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mput ML algorithm output
ML Models L b J(C ) e
f(z;w)
The core problem in ML is parameter
> “Ore P > Params J(w) = % L Wy, f@®;w))
estimation (aka model fitting), which
requires solving an optimization w* = argmin,, J(w)
problem of the loss/cost function
Linear Regression: Logistic Regression:
model: g f ( )_’wTa’,’ :RD%R g:fw(.’lj)—O'(’w {B) RD%{O ]'}
furf?t?f)n: Jw - N Zn 2( - Q(n))2 Jw — % Zn —Y log('g( )) T (1 _ y( )) log(l — g(n))

9 1 ~(n) . (n)}.,.(7)
partial derivatives: —Jw — E n Y y xr
N ( ) use SGD to find w*

gradient: vector of all partial derivatives: VJ(’w) = % Zn (g(n) — y(n) )CL‘(n) given VJ(w)



Linear model of regression

fw(xr) = wy +wizy + ... +wpzp
d

model parameters or weights l

bias or intercept

simplification

concatenatealtox —— z = |[l,z1,...,zp]

fo(lz) =w'z w = [wo, w1, ..., wp]

T

T



Logistic regression: model

recall the way we included a bias parameter £ — [1, :L’l]

the input feature is generated uniformly in [-5,5]
for all the values less than 2 we have y=1 and y=0 otherwise 10 ] sesrsrsssssssssssmsssssmrsrsansens + dataset
predictions
a good fit to this data is the one shown (green) %]
0.6 1
_ T _ 1 >
f’UJ(x) T O-(w aj) T 1_|_6—wa 041
0.2 1
in the model shown w ~ [9.1, —4.5]
0.0 st irveveseres
thatis g = o(—4.5z1 +9.1) - B ’ ’ )

what is our model's decision boundary?



Example: binary classification
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Gradient descent

an iterative algorithm for optimization

e starts from some w{o} t indicates the iteration step
e update using gradient wi* « with — V. J(with)

steepest descent direction l

o learning rate
converges to a local minima

image from here

cost function
(for maximization : objective function )



Minimum of a convex function

Convex functions are easier to minimize:

e critical points are global minimum (t+1} o “
e gradient descent can find it w cw aVJ(w')

convex non-convex: gradient descent may find a local optima

J(w) o

/ o ~

image from here


https://www.willamette.edu/~gorr/classes/cs449/momrate.html

Recognizing convex functions
the logistic regression cost function is convex in model parameters (w)

: linear
non-negative

J(w) = & 22721 y™ log (1 + e_'wa) +(1—y™)log (1+ ewT"”)
checking second derivative

2 _
5)7 log(1+e*) = (1;*2)2 >0

sum of convex functions



Gradient for linear and logistic regression

i . 1 n) (~(n n)y _ 1 T(A
inboth cases:  VJ(w) =% >, 2 )(y( ) — yf )) = 1XT(§—y)
DxN Nx1 Nxl1
linear regression: § = w'
1 def gradient( )
. . . % N,D = x.§hape
logistic regression: 7 = O'(wT ) P vh = losisticpdot(x, )

return grad

time complexity: O(ND)

(two matrix multiplications)

compared to the direct solution for linear regression: O(ND2 -+ D3)
gradient descent can be much faster for large D



After 22 steps witt1} « ith —

w0

0

10 A

—-10 41
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—-40 1

GD for linear regression

VJ(with)

data space

10



Learning rate «

Learning rate has a significant effect on GD

example, D=1

linear regression

example, D=2

linear regression
50 gradient steps

a=.01
J(w) J(w)

a=.05

too small: may take a long time to
converge

too large: it overshoots or even
diverges

do a grid search usually between 0.001 to .1 to find the right value, look at the training curves n



Stochastic Gradient Descent

we can write the cost function as an average over instances

1
J(w) — N anl Jn (w) cost for a single data-point Tu(w) — .
e.g. for linear regression n\W

the same is true for the partial derivatives w; ( )— N Zn 1 awj

therefore VJ(w) =Ep[VJ,(w)]

In(w)

12



Stochastic Gradient Descent

ldea: use stochastic approximations VJ,(w) in gradient descent

stochastic gradient update
w <+ w— aVd,(w)

the steps are "on average" in the right
direction

each step is using gradient of
a different cost, J, (w)

each update is (1/N) of the
cost of batch gradient

e.g., for linear regression O(D)

