R-type instruction

category. Across all six types of instructions, opcode always resides at the

LSBs of a word.

I-type instructions

Similar to R-type, the I-type instruction format is designated for two-

register instructions, where imm represents a 32-bit immediate number/ad-

dress which is sign-extended from a 12-bit immediate number (imm[11:0]).

To achieve fast instruction decoding, the locations of source and destination

registers for I-type instructions are the same as those of R-type. Generally,

R- and I-type instructions cover all arithmetic and logical operations for the

RV32I processor. In addition, there are five kinds of load instructions under

95

the I-type format, which are LB (load a byte), LH (load a half-word), LW

(load a word), LBU (load a byte as unsigned), and LHU (load a half-word as

unsigned).

In such cases, to address a word in data memory, base addressing (base

+ offset) is adopted. Source register rs1 holds the base address, and the

offset is the 32-bit immediate address. Hence, destination register rd is loaded

from the word addressed by (rs1 + sign-extend(imm[11:0])) in data

memory. By doing so, the addressing range is ±2K words with regard to the

base address stored in register rs1. It is worth noting that last two significant

bits of an address specify which byte or half-word is loaded from a word. For

example, if the last two bits are ”00”, then the rightmost byte of a word is

selected. The difference between LB and LBU is that, the selected byte is

sign-extended into a word for LB, but zero-extended into a word for LBU.

Furthermore, an interrupt is invoked in case there is an address mis-align for

load instructions.

S-type instructions

The S-type instruction format is only designated for store instructions,

such as SB (store a byte), SH (store a half-word) and SW (store a word).

Similar to load instructions, base addressing is adopted. As a result, the

byte/half-word/word stored in source register rs2 is written to address (rs1

+ sign-extend(imm[11:0])) in data memory. Similar to the load in-

structions, the last two bits of the address specify which byte or half-word of

a word is written to. Furthermore, the addressing range is also ±2K words,

and an interrupt is invoked for address mis-align.

B-type instructions

The B-type instruction format is designated for branch instructions, such

as BEQ (branch if equal), BNE (branch if not equal), etc. To do so, operands

96

that need to be compared are placed into source registers rs1 and rs2, re-

spectively. If a condition (i.e. rs1 == rs2) is satisfied, then a different

instruction sequence is executed by using pc-relative addressing (pc + offset).

Similar to base addressing, pc specifies the base address, and the offset

is a 32-bit immediate address which is sign-extended from a 13-bit immedi-

ate (imm[12:0]), hence, the instruction in program memory imem[pc +

sign-extend(imm[12:0])] is executed if condition is true. The range of

pc-relative addressing is ±4K words, and an interrupt is invoked in case there

is an address mis-align for branch instructions.

U and J-type instructions

U and J-type instruction formats are designated for jump and link in-

structions (e.g. JAL, JALR) when procedure calls are invoked. The JAL

instruction uses U-type format and pc-relative addressing (pc + offset),

while the JALR instruction uses J-type format and base addressing (rs1 +

offset). JAL and JALR make the processor execute a new program se-

quence beginning at address pc + sign-extend(imm[20:0]) and rs1

+ sign-extend(imm[11:0]) in program memory, respectively. The ad-

dressing range for JAL (±1M words) is larger than that of JALR (±4K

words). For both the JAL and the JALR instructions, if the destination regis-

ter rd is equal to x1, then the returning address (pc + 4) is kept in register

x1 by default. Otherwise, the returning address is simply discarded.

5.7 HLS C implementation

In this section, we present C code snippets of the RV32I multi-cycle

processor. Similar to floating-point accelerators, fixed-point data types (i.e.

uint32 t, uint16 t, uint8 t) and bit-mask operations are extensively

used. In addition, the processor top design, initialization of register file and

97

program/data memory are also presented. We demonstrate several methods

to improve processor performance in the end.

Top design. Behaviours of the RV32I multi-cycle processor are described

in the main() function. A for-loop construct is created to simulate that a

processor continually fetches and executes an instruction stored in the program

memory (imem) specified by the pc. We adopt the Harvard architecture to

separate program and data memories (dmem). In our system, the program and

data memory each have 512 words due to our testing programs do not need

large memory space. Each iteration of the for-loop construct corresponds to

the execution of one single instruction. This simulates how a multi-cycle pro-

cessor executes instructions. One instruction execution starts upon completion

of previous/current instructions. Hence, there is no interleaved execution of

instructions like pipeline processor. To elaborate on the multi-cycle processor,

after instruction fetch, an instruction is latched into the instruction register

(IR), and then transferred into a function called ins dec exe() for further

processing (i.e. decode/execute). As soon as the instruction is completed,

pc is either incremented by 4 to address the next sequential instruction, or

loaded with an address that points to a completely new program sequence. It

is necessary for the FPGA synthesizer to know for how many iterations the

for-loop construct will be executed before running the program. Hence,

we first set the loop index as 512, a constant number. With this index, all

aforementioned testing programs can execute correctly.

// top design of RV32I

int main (void){

...

// instructions fetch, decode, execution

loop_riscv:

for (i = 0; i < 512; i++){

98

// instruction fetch, program memory contains 512 words

ir = imem[pc >> 2];

// instruction decode and execute

ins_dec_exe(ir);

}

...

}

Memories and register file initialization. Program/data memories

and the register file are instantiated as one-dimensional arrays of various

sizes. In the following code snippet, program memory is implemented as array

imem[512], which contains 512 words. The register file is implemented as

array reg32[32], which contains 32 general-purpose registers. In program

memory, the first word (0x002081b3) represents instruction ADD x3, x2, x1.

It adds content stored in two source registers (i.e. x1, x2), and puts the sum

(x1 + x2) into a destination register (i.e. x3). After the ADD instruction

is completed, the content of register x3 becomes 0x00000001. The ”volatile”

keyword volatile is added to arrays to prevent them from being wiped out

by the optimization of LLVM HLS-C into the hardware circuit.

// define program memory

volatile uint32_t imem[512] = {

0x002081b3, // ADD x3, x2, x1;

0x40520333,

0x008394b3,

0x00b55633,

0x40e6d7b3,

...

}

// define register file

volatile uint32_t reg32[32] = {

0x00000000, // x0 = 0

99

0xffffffff, // x1 = -1

0x00000002, // x2 = 2

0x00000000, // x3 = 0

0x00000000, // x4 = 0

...

}

Instruction decode and execute. The behaviours of instruction de-

code and execute are described in function ins decode execute(). To

take ADD instruction as an example, three segments are extracted for decode,

which are operation code op r, funct3 op1 0 and funct7 op2 0. A global

structure variable, sig1, which contains instruction enable signals, is created.

If the ADD instruction’s enable signal (i.e. sig1.add) is set to high, add

function uint32 t add (uint32 t, uint32 t) is invoked. In this case,

all three segments need to comply with the encoding of the ADD instruction

to set sig1.add to high. Since the ADD instruction requires three registers,

two source registers (i.e. reg32[rs1], reg32[rs2]) and one destination

register (i.e. reg32[rd]) are specified. Hence, indexes of registers (i.e. rs1,

rs2, rd) are extracted before invoking the function. When sig1.add is

high, the contents of the source registers are passed to the add function as

parameters. The sum of the source registers is written back to the destination

register when the add function is completed.

// define instruction control signals

struct dec_sig {

...

// if add is valid, then it executes ADD instruction

uint32_t add;

...

} sig1;

100

// instruction decode and execute

void ins_decode_execute(uint32_t ins){

// instruction decode

uint32_t op_r, op1_0, op2_0;

...

// operation code

op_r = (ins & 0x0000007f) ˆ 0x00000033;

// funct3

op1_0 = (ins & 0x00007000) ˆ 0x00000000;

// funct7

op2_0 = (ins & 0xfe000000) ˆ 0x00000000;

...

// set enable signal of ADD instruction

sig1.add = !op_r & !op1_0 & !op2_0;

...

// extract content of two source and one destination registers

uint32_t rs1, rs2, rd;

...

// 1st source register

rs1 = (ins >> 15) & 0x0000001f;

// 2nd source register

rs2 = (ins >> 20) & 0x0000001f;

// destination register

rd = (ins >> 7) & 0x0000001f;

...

// call subroutine to execute ADD instruction

if (sig1.add){

reg32[rd] = add(reg32[rs1], reg32[rs2]);

}

}

Remove redundant reads/writes to register files. Due to the con-

straint on the maximum number of reads/writes allowed for memory blocks

101

on FPGAs, efforts have been made to reduce read/write operations to register

files. The following code snippet shows before and after redundant read/write

operations have been removed. In the original code, two functions are shown,

which represent ADD and SUB instructions, respectively. In this case, two reads

and one write are necessary for each instruction. Thus, six memory accesses

(i.e. four reads and two writes) are made in total during hardware synthesis.

// original code

if (sig1.add){

reg32[rd] = add(reg32[rs1], reg32[rs2]); // ADD

}

...

if (sig1.sub){

reg32[rd] = sub(reg32[rs1], reg32[rs2]); // SUB

}

...

In optimized code, we observe that the values of source registers are loaded

to variables (i.e. rs1c, rs2c) before the function starts, and then passed

as parameters to the corresponding function. Likewise, the returning value is

assigned to a variable (i.e. rdc) within the function, and the register file is

updated after. By doing so, all three-register instructions only need to perform

two reads and one write to the register file. Without using this mechanism,

each three-register instruction requires two reads and one write.

// optimized code

rs1c = reg32[rs1]; // read 1st source register

rs2c = reg32[rs2]; // read 2nd source register

if (sig1.add){

rdc = add(rs1c, rs2c);

}

...

if (sig1.sub){

102

rdc = sub(rs1c, rs2c);

}

...

reg32[rd] = rdc; // write back to the destination register

...

Remove redundant reads/writes to data memory. Similar to the

register file updates, the code snippet is modified to reduce redundant read-

/write operations to data memory. In the following code snippet of function

ins decode execute(), four subroutines represent instructions LB (load a

byte), LH (load a half-word), SB (store a byte) and SH (store a half-word). To

reduce read operations to data memory, a word is loaded from data memory to

variable mem c before calling a subroutine, and then passed as a parameter to

the corresponding subroutine. By doing so, all memory read instructions only

require one memory access. In the body of subroutine lb(), the rightmost

byte of a word is sign-extended via bit-mask/shifting. Likewise, to reduce

write operations to data memory, a byte/half-word/word after a certain ex-

tension is treated as a return value, and then written back to data memory

outside a subroutine. By doing so, all memory write instructions only require

one memory access.

union Data32 {

uint32_t ui; // unsigned

int32_t i; // signed

}

void ins_decode_execute(uint32_t ins) {

...

// retrieve a word from data memory

mem_c = dmem[addr];

...

103

// call subroutine to load a byte

if (sig1.lb) {

tmp1 = lb(mem_c, addr);

}

// call subroutine to load a half-word

if (sig1.lh) {

tmp1 = lh(mem_c, addr);

}

...

// call subroutine to store a byte

if (sig1.sb) {

tmp2 = sb(addr, rs2c);

}

// call subroutine to store a half-word

if (sig1.sh) {

tmp2 = sh(addr, rs2c);

}

...

dmem[addr >> 2] = tmp2; // write back to data memory

}

// load byte instruction

uint32_t lb(uint32_t mem_c, uint32_t addr) {

union Data32 temp;

temp.ui = mem_c;

// if load rightmost byte of the word

if ((addr & 0x00000003) == 0x00000000)

{

temp.ui = (temp.ui & 0x000000ff) << 24;

temp.i = temp.1 >> 24;

}

...

