
Ensemble Learning part I: Bagging

COMP 551 Applied Machine Learning

Isabeau Prémont-Schwarz
School of Computer Science

McGill University

Fall 2024

Please complete the online evaluation for the course on Mercury.
https://go.blueja.io/qLhY92bmaEW4w8hLQ53-LA

Your feedback is very important to us.
Thank you!

2 / 32

https://go.blueja.io/qLhY92bmaEW4w8hLQ53-LA

Outline

Learning objectives

Ensemble learning

Bagging

Random Forest
Boosting

Least square additive boosting
Gradient boosting

Acknowledgement

• The slides are adapted from Prof. Yue Li’s slides which are based on Chapter 18.2 from
the Murphy 2022 complemented by Bishop06 Chapter 14.3 and Prof. Reihaneh
Rabbany’s slides.

3 / 32

Most commonly used ML algorithms in Kaggle 2022 survey

4 / 32

https://www.kaggle.com/code/paultimothymooney/kaggle-survey-2022-all-results

Learning objectives

• Advantages of ensemble learning

• Bootstrap aggregation (Bagging)

• Random Forest

• Boosting
I Least square additive boosting
I GradientBoosting

5 / 32

Recall Generalization Lectures and A2 : bias-variance trade-o↵

6 / 32

Outline

Learning objectives

Ensemble learning

Bagging

Random Forest

Boosting
Least square additive boosting
Gradient boosting

7 / 32

Decision trees are sensitive to the change of training data

Decision surface of the DTDT (tree depth = 2) for Iris flower
Fit to the same data but omit a

single data point (shown by star)

Decision trees are unstable: small changes to the input data can have large e↵ects on
the structure of the tree, due to the greedy and hierarchical nature of the tree-growing
process.

8 / 32

Recall Generalization Lectures & A2: model averaging reduces variance

x

t

0 1

−1

0

1

x

t

0 1

−1

0

1
true function

model average

Each curve is predicted by a distinct model f
m
(x) Averaged prediction by all models: ŷ = ∑

m
f
m
(x)

^ ^

ED

h
(f̂ (x;D)� y)2

i
= ED

⇣
f̂D(x)� ED[f̂D(x)]

⌘2
�

| {z }
Variance

+ ED

⇣
ED[f̂D(x)]� f (x)

⌘2
�

| {z }
Bias

+ ED

h
✏2
i

| {z }
noise

9 / 32

Main Idea of Bagging

Bagging: average many models sensitive
⇤
training dataset to reduce variance.

* Related to overfitting.

10 / 32

Ensemble learning reduces variance by M times for independent models

Assuming fm(x) = zm for m = 1, . . . ,B . Variance of the two random variables z1 and z2 is:

Var[z1 + z2] = E[(z1 + z2)
2]� E[z1 + z2]

2

= E[z21 + z22 + 2z1z2]� (E[z1] + E[z2])2

= E[z21] + E[z22] + E[2z1z2]� E[z1]2 � E[z2]2 � 2E[z1]E[z2]
= (E[z21]� E[z1]2) + (E[z22]� E[z2]2) + 2(E[z1z2]� E[z1]E[z2])
= Var[z1] +Var[z2] + 2Cov[z1, z2]| {z }

0 if z1 ?? z2

Variance of the sum of B independent variables (the last equality assumes equal variance �2):

Var[
MX

m=1

zm] =
MX

m=1

Var[zm]
�
= M�2

Variance of the average over M independent variables is M times smaller than their individual
variances:

Var[
1

M

MX

m=1

zm] =
1

M2
Var[

MX

m=1

zm] =
1

M2
M�2 =

1

M
�2

11 / 32

Bootstrap sampling

1. Suppose we have a single dataset D of size N (e.g., N coin tosses).
2. Sample with replacement to create M sets of datasets D(m) each of size N.
3. For each dataset D(m), train a model to obtain model parameter ✓(m) (e.g., the

MLE of the Bernoulli rate from N coin tosses in D(m) is ✓(m) = 1
N

PN
n=1 y

(m)
n).

