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The core problem in ML is parameter
estimation (aka model fitting), which
requires solving an optimization
problem of the loss/cost function

ML Models
input
features
 

x
output
labels
 

ML algorithm
with parameters w

y
f(x;w)

w =∗ argmin J(w)w

J(w) = l(y , f(x ;w))
N
1 ∑n=1

N (n) (n)

=ŷ f (x) =w σ(w x) :⊤ R →D {0, 1}
Logistic Regression:

J =w −y log( ) −
N
1 ∑n ŷ(n) (1 − y ) log(1 −(n) )ŷ(n)
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=ŷ f (x) =w w x :⊤ R →D R
Linear Regression:

model:

J =w (y −
N
1 ∑n 2

1 (n) )ŷ(n) 2cost
function:

J =∂wd

∂
w ( −

N
1 ∑n ŷ(n) y )x(n)

d

(n)
partial derivatives:

∇J(w) = ( −
N
1 ∑n ŷ(n) y )x(n) (n)gradient: vector of all partial derivatives:

use SGD to find 
given 

w∗

∇J(w)
Dx1



Linear model of regression

f (x) =w w +0 w x +1 1 …+ w xD D

bias or intercept

model parameters or weights

concatenate a 1 to x x = [1,x ,… ,x ]1 D
⊤

f (x) =w w x⊤

simplification

w = [w ,w ,… ,w ]0 1 D
⊤
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Logistic regression: model

x = [1,x ]1

x1

recall the way we included a bias parameter

the input feature is generated uniformly in [-5,5]
for all the values less than 2 we have y=1 and y=0 otherwise

f (x) =w σ(w x) =⊤
1+e−w x⊤

1

a good fit to this data is the one shown (green)

in the model shown w ≈ [9.1,−4.5]

=ŷ σ(−4.5x +1 9.1)that is

what is our model's decision boundary?

example
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J(w)
 

Example: binary classification

we have two weights associated
with bias + petal width

as a function of these weights

w0

w1 x

(petal width)

bias

σ(w +0
∗ w x)1

∗
w∗

w = [0, 0]
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Gradient descent
an iterative algorithm for optimization

starts from some
update using gradient

 
converges to a local minima

w{0}

w ←{t+1} w −{t} α∇J(w ){t}

learning rate cost function
(for maximization : objective function )

image from here

steepest descent direction

∇J(w) = [ J(w),⋯ J(w)]∂w1
∂

∂wD

∂ T

t indicates the iteration step

w0

w1

J
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Minimum of a convex function
Convex functions are easier to minimize:

critical points are global minimum
gradient descent can find it w ←{t+1} w −{t} α∇J(w ){t}

J(w)

w

image from here

convex

w

non-convex: gradient descent may find a local optima
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https://www.willamette.edu/~gorr/classes/cs449/momrate.html


Recognizing convex functions

the logistic regression cost function is convex in model parameters (w)

J(w) = y log (1 +
N
1 ∑n=1

N (n) e )+−w x⊤ (1 − y ) log (1 +(n) e )w x⊤

linear

checking second derivative

non-negative

 same argument

sum of convex functions

log(1 +∂z2
∂2 e ) =z ≥(1+e )−z 2

e−z 0
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Gradient for linear and logistic regression

in both cases:

linear regression: =ŷ w x⊤

logistic regression: =ŷ σ(w x)⊤

O(ND)time complexity:
(two matrix multiplications)

∇J(w) = x ( −
N
1 ∑n

(n) ŷ(n) y ) =(n) X ( − y)
N
1 ⊤ ŷ
D ×N N × 1 N × 1

recall

def gradient(x, y, w):
    N,D = x.shape
    yh = logistic(np.dot(x, w))
    grad = np.dot(x.T, yh - y) / N
    return grad

1
2
3
4
5

O(ND +2 D )3compared to the direct solution for linear regression:
gradient descent can be much faster for large D
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data space