104

}

5.8 Testbenches for RV32I Processor

In this section, we first manually create seven custom testing programs in

RV32I assembly code to verify: 1) if the soft-processor implementation adheres

to RISC-V specifications, and 2) if the soft-processor generates correct results

for those testing programs. After passing the seven testing programs, we then

use GCC toolflow to generate four additional custom programs from C software

to RV32I assembly code for further testing.

5.8.1 Manually Created Testing Programs

RV32I instructions can be summarized into four types, as shown by

Table 5–2. In this table, R-type refers to all three-register arithmetic/logi-

cal instructions, such as ADD x3, x2, x1. I-type refers to all two-register

arithmetic/logical instructions, such as ADDI x2, x1, imm0. Furthermore,

LS-type represents all load/store instructions which perform read/write oper-

ations to data memory, such as LB x4, imm1(x3) or SB x6, imm2(x5).

Finally, B-type represents all branch, jump and link instructions, such as BEQ

x6, x7, Label. We manually create one custom testing program in RV32I

assembly code for each of R, I, LS-type instructions. There are four testing

programs created for B-type instructions because they are more complicated

in terms of program control. Each testing program uses instructions that fall

into that type to verify the functional correctness of each instruction. To

simplify, we only show the nested procedure call program (in RV32I assembly

code) for testing the B-type instructions in this section. For interested readers,

please refer to the Appendix Chapter for the complete seven testing program

descriptions.

105

Table 5–2: Categories of RV32I ISA.
Category Description Instructions

R-type
3-register arithmetic/logical instructions

ADD, SUB, SLL, SLT
SLTU, XOR, SRL, SRA

OR, AND, NOP

I-type
2-register arithmetic/logical instructions

ADDI, SLLI, SLTI, SLTUI
SLTUI, XORI, SRLI
SRAI, ORI, ANDI

LS-type load/store instructions
LB, LH, LW, LBU
LHU, SB, SH, SW

B-type branch/jump and link instructions
BEQ, BNE, BLT, BGE

BLTU, BGEU, JAL, JALR
LUI, AUIPC

Nested procedure call program for B-type instructions testing

The following testing program realizes a recursive algorithm, which is

implemented as a nested procedure call in high-level programming language.

The algorithm performs recursive addition on integer n, and produces a sum

which is equal to n + (n-1) + (n-2) + ... + 2 + 1. In this case,

subroutine iter add starts from address imem[10] in program memory, and

parameter n (n = 5) is loaded into register x10. In addition, register x1

is used to keep the returning addresses of a procedure call, and register x2

serves as a stack pointer. In the body of subroutine iter add(), values

stored in registers x1 and x10 are recursively pushed back into stack until

variable n is less than 1 (n < 1). By observing the stack in data memory, the

first returning address is stored at dmem[510] as 0x00000068, which refers

to the returning address of subroutine iter add(). Later on, the returning

address of instruction JAL r1, iter add, are pushed into stack one by one.

After five iterations, stack growing terminates at dmem[501], as variable n

is less than 1 (n < 1). In this case, all the values of variable n and returning

addresses are popped to registers recursively, and, finally, a sum which is equal

to n + (n-1) + (n-2) + ... + 2 + 1 is produced at register x10.

106

/*

int iter_add (int n) {

if(n < 1) return (1);

else return(n + iter_add(n-1));

}

*/

// program memory

imem[10]: 0xff810113 // iter_add: ADDI r2, r2, 0xff8

imem[11]: 0x00112223 // SW r1, 0x4(r2);

imem[12]: 0x00a12023 // SW r10, 0x4(r2);

imem[13]: 0xfff50293 // ADDI r5, r10, 0xfff;

imem[14]: 0x0002d863 // BGE r5, r0, L1;

imem[15]: 0x00100513 // ADDI r10, r10, 0x001;

imem[16]: 0x00810113 // ADDI r2, r2, 0x008;

imem[17]: 0x00008067 // JALR r0, 0x000(r1);

imem[18]: 0xfff50513 // L1: ADDI r10, r10, 0xfff;

imem[19]: 0xfddff0ef // JAL r1, iter_add;

imem[20]: 0x00050313 // ADDI r6, r10, 0x000;

imem[21]: 0x00012503 // LW r10, 0x0(r2);

imem[22]: 0x00412083 // LW r1, 0x4(r2);

imem[23]: 0x00810113 // ADDI r2, r2, 0x008;

imem[24]: 0x00a30533 // ADD r10, r10, r6;

imem[25]: 0x00008067 // JALR r0, 0x0(r1);

// data memory (stack)

dmem[501]: 0x00000001 // n-4

dmem[502]: 0x00000050 // returning address imem[20]

dmem[503]: 0x00000002 // n-3

dmem[504]: 0x00000050 // returning address imem[20]

dmem[505]: 0x00000003 // n-2

dmem[506]: 0x00000050 // returning address imem[20]

dmem[507]: 0x00000004 // n-1

dmem[508]: 0x00000050 // returning address imem[20]

dmem[509]: 0x00000005 // n

107

dmem[510]: 0x00000068 // returning address imem[26]

5.8.2 Testing Programs Generated from GCC toolflow

In addition to the seven manually created RV32I assembly testing pro-

grams in the previous section, we also use RV32I GCC toolflow to compile

testing programs from C software to RV32I machine code. Those testing

programs include bubble sort applied to an in-memory array, a Fibonacci-

sequence generator, factorial (using software multiply), and recursive vector

addition. To simplify, we only show the recursive vector addition program (in

C-software) in this section.

volatile int list[] = {-1, 5, 8, -5, -8, 10, 12, 23,

-45, -5, -6, -7, 45, 78, 0};

int recurAdd(int n) {

int q = list[n];

if (q == 0)

return 0;

return q + recurAdd(n+1);

}

5.9 Experimental Study of RV32I Processor

In this section, we show the performance of our RV32I multi-cycle pro-

cessors. The HLS tool interprets the C specification to RTL hardware whose

maximum clock frequency (FMax) can be specified by the user. In our case,

we tune the clock period to six variants – 20, 15, 10, 5, 3 and 2 ns – to produce

a variety of processor variants. As the clock period decreases, FMax increases

as expected. In the following subsections, we demonstrate the performance

of the processors in terms of maximum frequency (FMax), ALMs, number of

108

cycles for instruction execution (Cycle No.), cycles per instruction (CPI), in-

struction per cycle (IPC) and clock period time (CP). Here, an ALM contains

a six-input lookup-table and two flip-flops. In addition, the proposed proces-

sors are targeted to the Intel/Altera Cyclone V 28 nm FPGA. The LegUp

HLS version 7.4, Quartus version 18.1 and ModelSim are used to interpret,

synthesize and verify the functional and timing correctness of the processors.

5.9.1 RV32I Multi-Cycle Processor

We created various multi-cycle processors by specifying different clock

cycle periods: 20, 15, 10, 5, 3 and 2 ns. In experiments, we find that an

HLS-interpreted processor sometimes may have small variance in maximum

frequency and circuit area when loaded with different testing programs. Hence,

to clarify, our multi-cycle processors are all loaded with the recursive vector

addition testing program shown in section 5.8.2 when measuring the perfor-

mance. In Table 5–3, the smallest processor operates at 124.1 MHz, and

consumes 795 ALMs. The total number of cycles required to execute the test-

ing program is 7,062. Hence, each instruction needs 27.48 cycles, and 0.036

instructions are executed per cycle. Next, the fastest processor operates at

232.18 MHz, and consumes 1,018 ALMs. The total number of cycles required

to execute the testing program is 11,824. Hence, each instruction needs 46.01

cycles, and 0.021 instructions are executed per cycle. We observe that the

FMax is dramatically affected by decreasing the clock period time. As ex-

pected, the circuit area increases as the FMax varies from 124.1 to 232.18

MHz. The HLS tool automatically chops long combinational logic paths into

shorter ones and inserts flip-flops as the FMax increases. Those additional

flip-flops result in an increase to the circuit area. We observe that the multi-

cycle processor generally needs dozens of clock cycles for each instruction. In

109

Table 5–3: Our RV32I multi-cycle processor

FMax (MHz) ALMs Cycle No. CPI IPC CP (ns)
124.1 795 7,062 27.48 0.036 20
154.1 832 7,591 29.54 0.034 10
220.31 967 10,010 38.95 0.026 5
232.18 1,018 11,824 46.01 0.021 3

this case, one instruction execution starts upon completion of previous/cur-

rent instructions. Hence, there is only one instruction executing at any one

time in the processor, causing a lower issue rate for instructions. The FMax

is set by propagation delay of the critical path in the processor datapath.

5.10 Performance Comparison

We have chosen two open-source RV32I RTL implementations for per-

formance comparison: FWRISCV [18] and PicoRV32 [30]. Both FWRISCV

and PicoRV32 are RV32I multi-cycle cores. Table 5–4 demonstrates our four

multi-cycle cores and the two open source cores. Also, Figure 5–5 illustrates

the area usage and FMax for the six processors. Here, CP 3 refers to the

multi-cycle core whose clock period is 3 ns.

In Figure 5–5, the left axis represents the number of ALMs that processors

require, while the right axis represents the FMax at which the processors

operate. For the area usage, the four blue bars on the left are our proposed

cores. The two blue bars on the right are the open source cores. We observe

that the FWRISCV core uses the fewest ALMs, while the PicoRV32 takes

approximately 1000 ALMs. The FMax of our proposed cores ranges from

124.1 MHz to 232.18 MHz. On the other hand, FWRISCV operates at 89.71

MHz, PicoRV32 operates at 183.35 MHz. As a result, we can see that our

proposed cores are competitive with the open source RTL cores.

110

Table 5–4: Performance comparison between HLS-interpreted RV32I cores and
RTL implementations of RV32I

FMax (MHz) ALMs IPC
CP 20 124.1 795 0.036
CP 10 154.1 832 0.034
CP 5 220.31 967 0.026
CP 3 232.18 1,018 0.021

FWRISCV 89.71 616 unknown
PicoRV32 183.35 952 0.25-0.3

Figure 5–5: Area and FMax comparisons between HLS-generated RV32I cores
and RTL implementations of RV32I

111

5.10.1 Instructions per Cycle (IPC)

According to [30], PicoRV32 requires 3 cycles for ALU instructions, 3

cycles for direct jumps, 4-14 cycles for shift operations, and 5-6 cycles for

the remaining instructions. That is, at a minimum PicoRV32 requires 3 cy-

cles/instruction. We expect that with a tightly-coupled memory, it would

offer an IPC of between 0.25-0.3. Our multi-cycle processors, while offering

high Fmax, have long latency, with different instructions requiring different

numbers of cycles. We observed these take several dozen clock cycles, on aver-

age, to execute an instruction, making them inferior from the IPC perspective

vs. the PicoRV32 processor.

5.11 Summary

In this chapter, we implement a RV32I multi-cycle processor by using

C-language. The processor consists of 39 user instructions and realizes the

minimum function of a 32-bit RISC-V integer processor. The C specification is

synthesized into hardware circuits targeted to the low-cost 28 nm Intel/Altera

Cyclone V FPGA using the LegUp HLS, Quartus and ModelSim. We verify

the correctness of the processor with manually created testing programs in

assembly code, and testing programs compiled from GCC toolflow (e.g. bubble

sort, Fibonacci-sequence generator, factorial). From the same C specification,

we obtain the cores with various performance/area trade-offs. The area/FMax

of the cores is studied and compared with two open source RTL-implemented

cores. Results show that our proposed cores are competitive with the RTL

cores in terms of FMax and area, but are inferior from the IPC perspective.