4. Average over the model parameters ✓(m) to approximate ED[✓].
5. Histograms based on B = 10K bootstraps each with N=10 samples (true

✓ = 0.7). Notebook: https://www.cs.mcgill.ca/~isabeau/COMP551/W24/bootstrap_demo_bernoulli.ipynb.

Figure: Jupyter Notebook: https:
//www.cs.mcgill.ca/~isabeau/COMP551/W24/bootstrap_demo_bernoulli.ipynb

12 / 32

https://www.cs.mcgill.ca/~isabeau/COMP551/W24/bootstrap_demo_bernoulli.ipynb
https://www.cs.mcgill.ca/~isabeau/COMP551/W24/bootstrap_demo_bernoulli.ipynb
https://www.cs.mcgill.ca/~isabeau/COMP551/W24/bootstrap_demo_bernoulli.ipynb

Bootstrap sampling

1. Suppose we have a single dataset D of size N (e.g., N coin tosses).
2. Sample with replacement to create M sets of datasets D(m) each of size N.
3. For each dataset D(m), train a model to obtain model parameter ✓(m) (e.g., the

MLE of the Bernoulli rate from N coin tosses in D(m) is ✓(m) = 1
N

PN
n=1 y

(m)
n).

4. Average over the model parameters ✓(m) to approximate ED[✓].
5. Histograms based on B = 10K bootstraps each with N=100 samples (true

✓ = 0.7). Notebook: https://www.cs.mcgill.ca/~isabeau/COMP551/W24/bootstrap_demo_bernoulli.ipynb.

Figure: Jupyter Notebook: https:
//www.cs.mcgill.ca/~isabeau/COMP551/W24/bootstrap_demo_bernoulli.ipynb

13 / 32

https://www.cs.mcgill.ca/~isabeau/COMP551/W24/bootstrap_demo_bernoulli.ipynb
https://www.cs.mcgill.ca/~isabeau/COMP551/W24/bootstrap_demo_bernoulli.ipynb
https://www.cs.mcgill.ca/~isabeau/COMP551/W24/bootstrap_demo_bernoulli.ipynb

Bagging: Bootstrap aggregation (L. Breiman. Bagging predictors. In: Machine Learning 24 (1996))

Bagging training procedure is simple:
1. Suppose we have a labelled dataset D = {xn, yn}N=1

n .

2. Sample with replacement from D to get M datasets D(m) = {x(m)
n , y (m)

n }N=1
n .

3. Train M base models on the M datasets.
4. During testing, average the model predictions: ŷ = 1

M

PM
m=1 ŷm.

5. Bagging also estimates of model uncertainty: �ŷ =
⇣

1
M

PM
m=1(ŷm � ŷ)2

⌘ 1
2
.

D

D
1

D
m

D
M

...

...

...
...

...

...

f
1

f
m

f
M

x*

x*

x*

ŷ = M-1∑
m
ŷ

m

ŷ
1

ŷ
m

ŷ
M

^

^

^

14 / 32

Properties of ensemble models trained by the bagging algorithm

• Each model is trained on average, 63% of the unique examples:
I The chance that a single data point will not be selected from the set of size

N in any of the N draws is (1� 1/N)N

I In the limit for large N, limN!1(1� 1/N)N ! exp(�1) ⇡ 0.37
• The 37% of the training instances that are not used by a given base model are
called out-of-bag (OOB) instances, which can be used as validation set for the
base model (e.g., choosing tree depth).

• Bagging prevents the ensemble from relying too much on any individual training
example, which improves robustness and generalization

• However, bagging does not always improve performance. The base model needs
to be an unstable estimator (i.e. have high variance / be prone to overfitting) so
that omitting some data changes the model fit.

• Also, the more independent the learners the better (pop quiz: why?).
• Classification and regression trees (CARTs) satisfy both conditions above but
not other methods like KNN, SVM or linear regression.