GD for linear regression

y = w x0

After 22 steps

w ={0} 0

w

J(w)

w ≈{22} −3.2

cost function

w ←{t+1} w −{t} .01∇J(w ){t}

example
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Learning rate
Learning rate has a significant effect on GD

too small: may take a long time to
converge

α

too large: it overshoots or even
diverges

α = .05

w

J(w)
α = .01

w

J(w)

example, D=2
linear regression
50 gradient steps

linear regression
example, D=1

do a grid search usually between 0.001 to .1 to find the right value, look at the training curves 11

slow, try larger

insta
ble,

 tr
y
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we can write the cost function as an average over instances

Stochastic Gradient Descent

J(w) = J (w)
N
1 ∑n=1

N
n

 the same is true for the partial derivatives J(w) =∂wj

∂ J (w)
N
1 ∑n=1

N

∂wj

∂
n

cost for a single data-point
e.g. for linear regression J (w) =n (w x −2

1 T (n) y )(n) 2

therefore ∇J(w) = E [∇J (w)]D n
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Stochastic Gradient Descent

Idea: use stochastic approximations              in gradient descent∇J (w)n

w0

w1

batch gradient update

with small learning rate: guaranteed
improvement at each step

w ← w − α∇J(w)

images from herew0

w1

stochastic gradient update
w ← w − α∇J (w)n

the steps are "on average" in the right
direction

contour plot of the cost function 

each step is using gradient of
a different cost, J (w)n

13

each update is (1/N) of the
cost of batch gradient

∇J (w) =n x (w x −(n) ⊤ (n) y )(n)

e.g., for linear regression O(D)

https://jaykanidan.wordpress.com/


SGD for logistic regression
logistic regression for Iris dataset (D=2 ,              )α = .1

 batch gradient  stochastic gradient

example
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Convergence of SGD
stochastic gradients are not zero even at the optimum w
how to guarantee convergence?

idea: schedule to have a smaller learning rate over time

example α ={t} ,α =
t
10 {t} t−.51

the sequence we use should satisfy:
otherwise for large                          we can't reach the minimum∣∣w −{0} w ∣∣∗

the steps should go to zero

Robbins Monro

α =∑t=0
∞ {t} ∞

(α ) <∑t=0
∞ {t} 2 ∞

&

read more here 15

https://cs231n.github.io/neural-networks-3/#anneal


Minibatch SGD
use a minibatch to produce gradient estimates

GD full batch

∇J =B ∇J (w)∣B∣
1 ∑n∈B n

a subset of the datasetB ⊆ {1,… ,N}

SGD minibatch-size=16 SGD minibatch-size=1

16



Momentum
to help with oscillations:

use a running average of gradients
more recent gradients should have higher weights

Δw ←{t} βΔw +{t−1} (1 − β)∇J (w )B
{t−1}

w ←{t} w −{t−1} αΔw{t} momentum of 0 reduces to SGD
common value >  .9

there are other variations of momentum with similar idea

is effectively an exponential moving average

Δw ={T} β (1 −∑t=1
T T−t β)∇J (w )B

{t}

weight for the oldest gradient (1 − β)βT−1

weight for the most recent gradient (1 − β)

17
t = 1t = T



Momentum
Example: logistic regression

α = .5,β = 0, ∣B∣ = 8
 no momentum

see the beautiful demo at Distill https://distill.pub/2017/momentum/

α = .5,β = .99, ∣B∣ = 8
with momentum

18

https://distill.pub/2017/momentum/


RMSprop
solve the problem of diminishing step-size with Adagrad

use exponential moving average instead of sum (similar to momentum)

S ←{t} γS +{t−1} (1 − γ)∇J(w ){t−1} 2

w ←{t} w −{t−1} ∇J(w )
S +ϵ{t}

α {t−1} identical to Adagrad

(Root Mean Squared propagation)

note that         here is a vector and with the square root is element-wiseS{t}

S ←d
{t}

S +d
{t−1}

J(w )∂wd

∂ {t−1} 2instead of Adagrad:

19



Adam (Adaptive Moment Estimation)

two ideas so far:
1. use momentum to smooth out the oscillations
2. adaptive per-parameter learning rate

both use exponential moving averages

S ←{t} β S +2
{t−1} (1 − β )∇J(w )2

{t−1} 2 identical to RMSProp
(moving average of the second moment)

Adam combines the two:

M ←{t} β M +1
{t−1} (1 − β )∇J(w )1

{t−1} identical to method of momentum
(moving average of the first moment)

w ← w −{t} {t−1}

+ϵŜ{t}

α M̂ {t}

since M and S are initialized to be zero, at early stages they are biased towards zero

←M̂ {t}
1−β1

t
M {t}

←Ŝ{t} 1−β2
t

S{t} for large time-steps it has no effect
for small t, it scales up numerator 20

the default algorithm in practice



how to estimate this?

f : ↦ 3assume we have a model                            for examplef : x↦ y

and we have a loss function that measures the error in our prediction ℓ : y, →ŷ R

for example
ℓ(y, ) =ŷ (y − )ŷ 2

ℓ(y, ) =ŷ I(y = )ŷ

for regression

for classification

we train our models to minimize the cost function:

J = ℓ(y, f(x))∣D ∣train

1 ∑x,y∈Dtrain

E ℓ(y, f(x))x,y∼pwhat we really care about is the generalization error:
we can not measure this, why?

21
we can set aside part of the given data and use it to estimate generalization error

Loss, cost and generalization

We can drop this, why?



let          be our model based on the datasetf̂D

assume a true distribution p(x, y)

f(x) = E [y∣x]pbest prediction given L2 loss

assume that a dataset                                      is sampled fromD = {(x , y )}(n) (n)
n p(x, y)

what we care about is the generalization error (aka expected loss, expected risk)

E[( (x) −f̂D y) ]2

all blue items are random variables

decompose the generalization error to see the effect of bias and variance (for L2 loss)

Bias-variance decomposition: Setup

22



Bias-variance decomposition

what we care about is the generalization error

E[( (x) −f̂D y) ]2

f(x) + ϵ

bias^2variance unavoidable
noise error

= E[( (x) −f̂D E [ (x)]) ]D f̂D
2 +E[(f(x) − E [ (x)]) ]D f̂D

2 +E[ϵ ]2

(x) +f̂D E [ (x)] −D f̂D E [ (x)]D f̂D add and subtract a term

= E[( (x) −f̂D E [ (x)] −D f̂D y + E [ (x)]) ]D f̂D
2

23

above simplifies to the following (the remaining terms are going to be zero)



x x

y

their average E[ ]f̂D

true model fmodels for different datasets f̂D

random datasets of size N=25 instances are not shown

using Gaussian bases

bias is the difference (in L2 norm)
between two curves

variance is the average difference (in
squared L2 norm) between these curves
and their average

Example: bias vs. variance

24



the lowest expected loss (test error) is somewhere between the two extremes

Example: bias vs. variance

increasing variance
increasing bias

in practice, how to decide which model to use?

E[ϵ ]2

= E[( (x) −f̂D E [ (x)]) ]D f̂D
2 +E[(f(x) − E [ (x)]) ]D f̂D

2 +E[ϵ ]2

25



how to estimate this?

Validation set
E ℓ(y, f(x))x,y∼pwhat we really care about is the generalization error:

we can set aside part of the training data and use it to estimate the generalization error

validation unseen (test)training

at the very end, we report the error on test set

pick a hyper-parameter that gives us the best validation error

validation and test error could be different
because they use limited amount of data

hyper parameter 26



Cross validation

use the average
validation error and its
variance (uncertainty) to
pick the best model

 
            