112

Chapter 6
Conclusion and Future Work

Many scientific applications require maximum-throughput/ultra-low la-

tency, high-precision and minimum energy consumption for floating-point math-

ematical operations (e.g. exponential, logarithm, trigonometry) [55]. On

the other hand, some machine learning applications, such as deep learning,

mainly concentrate on high-throughput/low latency and low energy consump-

tion. In such cases, precision is traded for better performance per watt, by

using customized floating-point precision (e.g. 16-bit half-precision). Hence,

both high-performance and reduced-precision versions have been considered

for elementary transcendental function accelerators in this dissertation.

We implement single-precision floating-point reciprocal and square root

accelerators based on FPGA. The algorithms of the proposed accelerators

are designed by C language, which include iterative (e.g. trial-subtraction,

Newton’s) and non-iterative (LUT-based) methods. Since the LUT-based al-

gorithm is universal, it could be applied to implement an entire library of

single-precision elementary functions into high-performance hardware acceler-

ators. Based on exhaustive testing, our accelerators are able to produce results

with 1 ULP maximum error, compared with single-precision cores from GNU

math.h library. The LegUp HLS, Quartus and Modelsim are applied to synthe-

size the accelerators specified using C language into hardware circuit targeting

Intel/Altera 45 nm FPGA. In evaluation, we compare ours and the state-of-

the-art implementations. In particular, we treat the Intel/Altera IP cores as

the ”golden” baseline for performance comparison (i.e. area/speed). Results

show that Intel/Altera IP cores win slightly on throughput, and our cores win

113

considerably in circuit area (i.e. LUT size, number of DSPs) on Cyclone V 45

nm FPGA.

In addition to the elementary functions implementation, we propose a

32-bit RISC-V multi-cycle processor implementation based on FPGA. The

processor is a full realization of the 32-bit integer base instruction set (RV32I)

and consists of 39 user instructions. Custom testing programs are developed

to verify the correctness of instructions execution and if the processor adheres

to the RISC-V specification. The LegUp HLS, Quartus and Modelsim are

applied to synthesize the C specification of the processor into hardware tar-

geting Intel/Altera 28 nm FPGA. In evaluation, we compare our processor

with two open source RISC-V implementations. Results show that our pro-

cessor has equivalent performance in terms of area and speed, but the open

source processor has higher IPC.

There are four possible directions for my future research:

1. Evaluate energy efficiency. We would like to evaluate energy effi-

ciency for the proposed elementary function accelerators and RISC-V

soft processor. In this case, performance will be given in throughput

per watt (MHz/watt). Additional energy savings will be measured for

reduced-precision implementations as well.

2. An entire library of elementary functions implementation. Since

the LUT-based design methodology is generic, it could be applied to

implement an entire library of single-precision floating-point elementary

functions into high-performance hardware accelerators in an FPGA or

ASIC.

3. Pipeline RISC-V processor implementation. We would like to

implement a 32-bit RISC-V pipeline processor to further improve the

parallelism of program execution. To do so, we will need to design

114

an efficient pipeline architecture, and address both data and control

hazards.

4. Future processor/accelerators system on FPGA. We would like

to integrate the proposed reciprocal and square root accelerators into the

RISC-V processor by extending the ISA. The RISC-V ISA has extensions

for single, double and quadruple-precision instructions. By doing so,

the future processor/accelerators system is possible to bring significant

performance benefits to a broad range of scientific applications.

115

Appendix

In this section, we elaborate on the seven manually created testing pro-

grams (in RV32I assembly code) for the proposed soft-processor. Contents of

program memory, data memory and register files before and after a testing

program is executed are listed as below.

6.1 Testing Program for R-type Instructions:

The following code snippet presents a testing program for R-type instruc-

tions. In this case, machine codes in hexadecimal representation and RV32I

assembly are presented. The testing program starts from the first word in the

program memory (imem[0]), and is executed in sequential order. Since all

operands of R-type instructions are manipulated via registers, operands are

manually loaded into the registers (i.e. x1, x2, x4, x5) to reduce traffic

between the register file and data memory. In the code snippet, all R-type

instructions are presented. In addition, the NOP instruction stands for ”no

operation”. It is a pseudo-instruction that is translated to ADD x0, x0, 0

after compilation.

// program memory

imem[0]: 0x002081b3 // ADD x3, x2, x1;

imem[1]: 0x40520333 // SUB x6, x5, x4;

imem[2]: 0x008394b3 // SLL x9, x8, x7;

imem[3]: 0x00b55633 // SRL x12, x11, x10;

imem[4]: 0x40e6d7b3 // SRA x15, x14, x13;

imem[5]: 0x01182933 // SLT x18, x17, x16;

imem[6]: 0x0129bab3 // SLTU x21, x20, x19;

imem[7]: 0x017b4c33 // XOR x24, x23, x22;

imem[8]: 0x01acedb3 // OR x27, x26, x25;

imem[9]: 0x01de7f33 // AND x30, x29, x28;

116

imem[10]: 0x00000013 // NOP (ADD, x0, x0, 0);

Contents of program memory, data memory and register files before and

after the R-type testing program is executed are listed as below.

• program memory.

0x002081b3, //0

0x40520333, //1

0x008394b3, //2

0x00b55633, //3

0x40e6d7b3, //4

0x01182933, //5

0x0129bab3, //6

0x017b4c33, //7

0x01acedb3, //8

0x01de7f33, //9

• data memory (before). all zeros

• register file (before).

0x00000000, //0

0xffffffff, //1

0x00000002, //2

0x00000000, //3

0x80000000, //4

0x00000001, //5

0x00000000, //6

0x0000ffff, //7

0x0000000f, //8

0x00000000, //9

0xffff0000, //10

117

0x0000000f, //11

0x00000000, //12

0xffff0000, //13

0x0000000f, //14

0x00000000, //15

0x80000001, //16

0x00000001, //17

0x00000000, //18

0x80000001, //19

0x00000001, //20

0x00000000, //21

0x55555555, //22

0xffffffff, //23

0x00000000, //24

0x55555555, //25

0xaaaaaaaa, //26

0x00000000, //27

0x55555555, //28

0xaaaaaaaa, //29

0x00000000, //30

0x00000000 //31

• data memory (after). all zeros

• register file (after).

0x00000000, //0

0xffffffff, //1

0x00000002, //2

0x00000001, //3

118

0x80000000, //4

0x00000001, //5

0x7fffffff, //6

0x0000ffff, //7

0x0000000f, //8

0x7fff8000, //9

0xffff0000, //10

0x0000000f, //11

0x0001fffe, //12

0xffff0000, //13

0x0000000f, //14

0xfffffffe, //15

0x80000001, //16

0x00000001, //17

0x00000001, //18

0x80000001, //19

0x00000001, //20

0x00000000, //21

0x55555555, //22

0xffffffff, //23

0xaaaaaaaa, //24

0x55555555, //25

0xaaaaaaaa, //26

0xffffffff, //27

0x55555555, //28

0xaaaaaaaa, //29

0x00000000, //30

119

0x00000000 //31

6.2 Testing Program for I-type Instructions:

Unlike R-type, one operand of I-type instructions comes from a 32-bit

sign-extended immediate number rather than a source register. Hence, I-

type instructions are considered to be more efficient because there is no need

to load both operands from data memory to a register file. Similar to R-

type, the testing program for I-type instructions starts from the first word of

program memory (imem[0]), and is executed in sequential order. All I-type

instructions are presented in the following code snippet, and operands are

loaded into the register file manually.

// program memory

imem[0]: 0x7ff08113 // ADDI x2, x1, 0x7ff;

imem[1]: 0x80018213 // ADDI x4, x3, 0x800;

imem[2]: 0x5552c313 // XORI x6, x5, 0x555;

imem[3]: 0xaaa3c413 // XORI x8, x7, 0xaaa;

imem[4]: 0x5554e513 // ORI x10, x9, 0x555;

imem[5]: 0xaaa5e613 // ORI x12, x11, 0xaaa;

imem[6]: 0x5556f713 // ANDI x14, x13, 0x555;

imem[7]: 0xaaa7f813 // ANDI x16, x15, 0xaaa;

imem[8]: 0x8008a913 // SLTI x18, x17, 0x800;

imem[9]: 0x8009ba13 // SLTIU x20, x19, 0x800;

imem[10]: 0x00fa9b13 // SLLI x22, x21, 0x00f;

imem[11]: 0x00fbdc13 // SRLI x24, x23, 0x00f;

imem[12]: 0x40fcdd13 // SRAI x26, x25, 0x00f;

imem[13]: 0x40fdde13 // SRAI x28, x27, 0x00f;

imem[14]: 0x00000013 // NOP (ADD, x0, x0, 0);

Contents of program memory, data memory and register files before and

after the I-type testing program is executed are listed as below.

120

• program memory.

0x7ff08113, //0

0x80018213, //1

0x5552c313, //2

0xaaa3c413, //3

0x5554e513, //4

0xaaa5e613, //5

0x5556f713, //6

0xaaa7f813, //7

0x8008a913, //8

0x8009ba13, //9

0x00fa9b13, //10

0x00fbdc13, //11

0x40fcdd13, //12

0x40fdde13, //13

• data memory (before). all zeros

• register file (before).

0x00000000, //0

0x00000001, //1

0x00000000, //2

0x00000800, //3

0x00000000, //4

0x00000aaa, //5

0x00000000, //6

0x00000555, //7

0x00000000, //8

0x00000555, //9

121

0x00000000, //10

0x00000555, //11

0x00000000, //12

0x00000000, //13

0x00000000, //14

0x00000fff, //15

0x00000000, //16

0x00000001, //17

0x00000000, //18

0x00000001, //19

0x00000000, //20

0xffffffff, //21

0x00000000, //22

0xffffffff, //23

0x00000000, //24

0x80000000, //25

0x00000000, //26

0x7fffffff, //27

0x00000000, //28

0x00000000, //29

0x00000000, //30

0x00000000 //31

• data memory (after). all zeros

• register file (after).

0x00000000, //0

0x00000001, //1

0x00000800, //2

122

0x00000800, //3

0x00000000, //4

0x00000aaa, //5

0x00000fff, //6

0x00000555, //7

0xffffffff, //8

0x00000555, //9

0x00000555, //10

0x00000555, //11

0xffffffff, //12

0x00000000, //13

0x00000000, //14

0x00000fff, //15

0x00000aaa, //16

0x00000001, //17

0x00000000, //18

0x00000001, //19

0x00000001, //20

0xffffffff, //21

0xffff8000, //22

0xffffffff, //23

0x0001ffff, //24

0x80000000, //25

0xffff0000, //26

0x7fffffff, //27

0x0000ffff, //28

0x00000000, //29

123

0x00000000, //30

0x00000000 //31

6.3 Testing Program for LS-type Instructions:

LS-type instructions handle read/write operations between data memory

and the register file. To load data from data memory to the register file,

there are LB (load a byte), LBU (load an unsigned byte), LH (load a half-

word), LHU (load an unsigned half-word) and LW (load a word) instructions.

