
Unsupervised Learning
COMP 551 Applied Machine Learning

Isabeau Prémont-Schwarz
School of Computer Science

McGill University

Fall 2024

Current participation rate: 49%.

Please complete the online evaluation for the course on Mercury.
https://go.blueja.io/qLhY92bmaEW4w8hLQ53-LA

Your feedback is very important to us.
Thank you!

2 / 36

https://go.blueja.io/qLhY92bmaEW4w8hLQ53-LA

Outline

Unsupervised learning
K-means clustering

Principal component analysis

Autoencoders

Acknowledgement

• The slides are adapted from Prof. Yue Li’s slides.

3 / 36

Unsupervised learning

• Instead of having a pair of input and output in the supervised learning tasks
(Lectures 1-3), in unsupervised learning, we seek to find latent patterns from
only the inputs data D = {xn}Nn=1 without any corresponding output yn.

• Unsupervised learning forces the model to “explain” the high-dimensional inputs,
rather than just the low-dimensional outputs (i.e., trying to “make sense of” the
data)

• The reason we need unsupervised learning is that most of the data we have are
unlabelled.

• Quoted from Geoffery Hinton 1996: “When we’re learning to see, nobody’s telling
us what the right answers are – we just look. Every so often, your mother says
“that’s a dog”, but that’s very little information.”

4 / 36

Clustering
The goal is to partition or cluster the input into regions that contain “similar” points.

K-means

Hierarchical clustering
Sequence similarity among 8 species

2D data for the 149 iris flowers

5 / 36

Discovering population structure from the genotype data
• It is often useful to reduce the high dimensional data by projecting it to a lower
dimensional subspace to capture the “essence” of the data.
• Each observed high-dimensional data xn ∈ RD was generated by a set of hidden or

unobserved low-dimensional latent factors zn ∈ RK .
• Below illustrates applying Principal Component Analysis (PCA) to 1000
human genomes, each having 1 million SNPs

P
ri
n

c
ip

a
l
C

o
m

p
o

n
e

n
t
2

 (
0
.0

8
%

 v
a

ri
a

n
c
e

)

Principal Component 1 (0.21% variance)

French

Spanish

Slovak

German

Belgium

Czech

UK

Hungarian

Polish

Romanian

Norway

Sweden

Russian

CEU

SNPs First two PCs

PCA

1
0

0
0

 i
n

d
iv

id
u

a
ls

high-dimensional

6 / 36

Outline

Unsupervised learning
K-means clustering

Principal component analysis

Autoencoders

7 / 36

K-means clustering algorithm for K=2, D=2

(a)

−2 0 2

−2

0

2 (b)

−2 0 2

−2

0

2 (c)

−2 0 2

−2

0

2 (d)

−2 0 2

−2

0

2

(e)

−2 0 2

−2

0

2 (f)

−2 0 2

−2

0

2 (g)

−2 0 2

−2

0

2 (h)

−2 0 2

−2

0

2

8 / 36

K-means clustering algorithm
Objective function:

J =
N∑

n=1

||xn −
K∑

k=1

zn,kµk ||2 = ||X− ZM||2F

where each row of Z is hot-encoding for the cluster assignment and M ∈ RK×D are
the K centroids for the D input features.

Algorithm 1 K-means clustering (ϵ)

1: Initialize K cluster centers µ1, . . . ,µK

2: while J(t−1) − J(t) > ϵ do
3: Assign each point xn to the closest center k:

zn,k =

1 if k = argmin
j
||xn − µj ||2

0 if otherwise

4: Update the cluster centroids: µk = 1
Nk

∑
n zn,kxn, where Nk =

∑
n zn,k .

5: end while
9 / 36

Convergence on the cost function

• Cost function:

J =
N∑

n=1

||xn −
K∑

k=1

zn,kµk ||2

• K-means alternates between clustering and
updating the K centers:

1. Clustering:

zn,k =

1 if k = argmin
j
||xn − µj ||2

0 if otherwise

2. Updating:

µk =
1

Nk

∑
n

znkxk , where Nk =
∑
n

znk

J

1 2 3 4
0

500

1000

K-means minimize the
reconstruction loss? (pop quiz:
why?).

10 / 36

K-means clustering of the time-series yeast gene expression data

11 / 36

Evaluation metrics in choosing K
Validation error Bayesian info criterion ASW

-B
IC

J(K) =

Nval∑
n=1

||x(val)n −
K∑

k=1

z
(val)
n,k µ̂k ||2

BIC (K) = log p(D|µ)− DK

2
log(N)

ASW (K) =
1

N

N∑
i=1

b(i)− a(i)

max{a(i), b(i)}

• Reconstruction error on the validation set
is not informative as it always decreases
with increasing K . But it’s inflection
point is a good heuristic to choosing
K (called the Elbow or Hockey Stick
Method).