 

divide the (training + validation) data into L parts
use one part for validation and L-1 for training

validationtrain trainrun 2

validationtrainrun 1

validationtrain trainrun 3
validationtrain trainrun 4

27

validation trainrun 5

this is called L-fold cross-validation
in leave-one-out cross-validation L=N (only one instance is used for validation)

report the test error for the final model

 validation error

e1

e2
e3
e4
e5

test

train et

=ē e5
1 ∑i=1

5
i



Performance metrics for classification
Not all errors are the same
In particular in classification, we have different types of mistakes

 

patient does not have disease but received positive diagnostic (Type I error)
patient has disease but it was not detected (Type II error)

  example:

a message that is not spam is assigned to the spam folder (Type I error)
a message that is spam appears in the regular folder (Type II error)

false positive (type I) and false negative (type II)

28



false positive rate

sensitivity

specificity

Accuracy = P+N
TP+TN

F score =1 2Precision+Recall
Precision×Recall

Recall = P
TP

Precision = RP
TP

 {Harmonic mean}

Miss rate = P
FN

Fallout = N
FP

False discovery rate = RP
FP

Selectivity = N
TN

False omission rate = RN
FN

Negative predictive value = RN
TN

le
ss

 c
om

m
on

Performance metrics for classification

confusion matrix

F score =β (1 + β )2
β Precision+Recall2
Precision×Recall

29

recall is β times more important compared to precision  example:

Recall =
P
TP

Precision =
RP
TP

= 17
14

= 16
14

=
F scoreβ

1 +1+β2
1

Precision
1

1+β2
β2

Recall
1



Trade-off between precision and recall

1 0

threshold

no false positive
also no true positive

no false negative
also no true negative

30

p(y = 1∣x)
Most ML algorithm produces class score or probability

goal: evaluate class scores/probabilities (independent of

choice of threshold)

TPR(t) = TP(t)/P (recall, sensitivity at t, hit rate)
FPR(t) = FP(t)/N (fallout, false alarm at t, type I error rate)

Receiver Operating Characteristic ROC curve, a function of threshold t

Area Under the Curve (AUC) is used as a threshold independent
measure of quality of the classifier

 , box-rule approximationAUC = TPR(t)(FPR(t) −∑t FPR(t− 1))



Nonlinear basis functions

replace original features in f (x) =w w x∑d d d

with nonlinear bases f (x) =w w ϕ (x)∑d d d

(Φ Φ)w =⊤ ∗ Φ y⊤linear least squares solution

Φ =

ϕ (x ),1
(1)

ϕ (x ),1
(2)

⋮
ϕ (x ),1

(N)

ϕ (x ),2
(1)

ϕ (x ),2
(2)

⋮
ϕ (x ),2

(N)

⋯ ,
⋯ ,

⋱
⋯ ,

ϕ (x )D
(1)

ϕ (x )D
(2)

⋮
ϕ (x )D

(N)

replacing X with Φ
a (nonlinear) feature

one instance

31



Example: Gaussian bases ϕ (x) =k e− s2
(x−μ )k

2

y =(n) sin(x ) +(n) cos( ) +∣x ∣(n) ϵ

our fit to data using 10 Gaussian bases

f(x ) =′ ϕ(x ) (Φ Φ) Φ y′ ⊤ ⊤ −1 ⊤

new instance
w

features evaluated for the new point

prediction for a new instance

found using LLS

32



cost              is zero and we have a "perfect" fit!J(w)
using 200, thinner bases (s=.1)

Example: Gaussian bases ϕ (x) =k e− s2
(x−μ )k

2

33



Overfitting

which one of these models performs better at test time?

predictions of 4 models for the same input

x′

D = 5

D = 10

D = 50

D = 200
y

lowest test error

overfitting

underfitting
f(x )′

34



An observation
when overfitting, we sometimes see large weights

dashed lines are w ϕ (x) ∀dd d

idea: penalize large parameter values

D = 10 D = 20D = 17

f (x) =w w ϕ (x)∑d d d

35



Ridge regression

L2 regularized linear least squares regression:

J(w) = ∣∣Xw −2
1 y∣∣ +2

2 ∣∣w∣∣2
λ

2
2

(y −2
1 ∑n

(n) w x)⊤ 2
sum of squared error squared L2 norm of w

w w =T w∑d d
2

regularization parameter              controls the strength of regularizationλ > 0

a good practice is to not penalize the intercept λ(∣∣w∣∣ −2
2 w )0

2

also known as

is a hyper-parameter (use a validation set or cross-validation to pick the best value)λ
36



Ridge regression

set the derivative to zero J(w) = (y −2
1 ∑x,y∈D w x) +⊤ 2 w w2

λ ⊤

∇J(w) = x(w x−∑x,y∈D
⊤ y) + λw

(X X +⊤ λI)w = X y⊤

w = (X X +⊤ λI) X y−1 ⊤

the only part different due to regularization

       makes it invertible, adds a small value to the diagonals 

we can have linearly dependent features
the solution will be unique!

X X⊤λI

when using gradient descent, this term reduces the
weights at each step (weight decay)

= X (Xw −⊤ y) + λw = 0

linear system of equations

37



Probabilistic interpretation

linear regression & logistic regression maximize log-likelihood

w =MLE argmax p(y∣X,w)w

w =MLE argmax N (y∣w x,σ )w ∏x,y∈D
⊤ 2linear regression

w =MLE argmax Bernoulli(y∣σ(w x))w ∏x,y∈D
⊤logistic regression

can we do Bayesian inference instead of maximum likelihood?
p(w∣y,X) ∝ p(w)p(y∣w,X)

posterior prior likelihood

recall

38



Gaussian Prior

MAP estimate w =MAP argmax log p(y∣X,w) +w log p(w)
prior

assume independent zero-mean Gaussians

log p(w) = log N (w ∣0, τ ) =∏
d=1
D

d
2 − +∑

d 2τ 2
w2 const.

does not depend on w
so it doesn't affect the optimization

lets call →
τ 2
1 λ

then we get the L2 regularization penalty ∣∣w∣∣2
λ

2
2

smaller variance of the prior  gives larger regularization τ λ

N (μ,σ) = e
σ 2π
1 − ( )2

1
σ

x−μ 2

39



given the datasetidea

image from here

w x⊤y

x

  
Probabilistic interpretation for Linear Regression

D = {(x , y ),… , (x , y )}(1) (1) (N) (N)

learn a probabilistic model p(y∣x;w)

p (y ∣w x) = N (y ∣ w x,σ ) =⊤ 2 e
2πσ2
1 −

2σ2
(y−w x)⊤ 2

consider                   with the following formp(y∣x;w)

assume a fixed variance, say σ =2 1

40

Q: how to fit the model?
A: maximize the conditional likelihood!

http://http//blog.nguyenvq.com/blog/2009/05/12/linear-regression-plot-with-normal-curves-for-error-sideways/


cond. probability p(y ∣ x;w) = N (y ∣ w x,σ ) =⊤ 2 e
2πσ2
1 −

2σ2
(y−w x)⊤ 2

w xTy

x

log likelihood ℓ(w) = − (y −∑n 2σ2
1 (n) w x ) +⊤ (n) 2 constants

L(w) = p(y ∣∏n=1
N (n) x ;w)(n) likelihood

max-likelihood params. w =∗ argmax ℓ(w) =w argmin (y −w 2
1 ∑n

(n) w x )⊤ (n) 2

linear least squares!

