Applied Machine Learning

Nearest Neighbours

Reihaneh Rabbany

Motivation

What we have left to cover for this course:

Nearest neighbours

Classification and regression trees

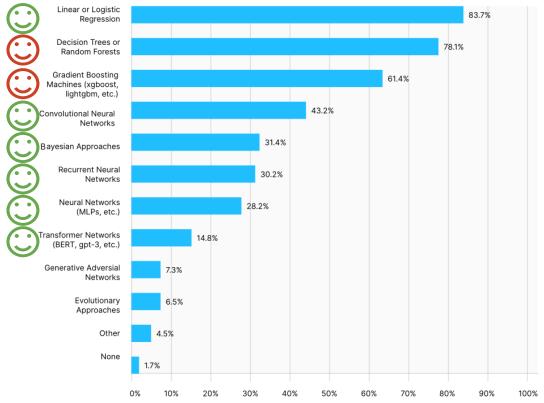
Linear support vector machines

Bagging & boosting

Unsupervised learning

Dimensionality reduction

from 2020 Kaggle's survey on the state of Machine Learning and Data Science, you can read the full version here



Objectives

- variations of k-nearest neighbors for
 - classification
 - regression
- computational complexity
- some pros and cons of K-NN
- what is a hyper-parameter?

Exemplar-based Methods

So far we have focused on parametric models

- fixed-dimensional vector of parameters
- parameters are estimated from a variable-sized dataset
- after model fitting, the data is thrown away

$$x$$
 input $features$ \rightarrow ML algorithm $features$ \rightarrow y labels $f(x;w)$
$$J(w) = \frac{1}{N} \sum_{n=1}^{N} l(y^{(n)}, f(x^{(n)};w))$$

$$w^* = \mathop{\mathrm{arg\,min}}_w J(w)$$

Exemplar-based Methods

So far we have focused on parametric models

- fixed-dimensional vector of parameters
- parameters are estimated from a variable-sized dataset
- after model fitting, the data is thrown away

now we discuss **nonparametric models**

- keep the training data around
- number of parameters of the model can grow with dataset size
- a.k.a. exemplar-based models, instance-based learning, memory-based learning

Classifying by Similarity

We guess type of unseen instances based on their similarity to our past experience Let's give this a try:

is this a kind of

- (a) stork
- (b) pigeon
- (c) penguin

- (a) an east European actor
- (b) drug
- (c) gum brand

is this calligraphy from

- (a) east Asia
- (b) Africa
- (c) middle east

The Price Is Right
1972 · Game Show · 48 seasons

example of nearest neighbor regression pricing based on similar items (e.g., used in the housing market)

Nearest neighbour classifier

training: do nothing and only record the data (a lazy learner, also a non-parametric model)

inference: predict the label by finding the most similar example in training set

 ${\mathcal D}$: training set

 $oldsymbol{x}$: D-dimensional vector

 $oldsymbol{y}$: a categorical or nominal variable

N : number of training instances

 $m{n}$: index of training instance ($n \in \{1 \dots N\}$)

indexes can be placed up or down based on the notation in use, or droped all together. When up, not to be confused with a power

 $\mathcal{D} = \{(x^{(n)}, y^{(n)})\}_{n=1}^N$

pairs of input vector and corresponding target or label

	<tumorsize, perimeter="" texture,=""> , <cancer></cancer></tumorsize,>				
$x^{(1)}$	<18.2,	27.6,	117.5> ,	< No >	$y^{(1)}$
$x^{(2)}$	<17.9,	10.3,	122.8> ,	< No >	$y^{(2)}$
$x^{(3)}$	<20.2,	14.3,	111.2> ,	< Yes >	$y^{(3)}$
:			:		:
•			•		•
$x^{(N)}$	<15.5,	15.2,	135.5> ,	< No >	$y^{(N)}$