15 / 32

Ensemble of two decision trees fit to the Iris flower dataset

DT 1

Ensemble of DT1 and DT2

DT 2

petal length (cm)

ŷ = (ŷ
1
+ ŷ

2
)/2

ŷ
1

ŷ
2

16 / 32

Outline

Learning objectives

Ensemble learning

Bagging

Random Forest

Boosting
Least square additive boosting
Gradient boosting

17 / 32

Main Idea of Random Forest

Random Forest: bagging of Decision Trees + restricting to a Random subset of

Features
⇤
at each node.

* Some people call Random Features ”Feature Bagging” even though it is unrelated to Bootstrapping.

18 / 32

Random Forest (RF) [L. Brieman Machine Learning 45.1 (2001), pp. 5-32]

• Bagging learns diverse base models on subsets of bootstrap-sampled training examples.
RF seeks to further decorrelate the base models (i.e., decision tree).

• An RF learns K decision or regression trees, where each tree is trained based on

1. a bootstrap sample of N training data points and
2. a randomly chosen subset of

p
D (by default) input features at each tree node

• Out of bag (OOB) samples for each tree are used as validation to determine tree depth.

D

D
1

D
m

D
M

...

...
...

...

...
......

...

ŷ
1

ŷ
m

ŷ
M

{x
2
, x

7
, x

8
}

{x
1
, ... , x

9
}

{x
5
, x

6
, x

9
}

{x
1
, ... , x

9
}

{x
1
, x

4
, x

9
}

{x
1
, ... , x

9
}

x
2
< t

1

x
7
< t

2

x
8
< t

3

R
1

R
2

R
3

R
4

x
9
< t

1

x
6
< t

2

R
1

R
2

x
5
< t

3

R
3

R
4

x
4
< t

1

x
1
< t

2

x
9
< t

3

R
1

R
2

R
3

R
4

Bootstrap

Bootstrap

Tree 1

x*Tree M

Tree m

Tree M

x*Tree 1

x*Tree m

Training Testing

ŷ = mode(ŷ
1
, ..., ŷ

M
)

ŷ = mean(ŷ
1
, ..., ŷ

M
)

Regression:

sampled D’ features

Classification
(majority votes):

19 / 32

Spam detection using hand-crafted tabular data of 57 features

4601 email messages labelled with spam (y = 1) or non-spam (y = 0). The data was
made available by George Forman from Hewlett-Packard. The 57 input features are:

• 48 keyword frequencies (e.g., business, address, internet, George (user name)),
• 6 special characters (;.[$ #),
• 3 features corresponding to average, max, total length of capital letters.

RF performs much better than
Bagging but worse than Boosting
(discussed shortly).

20 / 32

Computing feature importance from RF

• Trees are popular because they are interpretable.
• Ensemble of trees such as RF lose that property
• To extract feature importance from a trained RF, we can follow these steps:

1. Compute feature importance score for each feature d from a single decision
tree classifier m by summing over all non-leaf nodes where feature d is used
weighted by the reduction of cost (e.g., gini-index):

Rd(Tm) =
JX

j=1

GjI[vj = d]

2. Average over all trees in the RF:

Rd =
1

M

MX

m=1

Rd(Tm)

3. Normalize the score: R̂d = 100⇥ Rd/max(R) so that the most important
score is 100%

21 / 32

Feature importance scores for spam detection and MNIST classification

Feature importance of spam detection Feature importance of MNIST classification

22 / 32

Ensemble Learning part II: Boosting

COMP 551 Applied Machine Learning

Isabeau Prémont-Schwarz
School of Computer Science

McGill University

Fall 2024

Please complete the online evaluation for the course on Mercury.
https://go.blueja.io/qLhY92bmaEW4w8hLQ53-LA

Your feedback is very important to us.
Thank you!