• Bayesian information criteria (BIC) score
penalizes more complex model besides the
reconstruction loss and is informative of
the best K (i.e., K=5)

• ASW suggests the best K at 3 or 7. 12 / 36

Outline

Unsupervised learning
K-means clustering

Principal component analysis

Autoencoders

13 / 36

Principal Component Analysis

PCA main idea: find the directions which encode most of the difference
(variance) between datapoints.

14 / 36

Principal Component Analysis
• Suppose we have an unlabelled dataset X ∈ RD×N for D features and N examples.
• We would like to approximate each data point xn ∈ RD×1 by a low dimensional
representation zn ∈ RK×1 , where K ≤ D.
• The variable zn is known as the latent factor.
• The error produced by this approximation is called reconstruction error:

L(W) =
1

N

N∑
n=1

||xn − decode(encode(xn;W);W)||22

∆
=

1

N

N∑
n=1

||xn −Wzn||22

where in the context of PCA:
• we assume a linear encoder and decoder
• Z ∈ RK×N is also known as the loading matrix.
• W ∈ RD×K is called the basis matrix. It is orthogonal matrix: W⊤W = I, which

means that w⊤
k wk′ = 1 for k = k ′ or 0 for k ̸= k ′.

15 / 36

PCA derivation

In what follows we assume E[x] = 0, if it is not true, we can simply redefine
xn = x̂n − E[x̂], where x̂n is the original data whose mean is not zero.

16 / 36

PCA derivation for the first PC
Let z1 ∈ RN×1 and w1 ∈ RD×1 be the loading and basis vector of the first PC. The
reconstruction error is

L(w1, z1) =
1

N

N∑
n=1

||xn − z1,nw1||2 =
1

N

N∑
n=1

(xn − z1,nw1)
⊤(xn − z1,nw1)

=
1

N

N∑
n=1

(x⊤n xn − 2z1,nw
⊤
1 xn + z21,n w

⊤
1 w1︸ ︷︷ ︸
1

) =
1

N

N∑
n=1

(x⊤n xn − 2z1,nw
⊤
1 xn + z21,n)

∂L(z1)
∂z1,n

=
1

N
(−2w⊤

1 xn + 2z1,n)
∆
= 0 ⇒ z1,n = w⊤

1 xn

L(w1) =
1

N

N∑
n=1

(x⊤n xn − 2z1,nw
⊤
1 xn + z21,n) =

1

N

N∑
n=1

(x⊤n xn − 2z21,n + z21,n) =
1

N

N∑
n=1

(x⊤n xn − z21,n)

∝ − 1

N

N∑
n=1

z21,n = − 1

N

N∑
n=1

w⊤
1 xnx

⊤
n w1 = −w⊤

1 Σ̂w1 where Σ̂ =
1

N
XX⊤

We see that minimizing the reconstruction error is equivalent to maximizing the variance of the
latent representation w.r.t. w1 (since Var[z] = E[z2]− E2[z] = E[z2], where E[z] = w⊤

1 E[x]n = 0).
17 / 36

The first PC is the eigenvector of Σ̂ with the largest eigenvalue
Because we want the projection to be orthonormal such that w⊤

1 w = 1, we introduce
the following constraint with the Lagrange multiplier λ1 to the loss function:

L̃(w1) = −w⊤
1 Σ̂w1 + λ1(w

⊤
1 w1 − 1) (1)

∂L̃(w1)

∂w1
= −2Σ̂w1 + 2λ1w1

∆
= 0 ⇒ Σ̂w1 = λ1w1

Therefore, the optimal solution for w1 is an eigenvector of Σ̂ and λ1 corresponds to
the eigenvalue. Multiplying w⊤

1 on both side, we have

Σ̂w1 = λ1w1 ⇒ w⊤
1 Σ̂w1 = λ1w

⊤
1 w1 ⇒ w⊤

1 Σ̂w1 = λ1

Since we want to maximize w⊤
1 Σ̂w1 (i.e., minimizing the loss in Eq (1)), we pick the

eigenvector that corresponds to the largest eigenvalue:

w∗
1 ← argmax

w1

w⊤
1 Σ̂w1 = argmax

w1

Var[z1] = argmin
w1

L(w1)

18 / 36

Computing the second PC
We can find the second PC to further minimize the reconstruction error:

L(w2) =
1

N

N∑
n=1

||xn − z1,nŵ1 − z2,nw2||2 =
1

N

N∑
n=1

||x̃n − z2,nw2||2

=
1

N

N∑
n=1

x̃⊤n x̃n −w⊤
2
ˆ̃Σw2 where

ˆ̃Σ =
1

N
X̃X̃⊤ =

1

N

N∑
n=1

(xn − z1,nŵ1)(xn − z1,nŵ1)
⊤

=
1

N

N∑
n=1

xnx
⊤
n︸ ︷︷ ︸

Σ̂

− ŵ1
1

N

N∑
n=1

z1,nx
⊤
n −

(
1

N

N∑
n=1

z1,nxn

)
ŵ⊤

1 +

(
1

N

N∑
n=1

z21,n

)
ŵ1ŵ

⊤
1

Therefore
w⊤

2
ˆ̃Σw2 = w⊤

2 Σ̂w2 −w⊤
2 ŵ1︸ ︷︷ ︸
0

1

N

N∑
n=1

z1,nx
⊤
n w2 −w⊤

2

(
1

N

N∑
n=1

z1,nxn

)
ŵ⊤

1 w2︸ ︷︷ ︸
0

+

(
1

N

N∑
n=1

z21,n

)
w⊤

2 ŵ1︸ ︷︷ ︸
0

ŵ⊤
1 w2︸ ︷︷ ︸
0

= w⊤
2 Σ̂w2

Adding the orthogonal constraints w⊤
1 w2 = 0 and orthonormal constraint w⊤

2 w2 = 1:

L̃(w2) = −w⊤
2 Σ̂w2 + λ2(w

⊤
2 w2 − 1) + λ12w

⊤
2 w1

∂L̃(w2)

∂w2
= −2Σ̂w2 + 2λ2w2 + λ12w1

∆
= 0

Solving for w2:

2Σ̂w2 = 2λ2w2 + λ12w1 ⇒ 2w⊤
2 Σ̂w2 = 2λ2w

⊤
2 w2 + λ12w

⊤
2 w1

⇒ w⊤
2 Σ̂w2 = λ2 ⇒ Σ̂w2 = λ2w2

Therefore, the solution for w2 for the second PC is the second largest eigenvector.

19 / 36

Computing the second PC
We can find the second PC to further minimize the reconstruction error:

L(w2) =
1

N

N∑
n=1

||xn − z1,nŵ1 − z2,nw2||2 =
1

N

N∑
n=1

||x̃n − z2,nw2||2

=
1

N

N∑
n=1

x̃⊤n x̃n −w⊤
2
ˆ̃Σw2 =

1

N

N∑
n=1

x̃⊤n x̃n −w⊤
2 Σ̂w2

Adding the orthogonal constraints w⊤
1 w2 = 0 and orthonormal constraint w⊤

2 w2 = 1:

L̃(w2) = −w⊤
2 Σ̂w2 + λ2(w

⊤
2 w2 − 1) + λ12w

⊤
2 w1

∂L̃(w2)

∂w2
= −2Σ̂w2 + 2λ2w2 + λ12w1

∆
= 0

Solving for w2:

2Σ̂w2 = 2λ2w2 + λ12w1

w⊤
1 ·︷︸︸︷⇒ 2

λ1w⊤
1︷ ︸︸ ︷

w⊤
1 Σ̂w2 = 2λ2

0︷ ︸︸ ︷
w⊤

1 w2+λ12

1︷ ︸︸ ︷
w⊤

1 w1 ⇒ 0 = λ12

⇒ Σ̂w2 = λ2w2 ⇒ w⊤
2 Σ̂w2 = λ2

Therefore, the solution for w2 for the second PC is the second largest eigenvector. 20 / 36

Generalizing to computing all K PCs
Find the kth PC can be done in the same way

L(wk) =
1

N

N∑
n=1

||xn −
k−1∑
s=1

zs,nws − zk,nwk ||2 =
1

N

N∑
n=1

||x̃n − zk,nwk ||2

Iteratively computing the kth eigenvector is slow.
For N << D (e.g., N = 100 samples versus D = 20, 000 genes), we can efficiently
compute all eigenvectors by solving the eigendecomposition of the square and
symmetric covariance matrix:

X⊤X︸ ︷︷ ︸
N×N

= UΛU−1

where U contains all of the N eigenvectors and Λ is the diagonal matrix with the
diagonal elements being the eigenvalues. Because U is a orthogonal matrix, U⊤U = I
and U⊤ = U−1.
More efficiently, we can compute the truncated Singular Vector Decomposition (SVD)
to get only the first K < min(N,D) PCs by X = USV⊤ (details omitted).

21 / 36

Eigen faces (Murphy22 Chapter 20.1)

PCA were performed on 64× 64 pxiel images from the Olivetti face database (panel
a). Mean and the first 3 PCA components w1,w2,w3 are displayed in panel b.