Likewise, to store data from the register file into data memory, there are SB

(store a byte), SH (store a half-word) and, SW (store a word) instructions. In

such cases, base addressing (base + offset) is adopted to address data

memory. In doing so, the base address is stored in a source register, and the

offset comes from a 32-bit immediate address. Address alignment is enforced

by RISC-V ISA. For example, the lowest bit of an address must be bit-0 if

addressing a half-word, and the lower two bits of an address must be bit-00

if addressing a word. Otherwise, an interrupt is invoked to handle address

misaligned cases. All LS-type instructions are presented in the following code

snippet.

// program memory

imem[0]: 0x00108103 // LB x2, 0x001(r1);

imem[1]: 0x3ff18203 // LB x4, 0x3ff(r3);

imem[2]: 0x00229303 // LH x6, 0x002(r5);

imem[3]: 0x3fe39403 // LH x8, 0x3fe(r7);

imem[4]: 0x0004a503 // LW x10, 0x000(r9);

imem[5]: 0x0045a603 // LW x12, 0x004(r11);

imem[6]: 0x0046c703 // LBU x14, 0x004(r13);

imem[7]: 0x00c7c803 // LBU x16, 0x00c(r15);

imem[8]: 0x0048d903 // LHU x18, 0x004(r17);

imem[9]: 0x01c9da03 // LHU x20, 0x01c(r19);

124

imem[10]: 0x015b0023 // SB x21, 0x000(r22);

imem[11]: 0x017b00a3 // SB x23, 0x001(r22);

imem[12]: 0x018b0123 // SB x24, 0x002(r22);

imem[13]: 0x019b01a3 // SB x25, 0x003(r22);

imem[14]: 0x01ad9023 // SH x26, 0x000(r22);

imem[15]: 0x01ce9123 // SH x28, 0x002(r22);

imem[16]: 0x01efa223 // SW x30, 0x004(r22);

imem[17]: 0x00000013 // NOP (ADD, x0, x0, 0);

Contents of program memory, data memory and register files before and

after the LS-type testing program is executed are listed as below.

• program memory.

0x00108103, //0

0x3ff18203, //1

0x00229303, //2

0x3fe39403, //3

0x0004a503, //4

0x0045a603, //5

0x0046c703, //6

0x00c7c803, //7

0x0048d903, //8

0x01c9da03, //9

0x015b0023, //10

0x017b00a3, //11

0x018b0123, //12

0x019b01a3, //13

0x01ad9023, //14

0x01ce9123, //15

0x01efa223, //16

125

• data memory (before).

0x13579bdf, // 0

0xfdb97531, // 1

0x2eca8642, // 255

0x2468ace2, // 256

• register file (before).

0x00000000, // 0

0x00000000, // 1

0x00000000, // 2

0x00000000, // 3

0x00000000, // 4

0x00000000, // 5

0x00000000, // 6

0x00000000, // 7

0x00000000, // 8

0x00000000, // 9

0x00000000, // 10

0x000003f8, // 11

0x00000000, // 12

0x00000000, // 13

0x00000000, // 14

0x000003f0, // 15

0x00000000, // 16

0x00000000, // 17

0x00000000, // 18

0x000003e0, // 19

0x00000000, // 20

126

0x12345678, // 21

0x00000600, // 22

0xfedcba98, // 23

0xf0e1d2c3, // 24

0xb4a59687, // 25

0x87ab1e4b, // 26

0x00000700, // 27

0x8b74aeb1, // 28

0x00000780, // 29

0xb847ea1b, // 30

0x000007c0 // 31

• data memory (after).

0x13579bdf, // 0

0xfdb97531, // 1

0x2eca8642, // 255

0x2468ace2, // 256

0xb4e1ba78, // 384

0x00001e4b, // 448

0x8b740000, // 480

0xb847ea1b, // 497

• register file (after).

0x00000000, // 0

0x00000000, // 1

0xffffff9b, // 2

0x00000000, // 3

0x0000002e, // 4

0x00000000, // 5

127

0x00001357, // 6

0x00000000, // 7

0x00002eca, // 8

0x00000000, // 9

0x13579bdf, // 10

0x000003f8, // 11

0x2eca8642, // 12

0x00000000, // 13

0x00000031, // 14

0x000003f0, // 15

0x00000042, // 16

0x00000000, // 17

0x00007531, // 18

0x000003e0, // 19

0x00008642, // 20

0x12345678, // 21

0x00000600, // 22

0xfedcba98, // 23

0xf0e1d2c3, // 24

0xb4a59687, // 25

0x87ab1e4b, // 26

0x00000700, // 27

0x8b74aeb1, // 28

0x00000780, // 29

0xb847ea1b, // 30

0x000007c0 // 31

128

6.4 Testing Program for B-type Instructions:

The B-type format comprises two kinds of instructions: 1) branch, and

2) jump link (return). These instructions change the order in which programs

are executed. In high-level programming language, an if or loop statement

is usually compiled into an assembly containing branch instructions. However,

the procedure call construct is normally compiled into an assembly containing

jump link instructions. One difference between branch and jump link (return)

instructions is that, any branch instruction jump to a new address depends

on the result of a comparison between a pair of operands. However, jump link

(return) instructions jump directly to a new address without any conditions.

The following code snippets show four testing programs for B-type instruc-

tions, each of which implements a program control construct in high-level

programming language.

6.4.1 If-Then Program for Testing B-type Instructions

The following testing program realizes the function of an if statement in

high-level programming language. In this case, variables i, j, a, b and c are

manually loaded into registers r22, r23, r19, r20 and r21. All conditional

branch instructions adopt PC-relative addressing (PC + offset), and the

addressing range is ±4K words.

/*

if (i == j)

c = a + b;

else

c = a - b;

*/

// program memory

imem[0]: 0x017b1863 // BNE x22, x23, Else;

imem[1]: 0x014a89b3 // ADD x21, x20, x19;

imem[2]: 0x00000663 // BEQ x0, x0, Exit;

129

imem[3]: 0x415a09b3 // Else: SUB x21, x20, x19;

imem[4]: 0x00000013 // Exit: NOP;

Contents of program memory, data memory and register files before and

after the if-then statement testing program is executed are listed as below.

• program memory.

0x017b1863, //0

0x014a89b3, //1

0x00000663, //2

0x415a09b3, //3

• data memory (before). all zeros

• register file (before).

0x00000000, //0

0x00000000, //1

0x00000000, //2

0x00000000, //3

0x00000000, //4

0x00000000, //5

0x00000000, //6

0x00000000, //7

0x00000000, //8

0x00000000, //9

0x00000000, //10

0x00000000, //11

0x00000000, //12

0x00000000, //13

0x00000000, //14

0x00000000, //15

130

0x00000000, //16

0x00000000, //17

0x00000000, //18

0xffffffff, //19

0x7fffffff, //20

0x00000001, //21

0x0000000f, //22

0x0000000f, //23

0x00000000, //24

0x00000000, //25

0x00000000, //26

0x00000000, //27

0x00000000, //28

0x00000000, //29

0x00000000, //30

0x00000000 //31

• data memory (after). all zeros

• register file (after).

0x00000000, //0

0x00000000, //1

0x00000000, //2

0x00000000, //3

0x00000000, //4

0x00000000, //5

0x00000000, //6

0x00000000, //7

0x00000000, //8

131

0x00000000, //9

0x00000000, //10

0x00000000, //11

0x00000000, //12

0x00000000, //13

0x00000000, //14

0x00000000, //15

0x00000000, //16

0x00000000, //17

0x00000000, //18

0x80000000, //19

0x7fffffff, //20

0x00000001, //21

0x0000000f, //22

0x0000000f, //23

0x00000000, //24

0x00000000, //25

0x00000000, //26

0x00000000, //27

0x00000000, //28

0x00000000, //29

0x00000000, //30

0x00000000 //31

6.4.2 While-Loop Program for Testing B-type Instructions:

The following testing program realizes the function of a while-loop

statement in high-level programming language. To simplify, the base address

132

of array a[i] and offset i are manually loaded into registers r25 and r22 as

0x00000000 and 0x00000001 in hexadecimal, respectively. Hence, array a[i]

starts from address dmem[1] in data memory. The value of variable b is

loaded into register r24 as 0x5af14901 in hexadecimal. In doing so, the

while-loop statement is terminated after seven iterations because, array

element a[8] is not equal to 0x5af14901.

/*

while (a[i] == b) {

i++;

}

*/

// program memory

imem[0]: 0x002b1513 // Loop: SLLI x10, x22, 2;

imem[1]: 0x01950533 // ADD x10, x10, x25;

imem[2]: 0x00052483 // LW x9, 0x000(x10);

imem[3]: 0x01849663 // BNE x9, x24, Exit;

imem[4]: 0x001b0b13 // ADDI x22, x22, 0x001;

imem[5]: 0xfe0006e3 // BEQ x0, x0, Loop;

imem[6]: 0x00000013 // Exit: NOP;

// register file

r24: 0x5af14901

// data memory

dmem[0]: 0x00000000 // a[0]

dmem[1]: 0x5af14901 // a[1]

dmem[2]: 0x5af14901 // a[2]

dmem[3]: 0x5af14901 // a[3]

dmem[4]: 0x5af14901 // a[4]

dmem[5]: 0x5af14901 // a[5]

dmem[6]: 0x5af14901 // a[6]

dmem[7]: 0x5af14901 // a[7]

dmem[8]: 0xffffffff // a[8]

133

Contents of program memory, data memory and register files before and

after the while-loop statement testing program is executed are listed as below.

• program memory.

0x002b1513, //0

0x01950533, //1

0x00052483, //2

0x01849663, //3

0x001b0b13, //4

0xfe0006e3, //5

• data memory (before).

0x5af14901, //1

0x5af14901, //2

0x5af14901, //3

0x5af14901, //4

0x5af14901, //5

0x5af14901, //6

0x5af14901, //7

0xffffffff, //8

• register file (before).

0x00000000, //0

0x00000000, //1

0x00000000, //2

0x00000000, //3

0x00000000, //4

0x00000000, //5

0x00000000, //6

0x00000000, //7

134

0x00000000, //8

0xeeeeeeee, //9

0xeeeeeeee, //10

0x00000000, //11

0x00000000, //12

0x00000000, //13

0x00000000, //14

0x00000000, //15

0x00000000, //16

0x00000000, //17

0x00000000, //18

0x00000000, //19

0x00000000, //20

0x00000000, //21

0x00000001, //22

0x00000000, //23

0x5af14901, //24

0x00000000, //25

0x00000000, //26

0x00000000, //27

0x00000000, //28

0x00000000, //29

0x00000000, //30

0x00000000 //31

• data memory (after).

0x5af14901, //1

0x5af14901, //2

135

0x5af14901, //3

0x5af14901, //4

0x5af14901, //5

0x5af14901, //6

0x5af14901, //7

0xffffffff, //8

• register file (after).