2 / 15

https://go.blueja.io/qLhY92bmaEW4w8hLQ53-LA

Recall Generalization Lectures & A2: model averaging reduces variance

x

t

0 1

−1

0

1

x

t

0 1

−1

0

1
true function

model average

Each curve is predicted by a distinct model f
m
(x) Averaged prediction by all models: ŷ = ∑

m
f
m
(x)

^ ^

ED

h
(f̂ (x;D)� y)2

i
= ED

⇣
f̂D(x)� ED[f̂D(x)]

⌘2
�

| {z }
Variance

+ ED

⇣
ED[f̂D(x)]� f (x)

⌘2
�

| {z }
Bias

+ ED

h
✏2
i

| {z }
noise

3 / 15

Outline

Boosting
Least square additive boosting
Gradient boosting

4 / 15

Main Idea of Boosting

Boosting: sequentially adding many weak models to create a powerful model.

(pop quiz: linear models, trees, single feature linear models?)

5 / 15

Boosting is a sequential fitting algorithm

Model fm is a sum of weak learners Fi : fm(x) =
P

i �iFi (x), where �i 2 R+.

• Regression tasks: ŷ = fm(x)

• Binary classification tasks ŷ = p(y = 1|x) = �(fm(x)) = 1
1+exp(�fm(x))

.

• Multi-class classification: (pop quiz: ?)

1. Fit function F1 on the original training data

2. Fit model Fm’s parameters ✓m to solve the residual errors of fm�1.

3. Find the weight �m of Fm which will minimize the original loss.

4. Repeat 2 and 3 until we have the desired M models F1, . . . ,FM .

5. The final ensemble model prediction is

f (x,⇥) =
X

m

�M
m=1Fm(x;✓m)

6 / 15

Forward stagewise additive modelling

Goal: minimize the prediction loss on N training data points w.r.t. the function:

L(f) =
NX

n=1

`(y (n), f (x(n)))

Strategy: sequentially minimize the loss at each iteration m:
1. Obtain optimal parameters for the base model function F (x,✓) (weak learner)

and its weight:

�m,✓m argmin
�,✓

NX

n=1

`(y (n), fm�1(x
(n)) + �F (x(n); ✓))

2. Set the ensemble function (strong learner) at the iteration m to be:

fm(x) = fm�1(x) + �mF (x;✓m)

Note: the detailed boosting algorithm depends on the loss function `. The most
intuitive loss function in this context is the quadratic loss and the fitting algorithm is
called least squares boosting (L2Boosting) (next).

7 / 15

Quadratic loss and least squares boosting (L2Boosting)*

Squared error loss:

`(y (n), fm�1(x
(n)) + F (x(n); ✓)) ⌘ (y (n) � fm�1(x

(n))� F (x(n); ✓))2

⌘ (r (n)m � F (x(n); ✓))2

• r (n)m = y (n) � fm�1(x(n)) is the current residual error on the n’th training example.
• Therefore, F (x(n); ✓) further reduces the residual error made by fm�1(x(n)).
• Overall fitting algorithm of least squares boosting then becomes:

✓m argmin
✓

NX

n=1

(r (n)m � F (x(n); ✓))2

fm(x
(n)) = fm�1(x

(n)) + F (x(n);✓m)

• Note: the function F (x(n); ✓) does not need to be di↵erentiable. For example, we
can use regression tree as the base model.

* For simplicity we give here the algorithm using fixed � = 1 because in L2Boost the �’s are redundant

if the parameters of ✓ of F can scale F by a multiplicative constant as is almost always the case.
8 / 15

Least square boosting using regression trees when � fixed to 1

y

y
-

f 1
(x

1
)

y
-

f 2
(x

1
)

9 / 15

Spam detection using hand-crafted tabular data of 57 features

4601 email messages labelled with spam (y = 1) or non-spam (y = 0). The data was
made available by George Forman from Hewlett-Packard. The 57 input features are:

• 48 keyword frequencies (e.g., business, address, internet, George (user name)),
• 6 special characters (;.[$ #),
• 3 features corresponding to average, max, total length of capital letters.

RF performs much better than
Bagging but worse than Boosting.