22 / 36

Outline

Unsupervised learning
K-means clustering

Principal component analysis

Autoencoders

23 / 36

Autoencoders

AE main idea: same goal as PCA to describe data with as few parameters as
possible, but allow for complex non-linear relationship between those parameters

and the input data.

24 / 36

MLP autoencoder

encoding z
n

o
ri
g

in
a

l
in

p
u

t
fe

a
tu

re
s
 (

x
n
)

scRNA-seq data

Features

S
a

m
p

le
s

Reconstructed data

Features

S
a

m
p

le
s

Reconstruction loss:
Encoder layers Decoder layers

Encoding by a 3-layer feedforward network (i.e., encoder):

zn = f (f (xnW
(0)
E)W

(1)
E)W

(2)
E

Decoding by another 3-layer feedforward network (i.e., decoder):

x̂d = f (f (znW
(0)
D)W

(1)
D)W

(2)
D

Loss: L = 1
N

∑
n ||x− x̂n||2; Backpropagation: W(ℓ)

. ←W(ℓ)
. − ϵ∇L(W(ℓ)

.)
25 / 36

Discovering cell types from single-cell gene expression data

• When dealing with high-dimensional data, it is useful to reduce the dimensionality
to a lower dimensional subspace to capture the “essence” of the data.

• Below is an example of applying Autoencoder followed by t-distributed
stochastic neighbour embedding (t-SNE) to thousands of cells, each having
the expression of 20,000 genes

Genes t-SNE

C
e
ll
s

Autoencoder

26 / 36

PCA vs Autoencoder

https://towardsdatascience.com/deep-learning-for-single-cell-biology-935d45064438

27 / 36

https://towardsdatascience.com/deep-learning-for-single-cell-biology-935d45064438

Denoising autoencoder (DAE) (?)

DAE takes the original input with added Gaussian or Bernoulli noise (for binary image):

x̃ ∼ N (x, σ2I), or x̃ ∼ xB(p, 1− p)

DAE are an extension of simple autoencoders to help:

• The hidden layers of the autoencoder learn more robust filters

• Reduce the risk of overfitting in the autoencoder

• Prevent the autoencoder from learning a simple identify function

28 / 36

Reconstructed Fashion MNIST images from validation set by DAE

 with Gaussian noise with Bernoulli dropout noise

(Murphy22 Chapter 20.3 Figure 20.19)

29 / 36

Convolutional neural network for classification on images (Lecture 3)

CAR

TRUCK

VAN

BICYCLE

FLATTENPOOLINGCONVOLUTION + RELUPOOLINGCONVOLUTION + RELUINPUT SOFTMAX
FULLY

CONNECTED

CLASSIFICATIONFEATURE LEARNING

+BN +BN

We can use CNN architectures in our autoencoders!

30 / 36

Transposed convolutional aka Deconvolution layer

• Instead of sliding the kernel over the
input pixels and performing
element-wise multiplication and
summation, a transposed
convolutional layer slides the input
pixel over the kernel and performs
element-wise multiplication and
summation.

• This results in an output that is larger
than the input, and the size of the
output can be controlled by the stride
and padding parameters of the layer.

(source)

31 / 36

https://www.geeksforgeeks.org/what-is-transposed-convolutional-layer/

CNN autoencoder

source

32 / 36

https://analyticsindiamag.com/how-to-implement-convolutional-autoencoder-in-pytorch-with-cuda/

MLP AE vs CNN AE on Fashion MNIST (Murphy22 Fig 20.17 & 18)

MLP AE (784-100-30)
3x3 Conv (16), MaxPool (2x2), Conv (32, 3x3),

MaxPool (2x2), Conv (64, 3x3), MaxPool (2x2)

CNN AE

33 / 36

Summary of Autoencoder

• Using network encoder and network decoder, we can train non-linear function that
can project high-dimensional data onto low-dimensional latent space by
minimizing the reconstruction loss via stochastic gradient decent.

• AE can have MLP or CNN architectures. When applied to images, CNN
architecture works better because it benefits from the same induction bias as in
the CNN classifiers.

• Denoising autoencoder learns more robust representation of the data than the
vanilla autoencoder

• VAE can generate new samples by inferring the distribution of the latent
embedding.

34 / 36

Summary of Unsupervised Learning

Goal: Find the regularities in the Data. That often means finding a compressed way to
represent the data.

• Clustering: represent all data as a few different clusters.
• PCA & AE: represent the data as a low dimensional manifold of the main
directions of variation.
• PCA: linear submanifold, can find optimal sub-manifold analytically.
• AE: non-linear, optimality not guaranteed.

35 / 36

Congratulations!

36 / 36

	Unsupervised learning
	K-means clustering
	Principal component analysis
	Autoencoders