0x00000000, //0

0x00000000, //1

0x00000000, //2

0x00000000, //3

0x00000000, //4

0x00000000, //5

0x00000000, //6

0x00000000, //7

0x00000000, //8

0xffffffff, //9

0x00000020, //10

0x00000000, //11

0x00000000, //12

0x00000000, //13

0x00000000, //14

0x00000000, //15

0x00000000, //16

0x00000000, //17

0x00000000, //18

0x00000000, //19

136

0x00000000, //20

0x00000000, //21

0x00000008, //22

0x00000000, //23

0x5af14901, //24

0x00000000, //25

0x00000000, //26

0x00000000, //27

0x00000000, //28

0x00000000, //29

0x00000000, //30

0x00000000 //31

6.4.3 Procedure Call Program for Testing B-type Instructions:

The following testing program realizes the procedure call construct in

high-level programming language. According to the RV32I reference manual,

registers x10-x17 are used to pass parameters and return value within a

procedure call. In our case, we have four parameters-a, b, c and d-loaded

into registers x10-x13, and one return value, f, loaded into register x14.

At the start of the subroutine, values stored in registers x5, x6 and, x20 are

pushed into stack in data memory because those registers are used for inter-

nal computation in the subroutine. In doing so, it prevents values stored in

those registers from being polluted by the subroutine. In the stack operations,

register x2 is used as a stack pointer and it points to address (511) in data

memory. To evaluate the expression f = (a + b) - (c + d), registers

x5, x6 and x20 are used and the return value is loaded into register x14.

137

After the subroutine is complete, registers x5, x6 and x20 are restored from

stack, and the stack pointer (x2) is modified accordingly.

/*

int subroutine (int a, int b, int c, int d) {

int f;

f = (a + b) - (c + d);

return f;

}

*/

// program memory

imem[0]: 0xff410113 // ADDI x2, x2, -12;

imem[1]: 0x00512423 // SW x5, 8(x2);

imem[2]: 0x00612223 // SW x6, 4(x2);

imem[3]: 0x01412023 // SW x20, 0(x2);

imem[4]: 0x00a582b3 // ADD x5, x10, x11;

imem[5]: 0x00c68333 // ADD x6, x12, x13;

imem[6]: 0x40628a33 // SUB x20, x5, x6;

imem[7]: 0x000a0513 // ADDI x10, x20, 0;

imem[8]: 0x00012a03 // LW x20, 0(x2);

imem[9]: 0x00412303 // LW x6, 4(x2);

imem[10]: 0x00812283 // LW x5, 8(x2);

imem[11]: 0x00c10113 // ADDI x2, x2, 12;

// data memory (stack)

dmem[508]: 0x00f000f0 // r20

dmem[509]: 0x0f0f0f0f // r6

dmem[510]: 0xf000f000 // r5

Contents of program memory, data memory and register files before and

after the procedure call testing program is executed are listed as below.

• program memory.

0xff410113, //0

0x00512423, //1

138

0x00612223, //2

0x01412023, //3

0x00a582b3, //4

0x00c68333, //5

0x40628a33, //6

0x000a0513, //7

0x00012a03, //8

0x00412303, //9

0x00812283, //10

0x00c10113, //11

• data memory (before). all zeros

• register file (before).

0x00000000, //0

0x00000000, //1

0x000007fc, //2

0x00000000, //3

0x00000000, //4

0xf000f000, //5

0x0f0f0f0f, //6

0x00000000, //7

0x00000000, //8

0x00000000, //9

0x00000001, //10

0x7fffffff, //11

0xffffffff, //12

0x00000002, //13

0x00000000, //14

139

0x00000000, //15

0x00000000, //16

0x00000000, //17

0x00000000, //18

0x00000000, //19

0x00f000f0, //20

0x00000000, //21

0x00000000, //22

0x00000000, //23

0x00000000, //24

0x00000000, //25

0x00000000, //26

0x00000000, //27

0x00000000, //28

0x00000000, //29

0x00000000, //30

0x00000000 //31

• data memory (after).

0x00f000f0, //508

0x0f0f0f0f, //509

0xf000f000, //510

0x00000000 //511

• register file (after).

0x00000000, //0

0x00000000, //1

0x000007fc, //2

0x00000000, //3

140

0x00000000, //4

0xf000f000, //5

0x0f0f0f0f, //6

0x00000000, //7

0x00000000, //8

0x00000000, //9

0x7fffffff, //10

0x7fffffff, //11

0xffffffff, //12

0x00000002, //13

0x00000000, //14

0x00000000, //15

0x00000000, //16

0x00000000, //17

0x00000000, //18

0x00000000, //19

0x00f000f0, //20

0x00000000, //21

0x00000000, //22

0x00000000, //23

0x00000000, //24

0x00000000, //25

0x00000000, //26

0x00000000, //27

0x00000000, //28

0x00000000, //29

0x00000000, //30

141

0x00000000 //31

6.4.4 Nested Procedure Call Program for Testing B-type Instruc-
tions:

The following testing program realizes a recursive algorithm, which is

implemented as a nested procedure call in high-level programming language.

The algorithm performs recursive addition on integer n, and produces a sum

which is equal to n + (n-1) + (n-2) + ... + 2 + 1. In this case,

subroutine iter add starts from address imem[10] in program memory, and

parameter n (n = 5) is loaded into register x10. In addition, register x1

is used to keep the returning addresses of a procedure call, and register x2

serves as a stack pointer. In the body of subroutine iter add(), values

stored in registers x1 and x10 are recursively pushed back into stack until

variable n is less than 1 (n < 1). By observing the stack in data memory, the

first returning address is stored at dmem[510] as 0x00000068, which refers

to the returning address of subroutine iter add(). Later on, the returning

address of instruction JAL r1, iter add, are pushed into stack one by one.

After five iterations, stack growing terminates at dmem[501], as variable n

is less than 1 (n < 1). In this case, all the values of variable n and returning

addresses are popped to registers recursively, and, finally, a sum which is equal

to n + (n-1) + (n-2) + ... + 2 + 1 is produced at register x10.

/*

int iter_add (int n) {

if(n < 1) return (1);

else return(n + iter_add(n-1));

}

*/

// program memory

imem[10]: 0xff810113 // iter_add: ADDI r2, r2, 0xff8

142

imem[11]: 0x00112223 // SW r1, 0x4(r2);

imem[12]: 0x00a12023 // SW r10, 0x4(r2);

imem[13]: 0xfff50293 // ADDI r5, r10, 0xfff;

imem[14]: 0x0002d863 // BGE r5, r0, L1;

imem[15]: 0x00100513 // ADDI r10, r10, 0x001;

imem[16]: 0x00810113 // ADDI r2, r2, 0x008;

imem[17]: 0x00008067 // JALR r0, 0x000(r1);

imem[18]: 0xfff50513 // L1: ADDI r10, r10, 0xfff;

imem[19]: 0xfddff0ef // JAL r1, iter_add;

imem[20]: 0x00050313 // ADDI r6, r10, 0x000;

imem[21]: 0x00012503 // LW r10, 0x0(r2);

imem[22]: 0x00412083 // LW r1, 0x4(r2);

imem[23]: 0x00810113 // ADDI r2, r2, 0x008;

imem[24]: 0x00a30533 // ADD r10, r10, r6;

imem[25]: 0x00008067 // JALR r0, 0x0(r1);

// data memory (stack)

dmem[501]: 0x00000001 // n-4

dmem[502]: 0x00000050 // returning address imem[20]

dmem[503]: 0x00000002 // n-3

dmem[504]: 0x00000050 // returning address imem[20]

dmem[505]: 0x00000003 // n-2

dmem[506]: 0x00000050 // returning address imem[20]

dmem[507]: 0x00000004 // n-1

dmem[508]: 0x00000050 // returning address imem[20]

dmem[509]: 0x00000005 // n

dmem[510]: 0x00000068 // returning address imem[26]

Contents of program memory, data memory and register files before and

after the nested procedure call testing program is executed are listed as below.

• program memory.

0xff810113, //10

0x00112223, //11

143

0x00a12023, //12

0xfff50293, //13

0x0002d863, //14

0x00100513, //15

0x00810113, //16

0x00008067, //17

0xfff50513, //18

0xfddff0ef, //19

0x00050313, //20

0x00012503, //21

0x00412083, //22

0x00810113, //23

0x00a30533, //24

0x00008067, //25

• data memory (before). all zeros

• register file (before).

0x00000000, //0

0x00000068, //1

0x000007fc, //2

0x00000000, //3

0x00000000, //4

0x00000000, //5

0x00000000, //6

0x00000000, //7

0x00000000, //8

0x00000000, //9

0x00000005, //10

144

0x00000000, //11

0x00000000, //12

0x00000000, //13

0x00000000, //14

0x00000000, //15

0x00000000, //16

0x00000000, //17

0x00000000, //18

0x00000000, //19

0x00000000, //20

0x00000000, //21

0x00000000, //22

0x00000000, //23

0x00000000, //24

0x00000000, //25

0x00000000, //26

0x00000000, //27

0x00000000, //28

0x00000000, //29

0x00000000, //30

0x00000000 //31

• data memory (after).

0x00000001, //501

0x00000050, //502

0x00000002, //503

0x00000050, //504

0x00000003, //505

145

0x00000050, //506

0x00000004, //507

0x00000050, //508

0x00000005, //509

0x00000068, //510

• register file (after).

0x00000000, //0

0x00000068, //1

0x000007fc, //2

0x00000000, //3

0x00000000, //4

0x00000000, //5

0x0000000a, //6

0x00000000, //7

0x00000000, //8

0x00000000, //9

0x0000000f, //10

0x00000000, //11

0x00000000, //12

0x00000000, //13

0x00000000, //14

0x00000000, //15

0x00000000, //16

0x00000000, //17

0x00000000, //18

0x00000000, //19

0x00000000, //20

146

0x00000000, //21

0x00000000, //22

0x00000000, //23

0x00000000, //24

0x00000000, //25

0x00000000, //26

0x00000000, //27

0x00000000, //28

0x00000000, //29

0x00000000, //30

0x00000000 //31

147

References

[1] Cloud FPGA, IBM Research Zurich. [Online]. Available:. https://
www.zurich.ibm.com/cci/cloudFPGA/.

[2] FloPoCo Open Source Project. [Online]. Available:. http://
flopoco.gforge.inria.fr/.

[3] ISO/IEC 9899:1999 PROGRAMMING LANGUAGES – C. [Online].
Available:. https://www.iso.org/standard/29237.html.

[4] Lattice Semiconductor: CE40 LP/HX/LM Family Handbook. [Online].
Available:. http://www.latticesemi.com/iCE40.

[5] LegUp Computing. https://www.legupcomputing.com/,

[6] Abstraction Levels and Hardware Design. [Online]. Available:.
https://www.eetimes.com/abstraction-levels-and-
hardware-design/, 2007.

[7] AMD Math Core Library Version 4.2 User’s Guide (2008). [Online].
Available:. https://developer.amd.com/wordpress/media/
2012/10/acml_userguide.pdf.pdf, 2008.

[8] Intel Math Kernel Library for the Linux os User’s Guide (2008).
[Online]. Available:. http://www.bgu.ac.il/intel_fortran_
docs/mkl/userguide.pdf, 2008.

[9] AXI Reference Guide. [Online]. Available:. https://www.xilinx.
com/support/documentation/ip_documentation/ug761_
axi_reference_guide.pdf, 2011.

[10] Cyclone V Device Overview: variable-precision DSP block. [On-
line]. Available:. https://www.intel.com/content/dam/
www/programmable/us/en/pdfs/literature/hb/cyclone-
v/cv_51001.pdf, 2015.

[11] EDA is dead. What comes next is exciting. [Online]. Avail-
able:. https://medium.com/@saardrimer/eda-is-dead-
what-comes-next-is-exciting-cd5f3301402b, 2016.