10 / 15

Gradient Boosting applied to di↵erent `’s gives most Boosting Algos
Name ` y f

L2Boost 1
2(y � ŷ)2 R ŷ = f (x)

AdaBoost exp(�yf) =
⇣
1�ŷ
ŷ

⌘ y
2 {�1, 1} ŷ = p(y = 1) = �(2f (x))

LogitBoost �(y log(ŷ) + (1� y) log(1� ŷ)) {0, 1} ŷ = p(y = 1) = �(f (x))

LogitBoost example:

`(y , f) = �(y log(ŷ) + (1� y) log(1� ŷ))

= �(y log(1

1 + exp(�f (x))) + (1� y) log(1� 1

1 + exp(�f (x))))

= (y log(1 + exp(�f (x))) + (1� y) log(1 + exp(f (x))))

11 / 15

Gradient Boosting: The General Case

Goal: minimize L(f) =
PN

n=1 `(y
(n), f (x(n)))

Algorithm: sequentially minimize the loss at each iteration m:

• Step 1(initialization m = 1): Fit f1 = F1 by ✓1 argmin
✓

PN
n=1 `(y

(n),F (x(n); ✓))

• (calculate functional gradients/residuals): r (n)m = � @`(y (n),f)
@f

���
f=fm(x(n))

• (fit Fm to residual):

✓m argmin
✓

NX

i=1

(r (n)m � F (x(n); ✓))2

• (line search �m):

�m argmin
�

NX

n=1

`(y (n), fm�1(x
(n)) + �Fm(x

(n); ✓m))

• (update f): fm(x) = fm�1(x) + �mF (x;✓m)
• (iterate): m+ = 1, goto step 2.

12 / 15

Gradient Boosting: The General Case

Goal: minimize L(f) =
PN

n=1 `(y
(n), f (x(n)))

Algorithm: sequentially minimize the loss at each iteration m:

• Step 1(initialization m = 1): Fit f1 = F1 by ✓1 argmin
✓

PN
n=1 `(y

(n),F (x(n); ✓))

• Step 2(calculate functional gradients/residuals): r (n)m = � @`(y (n),f)
@f

���
f=fm(x(n))

• (fit Fm to residual):

✓m argmin
✓

NX

i=1

(r (n)m � F (x(n); ✓))2

• (line search �m):

�m argmin
�

NX

n=1

`(y (n), fm�1(x
(n)) + �Fm(x

(n); ✓m))

• (update f): fm(x) = fm�1(x) + �mF (x;✓m)
• (iterate): m+ = 1, goto step 2.

12 / 15

Gradient Boosting: The General Case

Goal: minimize L(f) =
PN

n=1 `(y
(n), f (x(n)))

Algorithm: sequentially minimize the loss at each iteration m:

• Step 1(initialization m = 1): Fit f1 = F1 by ✓1 argmin
✓

PN
n=1 `(y

(n),F (x(n); ✓))

• Step 2(calculate functional gradients/residuals): r (n)m = � @`(y (n),f)
@f

���
f=fm(x(n))

• Step 3(fit Fm to residual):

✓m argmin
✓

NX

i=1

(r (n)m � F (x(n); ✓))2

• (line search �m):

�m argmin
�

NX

n=1

`(y (n), fm�1(x
(n)) + �Fm(x

(n); ✓m))

• (update f): fm(x) = fm�1(x) + �mF (x;✓m)
• (iterate): m+ = 1, goto step 2.

12 / 15

Gradient Boosting: The General Case

Goal: minimize L(f) =
PN

n=1 `(y
(n), f (x(n)))

Algorithm: sequentially minimize the loss at each iteration m:

• Step 1(initialization m = 1): Fit f1 = F1 by ✓1 argmin
✓

PN
n=1 `(y

(n),F (x(n); ✓))

• Step 2(calculate functional gradients/residuals): r (n)m = � @`(y (n),f)
@f

���
f=fm(x(n))

• Step 3(fit Fm to residual):

✓m argmin
✓

NX

i=1

(r (n)m � F (x(n); ✓))2

• Step 4(line search �m):

�m argmin
�

NX

n=1

`(y (n), fm�1(x
(n)) + �Fm(x

(n); ✓m))

• (update f): fm(x) = fm�1(x) + �mF (x;✓m)
• (iterate): m+ = 1, goto step 2.