VI, (w) = z™ (w2 — y)

contour plot of the cost function

batch gradient update
w+—w—aVJ(w)

with small learning rate: guaranteed
improvement at each step



https://jaykanidan.wordpress.com/
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idea: schedule to have a smaller learning rate over time



https://cs231n.github.io/neural-networks-3/#anneal
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Momentum

to help with oscillations:

e use a running average of gradients
* more recent gradients should have higher weights

Aw' « BAwWE 4 (1 — B) VI (wit—1)

I
w{t} % w{t_]-} — Aw{t} momentum of 0 reduces to SGD

common value > .9

is effectively an exponential moving average

Awl™h = ST aT1(1 — B)V g (wh)

there are other variations of momentum with similar idea P

weight for the most recent gradient

weight for the oldest gradient

(1-8)
1-p)s""

t=1

17



Momentum

Example: logistic regression
no momentum with momentum

a=.5,8=0,|B =8 oo = 5,8 =99, |B| = 8

see the beautiful demo at Distill https://distill.pub/2017/momentum/ 18


https://distill.pub/2017/momentum/

RMSprOp (Root Mean Squared propagation)

solve the problem of diminishing step-size with Adagrad

® US€E exponential moving average instead of sum (similar to momentum)

instead of Adagrad: S;l{t} — S;l{tfl} + LJ(w{t—l})2

owy

S 4 SUL 4 (1 — 4) VI (wlt1)?
with W{t_1} — 2 VJ(wit) identical to Adagrad

A/ St te

note that St} here is a vector and with the square root is element-wise

19



the default algorithm in practice
Ada m (Adaptive Moment Estimation)
two ideas so far:

1. use momentum to smooth out the oscillations

both use exponential moving averages
2. adaptive per-parameter learning rate

Adam combines the two:

M BlM{t—l} +(1- ﬁl)vj(w{t—l}) identical to method of momentum

(moving average of the first moment)
Sttt p,stt-1) 4 VJ (w12 identical to

R (moving average of the second moment)
w{t} {— w{t_l} .« M{t}
v/ S{th te

since M and S are initialized to be zero, at early stages they are biased towards zero

Mt i\l{ti g{t} . 1S{t}t for large time-steps it has no effect
—bi —b3 for small t, it scales up numerator 20



Loss, cost and generalization

assume we have a model f : g > y forexample f: |3 3

and we have a loss function that measures the error in our prediction £ : 1y, — R
7)) — _ N2 .
for example K(y,y) = (y y) for regression

Ly,9) =I(y #4) for classification

we train our models to minimize the cost function:

J = Dtll“(),ill’ z:mayep’crain g(y’ f($))

how to estimate this?

We can drop this, why?

what we really care about is the /B‘errorz Ew’ywp E(y, f(x)) i

we can set aside part of the given data and use it to estimate generalization error o



Bias-variance decomposition: Setup

decompose the generalization error to see the effect of bias and variance (for L2 loss)
assume a true distribution p(x, y)

best prediction given L2 loss  f(x) = E, [y|z]
assume that a dataset D = {(z™,y™)}, issampled from p(x,y)
let fD be our model based on the dataset
what we care about is the generalization error (aka expected loss, expected risk)
E[(fn(x) =)
all blue items are random variables

22



Bias-variance decomposition

what we care about is the generalization error

E|(fp(z) — yl)Z] = E[(fp(2) — En[fp(z)] — y + Ep[fp(z)])’]
f(x) +e

fo(@) + Ep[fp(z)] — Ep[fp(z)] add and subtract a term

above simplifies to the following (the remaining terms are going to be zero)

23



Example: bias vs. variance

models for different datasets fp

using Gaussian bases

random datasets of size N=25 instances are not shown

0 . I
variance is the average difference (in

squared L2 norm) between these curves
and their average

true model f

A

their average [E| fp]

|

L

0 . 1
bias is the difference (in L2 norm)
between two curves

24



Example: bias vs. variance

aoueLieA Suisealdul

seiq Suisea.oul

the lowest expected loss (test error) is somewhere between the two extremes

0.15
(bias)”
0.12¢ variance
(blas) + vanance
0.09 test error
0.06
7 >4
—_—
0
-3 2

In A
+E[(f(z) — Ep[fp(2)])]

in practice, how to decide which model to use?

25



how to estimate this?