  
Maximum likelihood & linear regression

41
whenever we use square loss, we are assuming Gaussian noise!

image from here

http://http//blog.nguyenvq.com/blog/2009/05/12/linear-regression-plot-with-normal-curves-for-error-sideways/


Laplace prior
another notable choice of prior is the Laplace distribution

image from here

minimizing negative log-likelihood log p(w ) =∑d d − ∣w ∣∑d β
1

d = − ∣∣w∣∣
β
1

1

L1 norm of w

p(w;β) = e2β
1 −

β

∣w∣

w

notice the peak around zero

J(w) ← J(w) + λ∣∣w∣∣1L1 regularization: also called lasso
(least absolute shrinkage and selection operator)

42

https://stats.stackexchange.com/questions/177210/why-is-laplace-prior-producing-sparse-solutions


 regularizationL  vs L1 2

regularization path shows how           change as we change{w }d λ

decreasing regularization coef.      λ

wd′

Lasso produces sparse weights (many are zero, rather than small)

red-line is the optimal  from cross-validation, for lasso the model uses only 3 of the 8 features

           lasso results in sparse models

λ

⇒

wd

Ridge regressionLasso

D = 8
Example

43

D = 8D = 3

see the code here

https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/11/lassoPathProstate.ipynb


Probabilistic view for Logistic Regression
  

Interpret the prediction as class probability =ŷ p (y =w 1 ∣ x) = σ(w x)⊤

conditional likelihood of the labels given the inputs
L(w) = p(y ∣∏n=1

N (n) x ;w) =(n) (1 −∏n=1
N

ŷ(n)
y(n)

)ŷ(n) 1−y
(n)

log =1−ŷ
ŷ log =1−σ(w x)⊤

σ(w x)⊤

log =
e−w x⊤
1 w x⊤

the log-ratio of class probabilities is linear

logit function
is the inverse of logistic, read more  here

= (1 −ŷ(n)
y(n)

)ŷ(n) 1−y
(n)

p(y ∣(n) x ;w) =(n) Bernoulli(y ;σ(w x ))(n) ⊤ (n)

We have a Bernoulli likelihood

44

https://en.wikipedia.org/wiki/Logit


Maximum likelihood & logistic regression
  

= max y log( ) +w ∑n=1
N (n) ŷ(n) (1 − y ) log(1 −(n) )ŷ(n)

= min J(w)w  the cross entropy cost function!

likelihood L(w) = p(y ∣∏n=1
N (n) x ;w) =(n) (1 −∏n=1

N
ŷ(n)

y(n)

)ŷ(n) 1−y
(n)

 log likelihood

w =∗ max log p (y ∣w ∑n=1
N

w
(n) x ;w)(n)

so using cross-entropy loss in logistic regression is maximizing conditional likelihood

 find w that maximizes

we saw a similar interpretation for linear regression (L2 loss maximizes the conditional Gaussian likelihood)

45



Multiclass classification
  

binary classification: Bernoulli likelihood:

Bernoulli(y ∣ ) =ŷ (1 −ŷy )ŷ 1−y

C classes: categorical likelihood

Categorical(y ∣ ) =ŷ ∏c=1
C

ŷc
I(y=c)

subject to ∈ŷ [0, 1]

=ŷ σ(z) = σ(w x)Tusing logistic function to ensure this

=∑c ŷc 1subject to

achieved using softmax function

using this probabilistic view we extend logistic regression to multiclass setting

{ŷ
1 − ŷ

y = 1
y = 0

⎩
⎨
⎧ŷ1
ŷ2

…
ŷC

y = 1
y = 2

y = C

46



Softmax
  

generalization of logistic to > 2 classes:

logistic:                             produces a single probability

probability of the second class is

σ : R → (0, 1)

=ŷc softmax(z) =c e∑
c =1′
C z

c′
ezc so =∑c ŷ 1

(1 − σ(z))

p ∈ Δ →c p =∑c=1
C

c 1R →C ΔC recall: probability simplexsoftmax:

if input values are large, softmax becomes similar to argmax

softmax([10, 100,−1]) ≈ [0, 1, 0]

example

similar to logistic this is also a squashing function

softmax([1, 1, 2, 0]) = [ , , , ]2e+e +12
e

2e+e +12
e

2e+e +12
e2

2e+e +12
1

47



Multiclass classification
  

C classes: categorical likelihood

Categorical(y ∣ ) =ŷ ∏c=1
C

ŷc
I(y=c)