12 / 15

Gradient Boosting: The General Case

Goal: minimize L(f) =
PN

n=1 `(y
(n), f (x(n)))

Algorithm: sequentially minimize the loss at each iteration m:

• Step 1(initialization m = 1): Fit f1 = F1 by ✓1 argmin
✓

PN
n=1 `(y

(n),F (x(n); ✓))

• Step 2(calculate functional gradients/residuals): r (n)m = � @`(y (n),f)
@f

���
f=fm(x(n))

• Step 3(fit Fm to residual):

✓m argmin
✓

NX

i=1

(r (n)m � F (x(n); ✓))2

• Step 4(line search �m):

�m argmin
�

NX

n=1

`(y (n), fm�1(x
(n)) + �Fm(x

(n); ✓m))

• Step 5(update f): fm(x) = fm�1(x) + �mF (x;✓m)

• (iterate): m+ = 1, goto step 2.

12 / 15

Gradient Boosting: The General Case

Goal: minimize L(f) =
PN

n=1 `(y
(n), f (x(n)))

Algorithm: sequentially minimize the loss at each iteration m:

• Step 1(initialization m = 1): Fit f1 = F1 by ✓1 argmin
✓

PN
n=1 `(y

(n),F (x(n); ✓))

• Step 2(calculate functional gradients/residuals): r (n)m = � @`(y (n),f)
@f

���
f=fm(x(n))

• Step 3(fit Fm to residual):

✓m argmin
✓

NX

i=1

(r (n)m � F (x(n); ✓))2

• Step 4(line search �m):

�m argmin
�

NX

n=1

`(y (n), fm�1(x
(n)) + �Fm(x

(n); ✓m))

• Step 5(update f): fm(x) = fm�1(x) + �mF (x;✓m)
• Step 6(iterate): m+ = 1, goto step 2.

12 / 15

Gradient Boosting: The General Case

Goal: minimize L(f) =
PN

n=1 `(y
(n), f (x(n)))

Algorithm: sequentially minimize the loss at each iteration m:

• Step 1(initialization m = 1): Fit f1 = F1 by ✓1 argmin
✓

PN
n=1 `(y

(n),F (x(n); ✓))

• Step 2(calculate functional gradients/residuals): r (n)m = � @`(y (n),f)
@f

���
f=fm(x(n))

• Step 3(fit Fm to residual):

✓m argmin
✓

NX

i=1

(r (n)m � F (x(n); ✓))2

• Step 4(line search �m):

�m argmin
�

NX

n=1

`(y (n), fm�1(x
(n)) + �Fm(x

(n); ✓m))

• Step 5(update f): fm(x) = fm�1(x) + �mF (x;✓m)
• Step 6(iterate): m+ = 1, goto step 2.

12 / 15

Gradient Boosting + L2 loss =) L2Boosting

Goal: minimize L(f) =
PN

n=1 `(y
(n), f (x(n)))

Algorithm: sequentially minimize the loss at each iteration m:

• Step 1(initialization m = 1): Fit f1 = F1 by ✓1 argmin
✓

PN
n=1 `(y

(n),F (x(n); ✓))

• Step 2(calculate functional gradients/residuals): r (n)m = � @`(y (n),f)
@f

���
f=fm(x(n))

• Step 3(fit Fm to residual):

✓m argmin
✓

NX

i=1

(r (n)m � F (x(n); ✓))2

• Step 4(line search �m):

�m argmin
�

NX

n=1

`(y (n), fm�1(x
(n)) + �Fm(x

(n); ✓m))

• Step 5(update f): fm(x) = fm�1(x) + �mF (x;✓m)
• Step 6(iterate): m+ = 1, goto step 2.