Nearest neighbour classifier

training: do nothing and only record the data (a lazy learner, also a non-parametric model)

inference: predict the label by finding the most similar example in training set

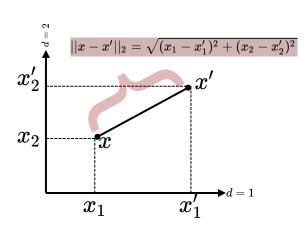
we need a measure of distance/similarity

e.g., Euclidean distance

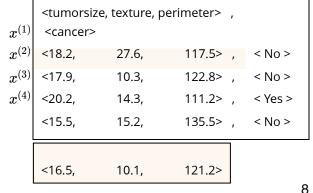
$$||x-x'||_2 = \sqrt{\sum_{d=1}^D (x_d-x_d')^2}$$

dexes the features in an instance

assume each instance (represented by a vector) is a point in a D-dimensional space, the Euclidean distance is the length of a line segment between any two points e.g. in 2D we have:



$$egin{aligned} x^* &= rg \min_{x^{(i)} \in train.set} distance(x^{(i)}, x) \ \hat{y} &= y^* \end{aligned}$$



Nearest neighbour classifier

training: do nothing and only record the data (a **lazy learner**, also a **non-parametric** model) **inference:** predict the label by finding the **most similar** example in training set

need a measure of distance/similarity (e.g., a metric)

examples

for real-valued feature-vectors

Euclidean distance
$$\mathsf{D}_{\mathrm{Euclidean}}(x,x') = \sqrt{\sum_{d=1}^D (x_d - x_d')^2}$$

Manhattan distance
$$\mathsf{D}_{\mathrm{Manhattan}}(x,x') = \sum_{d=1}^{D} |x_d - x_d'|$$

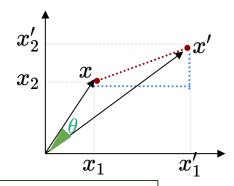
Minkowski distance
$$\mathsf{D}_{\mathrm{Minkowski}}(x,x') = \left(\sum_{d=1}^{D}|x_d - x_d'|^p\right)^{rac{1}{p}}$$

Cosine similarity
$$\mathsf{D}_{\mathrm{Cosine}}(x,x') = x^ op x'/||x||||x'||$$

for discrete feature-vectors (e.g. smoker?)

Hamming distance
$$\mathsf{D}_{\mathrm{Hamming}}(x,x') = \sum_{d=1}^D \mathbb{I}(x_d
eq x_d')$$

... and there are metrics for strings, distributions etc.



$$oxed{||x|| = \sqrt{\sum_{d=1}^D x_d^2}}$$

 x^{\top} denotes transpose of x

 $x^\top x'$ denotes the matrix product of x^\top and x' which is equal to the dot product of x and x'

$$\mathbb{I}(e) = egin{cases} 1 & ext{if e is true} \ 0 & ext{if e is false} \ & ext{indicator function} \end{cases}$$

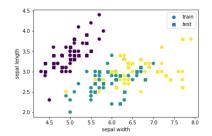
Iris dataset

one of the most famous datasets in statistics

N = 150 instances of flowers

D=4 features {the length and the width of the sepals and petals}

C=3 classes {setosa, versicolor, virginica} : 50 samples of each



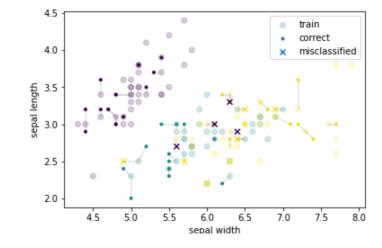
for better visualization, we use only two features

input
$$x^{(n)} \in \mathbb{R}^2$$
 label $y^{(n)} \in \{1,2,3\}$

$$n \in \{1, \dots, N\}$$

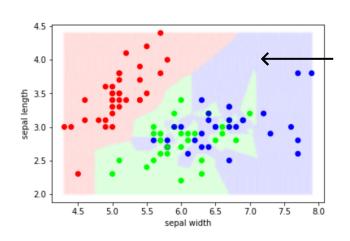
indexes the training instance sometime we drop (n)

using Euclidean distance nearest neighbor classifier gets 68% accuracy (correct/total) in classifying the test instances