)
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Ezyp £(y, f(z))

we can set aside part of the training data and use it to estimate the generalization error

what we really care about is the generalization error
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test

validation
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10

~
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w n
- =

Joua pasenbs ueaw

pick a hyper-parameter that gives us the best validation error

3
—

, we report the error on test set

at the very end

m
-

~
-

validation and test error could be different

-
-

because they use limited amount of data

hyper parameter
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Cross validation

e divide the (training + validation) data into L parts

e use one part for validation and L-1 for training
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N (only one instance is used for validation)

in leave-one-out cross-validation L



Performance metrics for classification

Not all errors are the same
In particular in classification, we have different

false positive (type I) and false negative (type Il)

example:

patient does not have disease but received positive diagnostic (Type | error)
patient has disease but it was not detected (Type Il error)

a message that is not spam is assigned to the spam folder (Type | error)
a message that is spam appears in the regular folder (Type Il error)

28



Performance metrics for classification

Truth | %
TP | FP | RP
Result
FN | TN | RN
> P N
Truth by
14 | 2 16
Result 3 R
by 17 | 13
Precision = % :}_é

Recall = 22

P

less common

__ TP+TN
Accuracy = 55
Precision = =P
Recall = % sensitivity
__ o Precisionx Recall .
Fl score = 2Precision+Recall {farmonic meany
_ 2\ Precisionx Recall
FIBSCOTG — (1 + ﬂ ),BzPrecision—i-Recall

Miss rate = %

__ FP
Fallout = N
FP

False discovery rate = #p

false positive rate

Selectivity = % specificity

False omission rate = g—%

. . . - TN
Negative predictive value = £y

29



Trade-off between precision and recall

Most ML algorithm produces class score or probability
goal: evaluate class scores/probabilities (independent of threshold p(y = 1|z)

choice of threshold)

Receiver Operating Characteristic ROC curve, a function of threshold t

TPR(t) = Trty/p (recall, sensitivity at t, hit rate) 1 0
FPR(t) = FP(t)/N (fallout, false alarm at t, type | error rate)
1
|
ROC_CURVE +
Area Under the Curve (AUC) is used as a threshold independent 127 [PERFECT CrassfER ——

measure of quality of the classifier

AUC = Zt TPR(t)(FPR(t) — FPR(t — 1)) , box-rule approximation

D Lt PP
TRUE POSITINE RATE

L) 1 .
0.0 02 o4 0.6 0.8 10
FALSE POSITIVE RATE

30



Nonlinear basis functions

replace original features in  fu () = >, WaZq
with nonlinear bases fu(z) =D, wa da(x)
linear least squares solution ((I)T(I))w* — (I)Ty
replacing X with P

a (nonlinear) feature

one instance

31



Example: Gaussian bases () = e

—— 3y =sin(2(™) 4 cos(y/]z(M]) + €

prediction for a new instance

f(@') =) (2 &) @y

|, W found using LLS
new instance

features evaluated for the new point

our fit to data using 10 Gaussian bases e

32



1 n ,/ \'\  (a—m)?
Example: Gaussian bases U () =
[ cost J(w) is zero and we have a "perfect" fit!
using 200, thinner bases (s=.1)
8 -1

33



Overfitting

which one of these models performs better at test time?
|

predictions of 4 models for the same input f(z')

B b-5 underfitting

pD=10 @ lowest test error
N
B o-s0

B D=200 overfitting

34



An observation

when overfitting, we sometimes see large weights

| dashed lines are

T
0

T
2

T
4

T
6

T
8

T
10

T
0

idea: penalize large parameter values

fu(z) = Zd wq Pa(T)

D =20

60 4
40 4

204

—204
—40 4

—60

oS
/ ¥
[AY

10
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Ridge regression

also known as

L2 regularized linear least squares regression:
J(w) = 31| Xw —y|[5 + 3 [[wl]|3

sum of squared error squared L2 norm of w

1 (n) T ..\2 T,y — 2

7 2, (Y™ —w z) ww =)W
regularization parameter X > 0 controls the strength of regularization

a good practice is to not penalize the intercept  A(||w||5 — wj)

)\ IS a hyper-pa rameter (use a validation set or cross-validation to pick the best value)

36



Ridge regression

set the derivative to zero J(w) = . > eyep(y —w'x)? + Sw T w
VJ(’LU) — Zx,yep x(wa o y) T Aw
= X' (Xw—y)+Aw =0

when using gradient descent, this term reduces the

linear system of equations (X'X + A X)w= X"y BRI i Ce e SEp EIEEit C B

w=(X'"X+ 1) tX"y

the only part different due to regularization

Al makes it invertible, adds a small value to the diagonals X X

we can have linearly dependent features
the solution will be unique!