13 / 15

Gradient Boosting + L2 loss =) L2Boosting

Goal: minimize L(f) =
PN

n=1 `(y
(n), f (x(n)))

Algorithm: sequentially minimize the loss at each iteration m:

• Step 1(init. m = 1): Fit f1 = F1 by ✓1 argmin
✓

PN
n=1

1
2

�
y (n) � F (x(n); ✓)

�2

• Step 2(calculate functional gradients/residuals): r (n)m = � @`(y (n),f)
@f

���
f=fm(x(n))

• Step 3(fit Fm to residual):

✓m argmin
✓

NX

i=1

(r (n)m � F (x(n); ✓))2

• Step 4(line search �m):

�m argmin
�

NX

n=1

`(y (n), fm�1(x
(n)) + �Fm(x

(n); ✓m))

• Step 5(update f): fm(x) = fm�1(x) + �mF (x;✓m)
• Step 6(iterate): m+ = 1, goto step 2.

13 / 15

Gradient Boosting + L2 loss =) L2Boosting

Goal: minimize L(f) =
PN

n=1 `(y
(n), f (x(n)))

Algorithm: sequentially minimize the loss at each iteration m:

• Step 1(init. m = 1): Fit f1 = F1 by ✓1 argmin
✓

PN
n=1

1
2

�
y (n) � F (x(n); ✓)

�2

• Step 2(calculate functional gradients/residuals): r (n)m = � @`(y (n),f)
@f

���
f=fm(x(n))

• Step 3(fit Fm to residual):

✓m argmin
✓

NX

i=1

(r (n)m � F (x(n); ✓))2

• Step 4(line search �m):

�m argmin
�

NX

n=1

`(y (n), fm�1(x
(n)) + �Fm(x

(n); ✓m))

• Step 5(update f): fm(x) = fm�1(x) + �mF (x;✓m)
• Step 6(iterate): m+ = 1, goto step 2.

13 / 15

Gradient Boosting + L2 loss =) L2Boosting

Goal: minimize L(f) =
PN

n=1 `(y
(n), f (x(n)))

Algorithm: sequentially minimize the loss at each iteration m:

• Step 1(init. m = 1): Fit f1 = F1 by ✓1 argmin
✓

PN
n=1

1
2

�
y (n) � F (x(n); ✓)

�2

• Step 2(gradients/residuals): r (n)m = � @`(y (n),f)
@f

���
f=fm(x(n))

= �(fm(x(n))� y (n))

• Step 3(fit Fm to residual):

✓m argmin
✓

NX

i=1

(r (n)m � F (x(n); ✓))2

• Step 4(line search �m):

�m argmin
�

NX

n=1

`(y (n), fm�1(x
(n)) + �Fm(x

(n); ✓m))

• Step 5(update f): fm(x) = fm�1(x) + �mF (x;✓m)
• Step 6(iterate): m+ = 1, goto step 2.

13 / 15

Gradient Boosting + L2 loss =) L2Boosting

Goal: minimize L(f) =
PN

n=1 `(y
(n), f (x(n)))

Algorithm: sequentially minimize the loss at each iteration m:

• Step 1(init. m = 1): Fit f1 = F1 by ✓1 argmin
✓

PN
n=1

1
2

�
y (n) � F (x(n); ✓)

�2

• Step 2(calculate gradients/residuals): r (n)m = � @`(y (n),f)
@f

���
f=fm(x(n))

= y (n) � fm(x(n))

• Step 3(fit Fm to residual):

✓m argmin
✓

NX

i=1

(r (n)m � F (x(n); ✓))2

• Step 4(line search �m):

�m argmin
�

NX

n=1

`(y (n), fm�1(x
(n)) + �Fm(x

(n); ✓m))

• Step 5(update f): fm(x) = fm�1(x) + �mF (x;✓m)
• Step 6(iterate): m+ = 1, goto step 2.

13 / 15

Gradient Boosting + L2 loss =) L2Boosting

Goal: minimize L(f) =
PN

n=1 `(y
(n), f (x(n)))

Algorithm: sequentially minimize the loss at each iteration m:

• Step 1(init. m = 1): Fit f1 = F1 by ✓1 argmin
✓

PN
n=1

1
2

�
y (n) � F (x(n); ✓)

�2

• Step 2(calculate gradients/residuals): r (n)m = � @`(y (n),f)
@f

���
f=fm(x(n))

= y (n) � fm(x(n))

• Step 3(fit Fm to residual):

✓m argmin
✓

NX

i=1

(r (n)m � F (x(n); ✓))2

• Step 4(line search �m):

�m argmin
�

NX

n=1

`(y (n), fm�1(x
(n)) + �Fm(x

(n); ✓m))

• Step 5(update f): fm(x) = fm�1(x) + �mF (x;✓m)
• Step 6(iterate): m+ = 1, goto step 2.