[12] Floating-Point IP Cores User Guide. [Online]. Available:. https:
//www.intel.com/content/dam/www/programmable/us/
en/pdfs/literature/ug/ug_altfp_mfug.pdf, 2016.

148

https://www.zurich.ibm.com/cci/cloudFPGA/
https://www.zurich.ibm.com/cci/cloudFPGA/
http://flopoco.gforge.inria.fr/
http://flopoco.gforge.inria.fr/
https://www.iso.org/standard/29237.html
http://www.latticesemi.com/iCE40
https://www.legupcomputing.com/
https://www.eetimes.com/abstraction-levels-and-hardware-design/
https://www.eetimes.com/abstraction-levels-and-hardware-design/
https://developer.amd.com/wordpress/media/2012/10/acml_userguide.pdf.pdf
https://developer.amd.com/wordpress/media/2012/10/acml_userguide.pdf.pdf
http://www.bgu.ac.il/intel_fortran_docs/mkl/userguide.pdf
http://www.bgu.ac.il/intel_fortran_docs/mkl/userguide.pdf
https://www.xilinx.com/support/documentation/ip_documentation/ug761_axi_reference_guide.pdf
https://www.xilinx.com/support/documentation/ip_documentation/ug761_axi_reference_guide.pdf
https://www.xilinx.com/support/documentation/ip_documentation/ug761_axi_reference_guide.pdf
https://www.intel.com/content/dam/www/programmable/us/en/pdfs/literature/hb/cyclone-v/cv_51001.pdf
https://www.intel.com/content/dam/www/programmable/us/en/pdfs/literature/hb/cyclone-v/cv_51001.pdf
https://www.intel.com/content/dam/www/programmable/us/en/pdfs/literature/hb/cyclone-v/cv_51001.pdf
https://medium.com/@saardrimer/eda-is-dead-what-comes-next-is-exciting-cd5f3301402b
https://medium.com/@saardrimer/eda-is-dead-what-comes-next-is-exciting-cd5f3301402b
https://www.intel.com/content/dam/www/programmable/us/en/pdfs/literature/ug/ug_altfp_mfug.pdf
https://www.intel.com/content/dam/www/programmable/us/en/pdfs/literature/ug/ug_altfp_mfug.pdf
https://www.intel.com/content/dam/www/programmable/us/en/pdfs/literature/ug/ug_altfp_mfug.pdf

149

[13] NVidia Falcon Processor. [Online]. Available:. https://riscv.org/
wp-content/uploads/2016/07/Tue1100_Nvidia_RISCV_
Story_V2.pdf, 2016.

[14] CORDIC v6.0 LogiCORE IP Product Guide. [Online]. Avail-
able:. https://www.xilinx.com/support/documentation/
ip_documentation/cordic/v6_0/pg105-cordic.pdf, 2017.

[15] CORDIC v6.0 LogiCORE IP Product Guide. [Online]. Avail-
able:. https://www.xilinx.com/support/documentation/
ip_documentation/cordic/v6_0/pg105-cordic.pdf, 2017.

[16] EC2 F1 Instances with FPGAs – Now Generally Available. [Online].
Available:. https://aws.amazon.com/blogs/aws/ec2-f1-
instances-with-fpgas-now-generally-available/, 2017.

[17] How to Program Your First FPGA Device. [Online]. Avail-
able:. https://software.intel.com/en-us/articles/how-
to-program-your-first-fpga-device, 2017.

[18] FWRISC. [Online]. Available:. https://github.com/mballance/
fwrisc, 2018.

[19] MicroBlaze Processor Reference Guide. [Online]. Available:. https:
//www.xilinx.com/support/documentation/sw_manuals/
xilinx2018_2/ug984-vivado-microblaze-ref.pdf, 2018.

[20] Microsoft Launches FPGA-Powered Machine Learning for Azure Cus-
tomers. [Online]. Available:. https://www.top500.org/news/
microsoft-launches-fpga-powered-machine-learning-
for-azure-customers/, 2018.

[21] Vexriscv: A FPGA friendly 32 bit RISC-V CPU implementation. [On-
line]. Available:. https://github.com/SpinalHDL/VexRiscv,
2018.

[22] Xilinx Vivado High-Level Synthesis. [online]. available:. https:
//www.xilinx.com/products/design-tools/vivado/
integration/esl-design.html, 2018.

[23] Apple A12 Bionic specification. [Online]. Available:. https://en.
wikipedia.org/wiki/Apple_A12, 2019.

[24] Approximations that depend on the floating point representa-
tion. [Online]. Available:. https://en.wikipedia.org/wiki/
Methods_of_computing_square_roots#Approximations_
that_depend_on_the_floating_point_representation,
2019.

https://riscv.org/wp-content/uploads/2016/07/Tue1100_Nvidia_RISCV_Story_V2.pdf
https://riscv.org/wp-content/uploads/2016/07/Tue1100_Nvidia_RISCV_Story_V2.pdf
https://riscv.org/wp-content/uploads/2016/07/Tue1100_Nvidia_RISCV_Story_V2.pdf
https://www.xilinx.com/support/documentation/ip_documentation/cordic/v6_0/pg105-cordic.pdf
https://www.xilinx.com/support/documentation/ip_documentation/cordic/v6_0/pg105-cordic.pdf
https://www.xilinx.com/support/documentation/ip_documentation/cordic/v6_0/pg105-cordic.pdf
https://www.xilinx.com/support/documentation/ip_documentation/cordic/v6_0/pg105-cordic.pdf
https://aws.amazon.com/blogs/aws/ec2-f1-instances-with-fpgas-now-generally-available/
https://aws.amazon.com/blogs/aws/ec2-f1-instances-with-fpgas-now-generally-available/
https://software.intel.com/en-us/articles/how-to-program-your-first-fpga-device
https://software.intel.com/en-us/articles/how-to-program-your-first-fpga-device
https://github.com/mballance/fwrisc
https://github.com/mballance/fwrisc
https://www.xilinx.com/support/documentation/sw_manuals/xilinx2018_2/ug984-vivado-microblaze-ref.pdf
https://www.xilinx.com/support/documentation/sw_manuals/xilinx2018_2/ug984-vivado-microblaze-ref.pdf
https://www.xilinx.com/support/documentation/sw_manuals/xilinx2018_2/ug984-vivado-microblaze-ref.pdf
https://www.top500.org/news/microsoft-launches-fpga-powered-machine-learning-for-azure-customers/
https://www.top500.org/news/microsoft-launches-fpga-powered-machine-learning-for-azure-customers/
https://www.top500.org/news/microsoft-launches-fpga-powered-machine-learning-for-azure-customers/
https://github.com/SpinalHDL/VexRiscv
https://www.xilinx.com/products/design-tools/vivado/integration/esl-design.html
https://www.xilinx.com/products/design-tools/vivado/integration/esl-design.html
https://www.xilinx.com/products/design-tools/vivado/integration/esl-design.html
https://en.wikipedia.org/wiki/Apple_A12
https://en.wikipedia.org/wiki/Apple_A12
https://en.wikipedia.org/wiki/Methods_of_computing_square_roots#Approximations_that_depend_on_the_floating_point_representation
https://en.wikipedia.org/wiki/Methods_of_computing_square_roots#Approximations_that_depend_on_the_floating_point_representation
https://en.wikipedia.org/wiki/Methods_of_computing_square_roots#Approximations_that_depend_on_the_floating_point_representation

150

[25] Elementary function. [Online]. Available:. https://en.wikipedia.
org/wiki/Transcendental_function, 2019.

[26] LEON3 Processor. [Online]. Available:. https://www.gaisler.
com/index.php/products/processors/leon3, 2019.

[27] Memory Prices (from 1957 to 2019). [Online]. Available:. https://
jcmit.net/memoryprice.htm, 2019.

[28] Nios II Gen2 Processor Reference Guide, Altera Corp. [Online].
Available:. https://www.intel.com/content/dam/www/
programmable/us/en/pdfs/literature/hb/nios2/n2cpu-
nii5v1gen2.pdf, 2019.

[29] OCRA: RISC-V by VectorBlox. [Online]. Available:. https://
github.com/VectorBlox/orca, 2019.

[30] PicoRV32 - a size-optimized risc-v cpu. [Online]. Available:. https:
//github.com/cliffordwolf/picorv32, 2019.

[31] The Boston University RISC-V Processor Set (BRISC-V). [On-
line]. Available:. https://ascslab.org/research/briscv/
release.html, 2019.

[32] The RISC-V Instruction Set Manual. [Online]. Available:. https://
riscv.org/specifications/, 2019.

[33] Transcendental function. [Online]. Available:. https://en.
wikipedia.org/wiki/Transcendental_function, 2019.

[34] Rashmi Agrawal, Sahan Bandara, Alan Ehret, Mihailo Isakov, Miguel
Mark, and Michel A. Kinsy. The brisc-v platform: A practical teaching
approach for computer architecture. In Proceedings of the Workshop on
Computer Architecture Education, page 1. ACM, 2019.

[35] W.M.A.W. Ahmad, R.A.A. Rohim, Y. Norhayati, N.A. Aleng, and
Z. Ali. Developing a new dimension of an applied exponential model:
Application in biological sciences. Engineering, Technology & Applied
Science Research, 8(4):3130–3134, 2018.

[36] Nikolaos Alachiotis and Alexandros Stamatakis. Efficient floating-point
logarithm unit for FPGAs. In IEEE Parallel & Distributed Processing,
Workshops and Phd Forum (IPDPSW), pages 1–8. IEEE, 2010.

[37] Amirhossein Alimohammad, Saeed F. Fard, and Bruce F. Cockburn. A
unified architecture for the accurate and high-throughput implementa-
tion of six key elementary functions. IEEE Transactions on Computers,
59(4):449–456, 2009.

https://en.wikipedia.org/wiki/Transcendental_function
https://en.wikipedia.org/wiki/Transcendental_function
https://www.gaisler.com/index.php/products/processors/leon3
https://www.gaisler.com/index.php/products/processors/leon3
https://jcmit.net/memoryprice.htm
https://jcmit.net/memoryprice.htm
https://www.intel.com/content/dam/www/programmable/us/en/pdfs/literature/hb/nios2/n2cpu-nii5v1gen2.pdf
https://www.intel.com/content/dam/www/programmable/us/en/pdfs/literature/hb/nios2/n2cpu-nii5v1gen2.pdf
https://www.intel.com/content/dam/www/programmable/us/en/pdfs/literature/hb/nios2/n2cpu-nii5v1gen2.pdf
https://github.com/VectorBlox/orca
https://github.com/VectorBlox/orca
https://github.com/cliffordwolf/picorv32
https://github.com/cliffordwolf/picorv32
https://ascslab.org/research/briscv/release.html
https://ascslab.org/research/briscv/release.html
https://riscv.org/specifications/
https://riscv.org/specifications/
https://en.wikipedia.org/wiki/Transcendental_function
https://en.wikipedia.org/wiki/Transcendental_function

151

[38] Krste Asanovic, Rimas Avizienis, Jonathan Bachrach, Scott Beamer,
David Biancolin, Christopher Celio, Henry Cook, Daniel Dabbelt, John
Hauser, Adam Izraelevitz, et al. The rocket chip generator. EECS
Department, University of California, Berkeley, Tech. Rep. UCB/EECS-
2016-17, 2016.