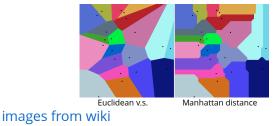
Decision boundary

a classifier defines a decision boundary in the input space

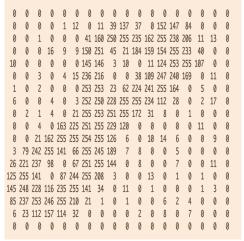


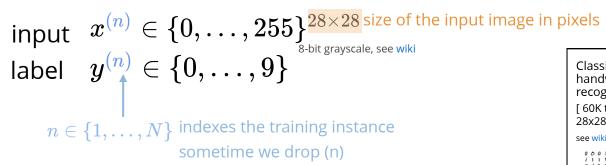
all points in this region will have the same class

the **Voronoi diagram** visualizes the decision boundary of nearest neighbor classifier: each color shows all points closer to the corresponding training instance than to any other instance



Higher dimensions: digits dataset





vectorization:

$$x o ext{vec}(x) \in \mathbb{R}^{784}$$
 input dimension **D** assume intensities are real numbers

Classic example of

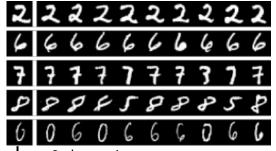
K - Nearest Neighbor (K-NN) classifier

training: do nothing

test: find the nearest image in the training set

we are using Euclidean distance in a 784-dimensional space to find the closest neighbour

closest instances



can we make the predictions more robust?

consider K-nearest neighbors and label by the majority we can even estimate the **probability** of each class

$$p(y^{new} = c \mid x_{new}) = rac{1}{K} \sum_{x^{(k)} \in \mathrm{KNN}(x^{new})} \mathbb{I}(y^{(k)} = c)$$

9 closest instances in the train set per new test instance

new test instances

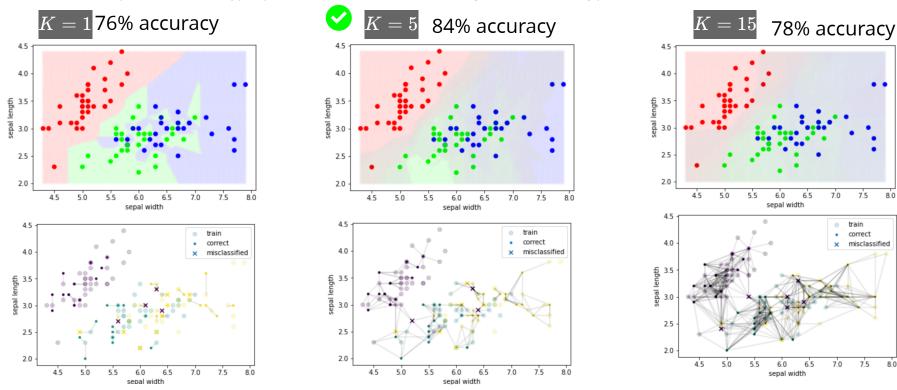
$$p(y=6|\mathbf{6}) = \frac{6}{9}$$

$$p(y = 0 | b) = ?$$

Choice of K

K is a **hyper-parameter** of our model

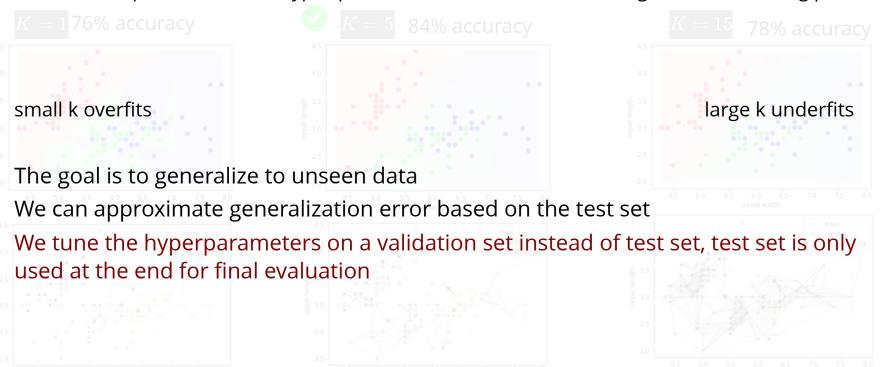
in contrast to parameters, the hyper-parameters are not learned during the usual training procedure