13 / 15

Gradient Boosting + L2 loss =) L2Boosting

Goal: minimize L(f) =
PN

n=1 `(y
(n), f (x(n)))

Algorithm: sequentially minimize the loss at each iteration m:

• Step 1(init. m = 1): Fit f1 = F1 by ✓1 argmin
✓

PN
n=1

1
2

�
y (n) � F (x(n); ✓)

�2

• Step 2(calculate gradients/residuals): r (n)m = � @`(y (n),f)
@f

���
f=fm(x(n))

= y (n) � fm(x(n))

• Step 3(fit Fm to residual):

✓m argmin
✓

NX

i=1

(r (n)m � F (x(n); ✓))2

• Step 4(line search �m):

�m argmin
�

NX

n=1

`(y (n), fm�1(x
(n)) + �Fm(x

(n); ✓m))

• Step 5(update f): fm(x) = fm�1(x) + �mF (x;✓m)
• Step 6(iterate): m+ = 1, goto step 2.

13 / 15

Gradient Boosting + L2 loss =) L2Boosting

Goal: minimize L(f) =
PN

n=1 `(y
(n), f (x(n)))

Algorithm: sequentially minimize the loss at each iteration m:

• Step 1(init. m = 1): Fit f1 = F1 by ✓1 argmin
✓

PN
n=1

1
2

�
y (n) � F (x(n); ✓)

�2

• Step 2(calculate gradients/residuals): r (n)m = � @`(y (n),f)
@f

���
f=fm(x(n))

= y (n) � fm(x(n))

• Step 3(fit Fm to residual):

✓m argmin
✓

NX

i=1

(r (n)m � F (x(n); ✓))2

• Step 4(line search �m):

�m argmin
�

NX

n=1

`(y (n), fm�1(x
(n)) + �Fm(x

(n); ✓m))

• Step 5(update f): fm(x) = fm�1(x) + �mF (x;✓m)
• Step 6(iterate): m+ = 1, goto step 2.

13 / 15

Gradient Boosting + L2 loss =) L2Boosting

Goal: minimize L(f) =
PN

n=1 `(y
(n), f (x(n)))

Algorithm: sequentially minimize the loss at each iteration m:

• Step 1(init. m = 1): Fit f1 = F1 by ✓1 argmin
✓

PN
n=1

1
2

�
y (n) � F (x(n); ✓)

�2

• Step 2(calculate gradients/residuals): r (n)m = � @`(y (n),f)
@f

���
f=fm(x(n))

= y (n) � fm(x(n))

• Step 3(fit Fm to residual):

✓m argmin
✓

NX

i=1

(r (n)m � F (x(n); ✓))2

• Step 4(line search �m):

�m argmin
�

NX

n=1

`(y (n), fm�1(x
(n)) + �Fm(x

(n); ✓m))

• Step 5(update f): fm(x) = fm�1(x) + �mF (x;✓m)
• Step 6(iterate): m+ = 1, goto step 2.

13 / 15

Extreme Gradient Boosting (XGBoost)

• F ’s are Decision Trees.

• 2nd order Taylor expansion (as opposed to 1st order only for Gradient Boosting).

• Adds regularization terms.

14 / 15

Boosting versus Bagging/RF

• While bagging and RF reduce the variance by fitting independent trees, boosting
reduces the bias by sequentially fitting classifiers that depend on each other.

• While boosting is slower than bagging and RF because of its sequential fitting
algorithm, in practice it often produces better performance as we saw in the
earlier spam detection application.

• In Bagging �m = 1/M but in Boosting the �m’s are fitted.

15 / 15