[39] Jonathan Bachrach, Huy Vo, Brian Richards, Yunsup Lee, Andrew Wa-
terman, Rimas Avižienis, John Wawrzynek, and Krste Asanović. Chisel:
constructing hardware in a scala embedded language. In DAC Design
Automation Conference 2012, pages 1212–1221. IEEE, 2012.

[40] Tomaš Bagala, Adam Fibich, Miroslav Hagara, Peter Kubinec, Oldrich
Ondráček, Vladimı́r Štofanik, and Radovan Stojanović. Single clock
square root algorithm based on binomial series and its fpga implemen-
tation. In 2018 7th Mediterranean Conference on Embedded Computing
(MECO), pages 1–4. IEEE, 2018.

[41] Sahan Bandara, Alan Ehret, Donato Kava, and Michel A. Kinsy. Brisc-
v: An open-source architecture design space exploration toolbox. arXiv
preprint arXiv:1908.09992, 2019.

[42] Ron Banner, Itay Hubara, Elad Hoffer, and Daniel Soudry. Scalable
methods for 8-bit training of neural networks. In Advances in Neural
Information Processing Systems, pages 5145–5153, 2018.

[43] Jaisimha Bannur and A. Varma. The vlsi implementation of a square
root algorithm. In 1985 IEEE 7th Symposium on Computer Arithmetic
(ARITH), pages 159–165. IEEE, 1985.

[44] James F. Blinn. Floating-point tricks. IEEE Computer Graphics and
Applications, 17(4):80–84, 1997.

[45] Andrew Canis, Jongsok Choi, Mark Aldham, Victor Zhang, Ahmed
Kammoona, Jason H. Anderson, Stephen Brown, and Tomasz Cza-
jkowski. Legup: high-level synthesis for FPGA-based processor/accel-
erator systems. In Proceedings of the 19th ACM/SIGDA international
symposium on Field programmable gate arrays (FPGA), pages 33–36.
ACM, 2011.

[46] Guangjie Cao, Huimin Du, Pengchao Wang, Qinqin Du, and Jialong
Ding. A piecewise cubic polynomial interpolation algorithm for approx-
imating elementary function. In 2015 14th International Conference
on Computer-Aided Design and Computer Graphics (CAD/Graphics),
pages 57–64. IEEE, 2015.

[47] Y. Chandu and Maradi Megha. Design and implementation of high
efficiency square root circuit using vedic mathematics. In 2017 2nd IEEE

152

International Conference on Recent Trends in Electronics, Information
& Communication Technology (RTEICT), pages 1148–1151. IEEE, 2017.

[48] Jing Chen. A pipelined, single precision floating-point logarithm com-
putation unit in hardware. Master’s thesis, 2012.

[49] Jing Chen and Xue Liu. A high-performance deeply pipelined architec-
ture for elementary transcendental function evaluation. In 2017 IEEE
International Conference on Computer Design (ICCD), pages 209–216.
IEEE, 2017.

[50] Jing Chen, Xue Liu, and Jason H. Anderson. Software-specified fpga
accelerators for elementary functions. In 2018 International Conference
on Field-Programmable Technology (FPT), pages 54–61. IEEE, 2018.

[51] Djork-Arné Clevert, Thomas Unterthiner, and Sepp Hochreiter. Fast
and accurate deep network learning by exponential linear units (elus).
arXiv preprint arXiv:1511.07289, 2015.

[52] IEEE Standards Committee et al. 754-2008 IEEE standard for floating-
point arithmetic. IEEE Computer Society Std, 2008:517, 2008.

[53] Florent de Dinechin, Mioara Joldes, Bogdan Pasca, and Guillaume Revy.
Multiplicative square root algorithms for fpgas. In 2010 International
Conference on Field Programmable Logic and Applications, pages 574–
577. IEEE, 2010.

[54] Florent de Dinechin and Bogdan Pasca. Designing custom arithmetic
data paths with FloPoCo. IEEE Design & Test of Computers, 28(4):18–
27, 2011.

[55] Christian de Schryver. FPGA Based Accelerators for Financial Appli-
cations. Springer, 2015.

[56] Michael DeLorimier and André DeHon. Floating-point sparse matrix-
vector multiply for FPGAs. In Proceedings of the 2005 ACM/SIGDA
13th international symposium on Field-programmable gate arrays
(FPGA), pages 75–85. ACM, 2005.

[57] Jérémie Detrey and Florent de Dinechin. A parameterizable floating-
point logarithm operator for FPGAs. In Conference Record of the Thirty-
Ninth Asilomar Conference on Signals, Systems and Computers, 2005.,
pages 1186–1190. IEEE, 2005.

[58] Jérémie Detrey and Florent de Dinechin. A parameterized floating-point
exponential function for FPGAs. In Proceedings. 2005 IEEE Inter-
national Conference on Field-Programmable Technology (FPT), 2005.,
pages 27–34. IEEE, 2005.

153

[59] Jérémie Detrey, Florent de Dinechin, and Xavier Pujol. Return of the
hardware floating-point elementary function. In 18th IEEE Symposium
on Computer Arithmetic (ARITH), pages 161–168. IEEE, 2007.

[60] Yong Dou, Stamatis Vassiliadis, Georgi Krasimirov Kuzmanov, and
Georgi Nedeltchev Gaydadjiev. 64-bit floating-point FPGA matrix mul-
tiplication. In Proceedings of the 2005 ACM/SIGDA 13th international
symposium on Field-programmable gate arrays (FPGA), pages 86–95.
ACM, 2005.

[61] Jeremy Fowers, Kalin Ovtcharov, Karin Strauss, Eric S. Chung, and
Greg Stitt. A high memory bandwidth FPGA accelerator for sparse
matrix-vector multiplication. In 2014 IEEE 22nd Annual Interna-
tional Symposium on Field-Programmable Custom Computing Machines
(FCCM), pages 36–43. IEEE, 2014.

[62] Paul George, Anmol Sahoo, Arjun Menon, and V. Kamakoti. Shakti:
An open-source processor ecosystem.

[63] Kourosh Gharachorloo, Daniel Lenoski, James Laudon, Phillip Gibbons,
Anoop Gupta, and John HeMessy. Memory consistency and event or-
dering in scalable shared-memory multiprocessors. Distributed shared
memory: concepts and systems, page 84, 1998.

[64] David Goldberg. What every computer scientist should know about
floating-point arithmetic. ACM Computing Surveys (CSUR), 23(1):5–
48, 1991.

[65] Jan Gray. Grvi phalanx: A massively parallel risc-v fpga accelerator
accelerator. In 2016 IEEE 24th Annual International Symposium on
Field-Programmable Custom Computing Machines (FCCM), pages 17–
20. IEEE, 2016.

[66] Suyog Gupta, Ankur Agrawal, Kailash Gopalakrishnan, and Pritish
Narayanan. Deep learning with limited numerical precision. In Inter-
national Conference on Machine Learning (ICML), pages 1737–1746,
2015.

[67] John Harrison. A machine-checked theory of floating point arithmetic. In
International Conference on Theorem Proving in Higher Order Logics,
pages 113–130. Springer, 1999.

[68] Abul Hasnat, Tanima Bhattacharyya, Atanu Dey, Santanu Halder, and
Debotosh Bhattacharjee. A fast fpga based architecture for computation
of square root and inverse square root. In 2017 Devices for Integrated
Circuit (DevIC), pages 383–387. IEEE, 2017.

154

[69] Tingting He, Jiyang Chen, Yuanwu Lei, Yuanxi Peng, and Baozhou
Zhu. High-performance fp divider with sharing multipliers based on
goldschmidt algorithm. Chinese Journal of Electronics, 26(2):292–298,
2017.

[70] Qijing Huang, Ruolong Lian, Andrew Canis, Jongsok Choi, Ryan
Xi, Nazanin Calagar, Stephen Brown, and Jason Anderson. The ef-
fect of compiler optimizations on high-level synthesis-generated hard-
ware. ACM Transactions on Reconfigurable Technology and Systems
(TRETS), 8(3):1–26, 2015.

[71] Wilson José, Ana Rita Silva, Horácio Neto, and Mário Véstias. Efficient
implementation of a single-precision floating-point arithmetic unit on
fpga. In 2014 24th International Conference on Field Programmable
Logic and Applications (FPL), pages 1–4. IEEE, 2014.

[72] Andrew B. Kahng and Seokhyeong Kang. Accuracy-configurable adder
for approximate arithmetic designs. In Proceedings of the 49th Annual
Design Automation Conference (DAC), pages 820–825. ACM, 2012.

[73] Nachiket Kapre and Jan Gray. Hoplite: Building austere overlay nocs
for fpgas. In 2015 25th International Conference on Field Programmable
Logic and Applications (FPL), pages 1–8. IEEE, 2015.

[74] Nachiket Kapre and Jan Gray. Hoplite: A deflection-routed directional
torus noc for fpgas. ACM Transactions on Reconfigurable Technology
and Systems (TRETS), 10(2):14, 2017.

[75] Srinidhi Kestur, John D. Davis, and Oliver Williams. Blas compari-
son on FPGA, CPU and GPU. In 2010 IEEE computer society annual
symposium on VLSI, pages 288–293. IEEE, 2010.

[76] Ashfaq A. Khokhar, Viktor K. Prasanna, Muhammad E. Shaaban, and
C-L Wang. Heterogeneous computing: Challenges and opportunities.
Computer, 26(6):18–27, 1993.

[77] Israel Koren. Computer arithmetic algorithms. AK Peters/CRC Press,
2001.

[78] Taek-Jun Kwon and Jeff Draper. Floating-point division and square
root implementation using a taylor-series expansion algorithm with re-
duced look-up tables. In 2008 51st Midwest Symposium on Circuits and
Systems, pages 954–957. IEEE, 2008.

[79] Martin Langhammer and Bogdan Pasca. Single precision natural loga-
rithm architecture for hard floating-point and dsp-enabled FPGAs. In
2016 IEEE 23nd Symposium on Computer Arithmetic (ARITH), pages
164–171. IEEE, 2016.

155

[80] Chris Lattner and Vikram Adve. Llvm: A compilation framework for
lifelong program analysis & transformation. In Proceedings of the in-
ternational symposium on Code generation and optimization: feedback-
directed and runtime optimization, page 75. IEEE Computer Society,
2004.

[81] Bingyi Li, Linlin Fang, Yizhuang Xie, He Chen, and Liang Chen. A uni-
fied reconfigurable floating-point arithmetic architecture based on cordic
algorithm. In 2017 International Conference on Field Programmable
Technology (ICFPT), pages 301–302. IEEE, 2017.

[82] Erwan Libessart, Matthieu Arzel, Cyril Lahuec, and Francesco Andri-
ulli. A scaling-less newton–raphson pipelined implementation for a fixed-
point reciprocal operator. IEEE Signal Processing Letters, 24(6):789–
793, 2017.

[83] Gerhard Lienhart, Andreas Kugel, and Reinhard Manner. Using
floating-point arithmetic on FPGAs to accelerate scientific n-body sim-
ulations. In Proceedings. 10th Annual IEEE Symposium on Field-
Programmable Custom Computing Machines (FCCM), pages 182–191.
IEEE, 2002.

[84] Grant Martin and Gary Smith. High-level synthesis: Past, present, and
future. IEEE Design & Test of Computers, 26(4):18–25, 2009.