37



Probabilistic interpretation

linear regression & logistic regression maximize log-likelihood

wMl? = argmax,, p(y| X, w)

linear regression  w'*¥ = argmax, [[, ,cp N (y|lw ', 0?)

logistic regression  w"** = argmax, [[, . Bernoulli(y|o(w'z))

can we do Bayesian inference instead of maximum likelihood?

p(wly, X) « p(w)p(y|lw, X)

38



Gaussian Prior

MAP estimate w™4P = arg max,, log p(y| X, w) + log p(w)

assume independent zero-mean Gaussians

log p(w) = log H(?:l N(wg|0,72) = =", % + const.

does not depend onw
so it doesn't affect the optimization

lets call %2 — A
then we get the L2 regularization penalty 2||w||3

smaller variance of the prior 7 gives larger regularization A 1T\




Probabilistic interpretation for Linear Regression

PN given the dataset D = {(zW,yW), ..., (2™, yN))}

learn a probabilistic model p(y|z;w)

image from here

consider p(y|z;w) with the following form

1 . (y_wT $)2

Pu(ylz) =Ny lw'z,0%) = ==e 27

assume a fixed variance, say o% =1

Q: how to fit the model?
A: maximize the conditional likelihood!

40


http://http//blog.nguyenvq.com/blog/2009/05/12/linear-regression-plot-with-normal-curves-for-error-sideways/

Maximum likelihood & linear regression

T .32

e (y—w ' z)
oy | ) = Ny | wT2,0%) = e~ 25

vV 2mo?

Y e w!z NI L(w) = [1p(™ | 2™);w)

kg T ((w) = Y, — 5 (y™ — w' 2(™)2 + constants

AL R e
&

> e 578 :
AN E I w* = arg max, £(w) = argmin,, 1 > (y™ —wz™)?
: | | linear least squares!

_,335

image from here

whenever we use square loss, we are assuming Gaussian noise!


http://http//blog.nguyenvq.com/blog/2009/05/12/linear-regression-plot-with-normal-curves-for-error-sideways/

Laplace prior

another notable choice of prior is the Laplace distribution
minimizing negative log-likelihood 9 > qlogp(wg) ==, %lwd| — —%H’le

izati L1 f
L1 regularization: J(w) < J(w) + also called lasso norm otw

(least absolute shrinkage and selection operator)

0¥

. S :
Copiscs p(w; B) = 56€ 7 notice the peak around zero

Oistribution

06 F

0afr

0.4F

Gaussian

0dF
Digtribution

02F

01F

image from here 42


https://stats.stackexchange.com/questions/177210/why-is-laplace-prior-producing-sparse-solutions

L, vs Ly regularization

regularization path shows how {w,;} change as we change )\
Lasso produces sparse Weights (many are zero, rather than small)

D =38

Coefficients

Icavol Ridge regreSSion Icavol

D=3

Coefficients

decreasing regularization coef. \=———

see the code here

red-line is the optimal A from cross-validation, for lasso the model uses only 3 of the 8 features

= lasso results in sparse models

43


https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/11/lassoPathProstate.ipynb

Probabilistic view for Logistic Regression

Interpret the prediction as class probability 4 =p,(y=1|2) =oc(w'z)

the log-ratio of class probabilities is linear

1 = ’wT$

~ Tw

logit function
is the inverse of logistic, read more here

We have a Bernoulli likelihood
p(y™ | 2;w) = Bernoulli(y™; o(w ' 2(™)) = gm!" (1 — gy

conditional likelihood of the labels given the inputs
(n)
L(w) = HnN—l p(y(n) | x(n);w) — HnN—l g(n)y (1- 'g(n))l Y

44


https://en.wikipedia.org/wiki/Logit

Maximum likelihood & logistic regression

(n)

L(w) = [T ,p(y™ | 2®;w) = [T g™Y (1 — gm)L-s"

find w that maximizes [IeJeRIL<=1llgle]ele

w* = max, 3, logpy, (y™ | z;w)
— max,, Zi\le y™ log(§™) + (1 — y™)log(1 — §™)

= min,, J(w) the cross entropy cost function!