=ŷc softmax([w x,… ,w x]) =1
⊤

C
⊤

c
e∑c′
w x
c′
⊤

ew xc
⊤

so we have on parameter vector for each class

using softmax to enforce sum-to-one constraint

=ŷc softmax([z ,… , z ]) =1 C c e∑
c′

z
c′

ezc

to simplify equations we write z =c w xc
⊤

w =1 [w ,w ,…w ]1,1 1,2 1,D
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Likelihood for multiclass classification
  

C classes: categorical likelihood

Categorical(y ∣ ) =ŷ ∏c=1
C

ŷc
I(y=c) using softmax to enforce sum-to-one constraint

= ∏n=1
N ∏c=1

C (
e∑c′
z
c′
(n)

ezc
(n) )

I(y =c)(n)

z =c w xc
⊤=ŷc softmax([z ,… , z ]) =1 C c e∑

c′
z
c′

ezc where

likelihood L({w }) =c softmax([z ,… , z ])∏n=1
N ∏c=1

C
1
(n)

C
(n)

c
I(y =c)(n)

substituting softmax in Categorical likelihood:
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One-hot encoding
  

likelihood L({w }) =c ∏
n=1
N ∏

c=1
C (

e∑c′
z
c′
(n)

ezc
(n) )I(y =c)(n)

log-likelihood ℓ({w }) =c I(y =∑n=1
N ∑c=1

C (n) c)(z −c
(n) log e )∑c′

z
c′
(n)

one-hot encoding for labels y →(n) [I(y =(n) 1),… , I(y =(n) C)]

Food Name Categorical # Calories
Apple 1 95
Chicken 2 231
Broccoli 3 50

Apple Chicken Broccoli Calories
1 0 0 95
0 1 0 231
0 0 1 50

one-hot example from here

convert that feature into C binary features

x →d
(n) [I(x =d

(n) 1),… , I(x =d
(n)

C)]

we can also use this encoding for
categorical features

 side note

Example:  
 

y ∈(n) {1, 2, 3} ⇒ y ∈(n) {[1, 0, 0], [0, 1, 0], [0, 0, 1]}
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One-hot encoding
  

likelihood L({w }) =c ∏
n=1
N ∏

c=1
C (

e∑c′
z
c′
(n)

ezc
(n) )I(y =c)(n)

log-likelihood ℓ({w }) =c I(y =∑n=1
N ∑c=1

C (n) c)(z −c
(n) log e )∑c′

z
c′
(n)

one-hot encoding for labels y →(n) [I(y =(n) 1),… , I(y =(n) C)]

log-likelihood ℓ({w }) =c y z − log e∑n=1
N ( (n)⊤ (n) ∑c′

z
c′
(n))

using this encoding from now on
z =(n) [z , z ,… z ], z =1

(n)
2
(n)

C

(n)
c
(n)

w xc
⊤ (n)

51



Optimization
  

given the training data

find the best model parameters

by minimizing the cost (maximizing the likelihood of      )

D = {(x , y )}(n) (n)
n

{w }c c

J({w }) =c − (y z −∑n=1
N (n)⊤ (n) log e )∑c′

z
c′
(n)

z =c w xc
⊤where

need to use gradient descent (for now calculate the gradient)

∇J(w) = [ J ,… J ,… , J ]∂w1,1
∂

∂w1,D
∂

∂wC,D

∂ ⊤

length C ×D

D
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Gradient
  

J({w }) =c − (y z −∑n=1
N (n)⊤ (n) log e )∑c′

z
c′
(n)

z =c w xc
⊤where

need to use gradient descent (for now calculate the gradient)

J =∂wc,d

∂ ∑n=1
N

∂zc
(n)
∂J

∂wc,d

∂zc
(n)using chain rule

xd
(n)

−y +c
(n)

e∑c′
z
(n)

c′
ezc
(n)

so the derivative of log-sum-exp is softmax

ŷc
(n)

= ( −∑n ŷc
(n)

y )xc
(n)

d

(n)

this looks familiar!
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