[85] Janarbek Matai, Pingfan Meng, Lingjuan Wu, Brad Weals, and Ryan
Kastner. Designing a hardware in the loop wireless digital channel em-
ulator for software defined radio. In 2012 International Conference on
Field-Programmable Technology (FPT), pages 206–214. IEEE, 2012.

[86] Eric Matthews, Zavier Aguila, and Lesley Shannon. Evaluating the
performance efficiency of a soft-processor, variable-length, parallel-
execution-unit architecture for fpgas using the risc-v isa. In 2018 IEEE
26th Annual International Symposium on Field-Programmable Custom
Computing Machines (FCCM), pages 1–8. IEEE, 2018.

[87] Eric Matthews and Lesley Shannon. Taiga: A new risc-v soft-processor
framework enabling high performance cpu architectural features. In 2017
27th International Conference on Field Programmable Logic and Appli-
cations (FPL), pages 1–4. IEEE, 2017.

[88] Andrew McCallum, Dayne Freitag, and Fernando C. N. Pereira. Max-
imum entropy markov models for information extraction and segmen-
tation. In International Conference on Machine Learning (ICML), vol-
ume 17, pages 591–598, 2000.

[89] Pramod K. Meher, Javier Valls, Tso-Bing Juang, K. Sridharan, and
Koushik Maharatna. 50 years of cordic: Algorithms, architectures, and

156

applications. IEEE Transactions on Circuits and Systems I: Regular
Papers, 56(9):1893–1907, 2009.

[90] Suresh Mopuri and Amit Acharyya. Low-complexity methodology for
complex square-root computation. IEEE Transactions on Very Large
Scale Integration (VLSI) Systems, 25(11):3255–3259, 2017.

[91] Leonid Moroz, Volodymyr Samotyy, and Oleh Horyachyy. An effective
floating-point reciprocal. In The 4th IEEE International Symposium
on Wireless Systems within the International Conferences on Intelli-
gent Data Acquisition and Advanced Computing Systems, pages 280–285.
Lviv, Ukraine, 2018.

[92] Jean-Michel Muller. Elementary functions. Springer, 2006.

[93] Jean-Michel Muller, Nicolas Brisebarre, Florent De Dinechin, Claude-
Pierre Jeannerod, Vincent Lefevre, Guillaume Melquiond, Nathalie
Revol, Damien Stehlé, Serge Torres, et al. Handbook of floating-point
arithmetic. Springer, 2010.

[94] Razvan Nane, Vlad-Mihai Sima, Christian Pilato, Jongsok Choi, Blair
Fort, Andrew Canis, Yu Ting Chen, Hsuan Hsiao, Stephen Brown, Fab-
rizio Ferrandi, et al. A survey and evaluation of fpga high-level synthesis
tools. IEEE Transactions on Computer-Aided Design of Integrated Cir-
cuits and Systems, 35(10):1591–1604, 2015.

[95] Tao Niu and Haibin Shen. Low cost design for elementary function
approximation based on piecewise quadratic interpolation. Computer
Engineering, 39(8):285–287, 2013.

[96] Eriko Nurvitadhi, David Sheffield, Jaewoong Sim, Asit Mishra, Ganesh
Venkatesh, and Debbie Marr. Accelerating binarized neural networks:
Comparison of FPGA, CPU, GPU, and ASIC. In 2016 International
Conference on Field-Programmable Technology (FPT), pages 77–84.
IEEE, 2016.

[97] John F. Palmer. The intel R© 8087 numeric data processor. In Proceedings
of national computer conference, pages 887–893, 1980.

[98] Behrooz Parhami. Computer arithmetic, volume 20. Oxford university
press, 2010.

[99] David A. Patterson and John L. Hennessy. Computer Organization and
Design: The Hardware/Software Interface. Morgan Kaufmann, 2013.

[100] Rafat Rashid, J. Gregory Steffan, and Vaughn Betz. Comparing per-
formance, productivity and scalability of the tilt overlay processor to

157

opencl hls. In 2014 International Conference on Field-Programmable
Technology (FPT), pages 20–27. IEEE, 2014.

[101] Umesh Satpute, Kalyani Bhole, and Sushanta Reang. Optimized floating
point square-root. In 2018 International Conference on Communication,
Computing and Internet of Things (IC3IoT). IEEE, 2018.

[102] Süleyman Savas, Yassin Atwa, Tomas Nordström, and Zain Ul-Abdin.
Using harmonized parabolic synthesis to implement a single-precision
floating-point square root unit. In 2019 IEEE Computer Society Annual
Symposium on VLSI (ISVLSI), pages 621–626. IEEE, 2019.

[103] Philip Schneider and David H. Eberly. Geometric tools for computer
graphics. Elsevier, 2002.

[104] T.R.W. Scogland, Heshan Lin, and Wu-chun Feng. A first look at inte-
grated gpus for green high-performance computing. Computer Science-
Research and Development, 25(3-4):125–134, 2010.

[105] Shashank Suresh, Spiridon F. Beldianu, and Sotirios G. Ziavras. Fpga
and asic square root designs for high performance and power efficiency.
In 2013 IEEE 24th International Conference on Application-Specific Sys-
tems, Architectures and Processors (ASAP), pages 269–272. IEEE, 2013.

[106] Jagadguru Swami, Sri Bharati Krisna, and Tirthaji Maharaja. Vedic
mathematics or sixteen simple mathematical formulae from the veda,
delhi (1965). Motilal Banarsidas, 1986.

[107] Ping-Tak Peter Tang. Table-driven implementation of the exponential
function in ieee floating-point arithmetic. ACM Transactions on Math-
ematical Software (TOMS), 15(2):144–157, 1989.

[108] Ping-Tak Peter Tang. Table-driven implementation of the logarithm
function in ieee floating-point arithmetic. ACM Transactions on Math-
ematical Software (TOMS), 16(4):378–400, 1990.

[109] Ping-Tak Peter Tang. Table-lookup algorithms for elementary functions
and their error analysis. Technical report, Argonne National Lab., IL
(USA), 1991.

[110] Keith Underwood. FPGAs vs. CPUs: trends in peak floating-point per-
formance. In Proceedings of the 2004 ACM/SIGDA 12th international
symposium on Field programmable gate arrays (FPGA), pages 171–180.
ACM, 2004.

[111] Frank Vahid. It’s time to stop calling circuits ”hardware”. Computer,
40(9):106–108, 2007.

158

[112] Frank Vahid. Digital Design with RTL Design, Verilog and VHDL. John
Wiley & Sons, 2010.

[113] Mário P. Vestias and Horácio C. Neto. Revisiting the newton-raphson
iterative method for decimal division. In 2011 21st International Confer-
ence on Field Programmable Logic and Applications (FPL), pages 138–
143, 2011.

[114] Oriol Vinyals and Gerald Friedland. A hardware-independent fast log-
arithm approximation with adjustable accuracy. In IEEE Multimedia,
pages 61–65, 2008.

[115] Andrew Shell Waterman. Design of the RISC-V instruction set archi-
tecture. PhD thesis, UC Berkeley, 2016.

[116] Henry Wong, Vaughn Betz, and Jonathan Rose. Comparing FPGA
vs. custom CMOS and the impact on processor microarchitecture. In
Proceedings of the 19th ACM/SIGDA international symposium on Field
programmable gate arrays (FPGA), pages 5–14. ACM, 2011.

[117] Henry Wong, Vaughn Betz, and Jonathan Rose. Microarchitecture
and circuits for a 200 mhz out-of-order soft processor memory sys-
tem. ACM Transactions on Reconfigurable Technology and Systems
(TRETS), 10(1):7, 2016.

[118] Weng-Fai Wong and E. Gogo. Fast hardware-based algorithms for el-
ementary function computations using rectangular multipliers. IEEE
Transactions on Computers, 43(3):278–294, 1994.

[119] Weng-Fai Wong and Eiichi Goto. Fast evaluation of the elementary
functions in double precision. In 1994 Proceedings of the Twenty-Seventh
Hawaii International Conference on System Sciences, volume 1, pages
349–358. IEEE, 1994.

[120] Weng-Fai Wong and Eiichi Goto. Fast evaluation of the elementary func-
tions in single precision. IEEE Transactions on Computers, 44(3):453–
457, 1995.

[121] Rong Ye, Ting Wang, Feng Yuan, Rakesh Kumar, and Qiang Xu. On
reconfiguration-oriented approximate adder design and its application.
In 2013 IEEE/ACM International Conference on Computer-Aided De-
sign (ICCAD), pages 48–54. IEEE, 2013.

[122] Mohamed Zahran. Heterogeneous computing: Here to stay. Communi-
cations of the ACM, 60(3):42–45, 2017.

	Dedication
	Acknowledgments
	Abstract
	ABRÉGÉ
	List of Tables
	List of Figures
	Introduction
	Clarification of Research Contribution
	My Personal Contributions to the Packages from 1 to 3
	Algorithm Improvements Compared to Master Thesis

	Thesis Organization

	Background
	What Are Elementary Transcendental Functions?
	Why Are Elementary Functions Important?
	IEEE-754 Floating-Point Standard
	Unit in the Last Place (ULP)
	Prevalent Approaches
	Important Properties
	Discussion
	The Rise of the FPGA
	Development of Hardware Design Methodology
	Design abstraction levels
	Register-Transfer Level (RTL) and Hardware Description Languages (HDLs)
	High-Level Synthesis (HLS)

	Heterogeneous Computing

	Reciprocal Accelerators
	Publication
	Organization
	Introduction
	Related Work
	Non-Iterative Algorithms
	Iterative Algorithms
	Clarification Regarding Accuracy

	Range Reduction
	Iterative Implementation: Trial Subtraction
	Non-Iterative Implementation: Lookup-Table (LUT)
	Error Study
	Exhaustive testing
	Error Distribution

	Experimental Study
	LUT-Based Reciprocal Accelerator
	Iterative Reciprocal Accelerator

	Performance Comparison
	Reduced-Precision Variants
	HLS C Implementation
	Summary

	Square Root Accelerators
	Publication
	Organization
	Introduction
	Related Work
	Non-Iterative Algorithms
	Iterative Algorithms

	Range Reduction
	Iterative Implementation: Newton-Raphson Method
	Case Study

	Non-Iterative Implementation: Lookup Table (LUT)
	Error Study
	Exhaustive testing
	Error Distribution

	Experimental Study
	LUT-Based Square Root Accelerator
	Iterative Square Root Accelerator

	Performance Comparison
	HLS C Implementation
	Summary

	RISC-V Soft Processor
	Publication
	Introduction and Organization
	Motivation
	Introduction of RISC-V ISA
	Features of the RISC-V ISA
	Overview of RISC-V ISA

	Related Work
	Architecture of RV32I Processor
	User Register File
	Harvard architecture
	Instruction Formats/Functions

	HLS C implementation
	Testbenches for RV32I Processor
	Manually Created Testing Programs
	Testing Programs Generated from GCC toolflow

	Experimental Study of RV32I Processor
	RV32I Multi-Cycle Processor

	Performance Comparison
	Instructions per Cycle (IPC)

	Summary

	Conclusion and Future Work
	Appendix
	Testing Program for R-type Instructions:
	Testing Program for I-type Instructions:
	Testing Program for LS-type Instructions:
	Testing Program for B-type Instructions:
	If-Then Program for Testing B-type Instructions
	While-Loop Program for Testing B-type Instructions:
	Procedure Call Program for Testing B-type Instructions:
	Nested Procedure Call Program for Testing B-type Instructions:

	References