S0 using cross-entropy loss in logistic regression is maximizing likelihood

we saw a similar interpretation for linear regression (L2 loss maximizes the conditional Gaussian likelihood)

45



Multiclass classification

using this probabilistic view we extend logistic regression to multiclass setting

binary classification: Bernoulli likelihood:

Bernoulli(y | 7) = 9¥(1 — )Y subject to 0, 1] {f g Z(l)

RS
J
T

using logistic function to ensure this § = o(z) = o(w" z)

C classes: categorical likelihood A 1
Y1 Y=
. N C A]I(y:c) . . Yo y=2
Categorical(y | 7) = [ [._; ¥ subjectto Y o =1 S
yo y==
N 2

achieved using softmax function 45



Softmax

generalization of logistic to > 2 classes:
e logistic: o : R — (0,1) produces a single probability
= probability of the second classis (1 — ¢(2))

e softmax: RC — AC recall: probability simplex p & AC — Zle De = 1

so >, 9=1

J. = softmax(z), = =

=1

2
softmax([1, 1,2, 0]) = [2e+22+1’ eI T ZeT i 2e+<1a2+1]
softmax([10, 100, —1]) ~ [0, 1, 0]

e’c

if input values are large, softmax becomes similar to argmax

similar to logistic this is also a squashing function

47



Multiclass classification

C classes: categorical likelihood

. /\]:[ —_ . .
Categorical(y | ) = HcC:1 §:¥=¢)  Using softmax to enforce sum-to-one constraint

T
e’wc €

Z o ewcl

T

e = softmax([w; ' z,...,we ' z]). = -

so we have on parameter vector for each class
w1 = [w1,1,w1,2, . -~w1,D]

to simplify equations we write 2z, = ’wCT:B

zZc

J. = softmax([z1,...,2¢])c = S



Likelihood for multiclass classification

C classes: categorical likelihood
Categorical(y | ) = Hle gﬂ(y:c) using softmax to enforce sum-to-one constraint

QC — SOftma-X([Z]_, c ooy ZC])C — ﬁ where Ze — ’UJCT{B

zZc
) €¢C

substituting softmax in Categorical likelihood:

likelihood L{w.}) = Hi:le Hcc’:l SOftmaX([zin), . Z(é})])](lz(y(n):c)

. I(y™ =c)
N C e
— anl Hc:l (1)
Z | € d

C

49



One-hot encoding

I(y™=c)
)
likelihood L({wc})HanHfl< - Z<n>>

log-likelihood

one-hot encoding for labels

2

/
c
o €

({w}) = XX, 39 1™ = o) (2" —log 3, &%)

y™ 5 [I(y™ =1),...
convert that feature into C binary features
Example: y™ € {1,2,3} =y € {[1,0,0],0,1,0],[0,0,1]}

we can also use this encoding for

categorical features

— []I(mgn) =1),... ,I[(a:fln) = C)]

)

1y = C)]

Food Name |Categorical # |Calories

Apple

1 95

Chicken 2 231

Brocco li 3 50

Apple Chicken |Broccoli |Calories
1 0 0 95

0 1 0 231

0 0 1 50

one-hot example from here

50


https://en.wikipedia.org/wiki/One-hot

One-hot encoding

likelihood MEZCCIDEEIREN) N (ze

[FRLSINSI R ¢({w.}) =3, >0, I(y™

one-hot encoding for labels

y(n) N [I[(y(”) =1),..

2(n) = [zr’), zén), . zg")],

using this encoding from now on

log-likelihood JNACEERIEED W ORI

—log > e* )

O
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Optimization

given the training data D = {(z™,y™)},

find the best model parameters {w.}.

by minimizing the cost

J({w}) = -3V (y™

need to use gradient descent

VJ(w) = [Bwl J,. 8w1 J,.

(n)
— log Zc, e’ ) where 2. = W,

JI'

*) 0’wc

T

L
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Gradient

need to use gradient descent
J({we}) = — Zf;’:l(y(n)Tz(n) —log Y., ez§7)) where Z¢ = We ' T

using chain rule 8J 3z( n) )

l this looks familiar!
(n)

L

(n)
(n) e ivative of | is sof
_yc _|_ O so the derivative of log-sum-exp is softmax

Zc, e? c

~(n)
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