Choice of K

K is a **hyper-parameter** of our model

in contrast to parameters, the hyper-parameters are not learned during the usual training procedure



Computational complexity

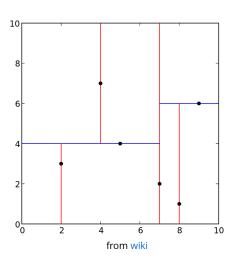
$$\sqrt{\sum_{d=1}^{D}(x_d-x_d')^2}$$

the **computational complexity** for a single test query: O(ND + NK)

for each point in the training set calculate the distance in $\mathcal{O}(D)$ for a total of $\mathcal{O}(ND)$ find the K points with smallest of distances in $\mathcal{O}(NK)$

bonus

in practice efficient implementations using KD-tree (and ball-tree) exist partition the space based on a tree structure for a query point only search the relevant part of the space



[see here for more information]

Scaling and importance of features

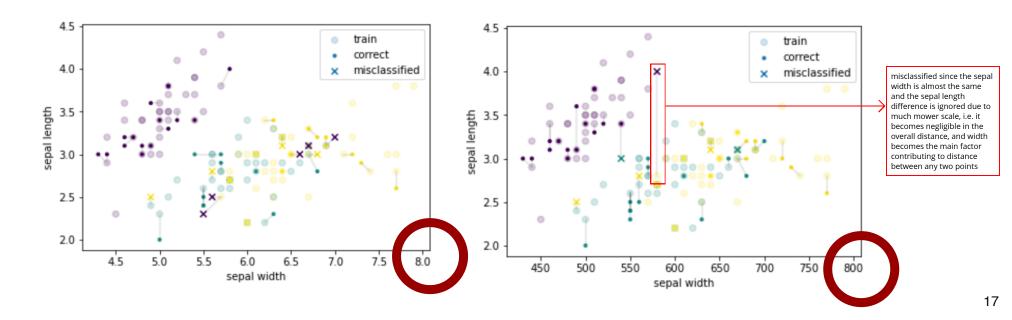
 $\sqrt{\sum_{d=1}^D (x_d-x_d')^2}$

scaling of features affects distances and nearest neighbours

example

feature sepal width is scaled **x100**

closeness in this dimension becomes more important in finding the nearest neighbor

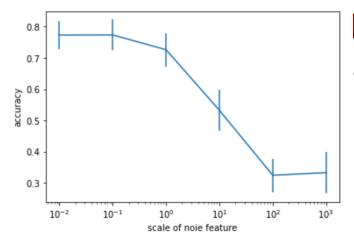


Scaling and importance of features

we want **important features** to maximally affect the classification: they should have **larger scale**

noisy and irrelevant features should have a small scale

K-NN is not adaptive to feature scaling and it is sensitive to noisy features



example

add a feature that is random noise to previous example plot the effect of the scale of noise feature on accuracy

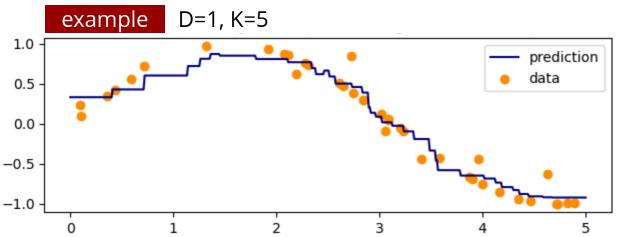
K-NN regression

so far our task was classification

• use *majority vote* of neighbors for prediction at test time

the change for **regression** is minimal

• use the *mean (or median)* of K nearest neighbors' targets

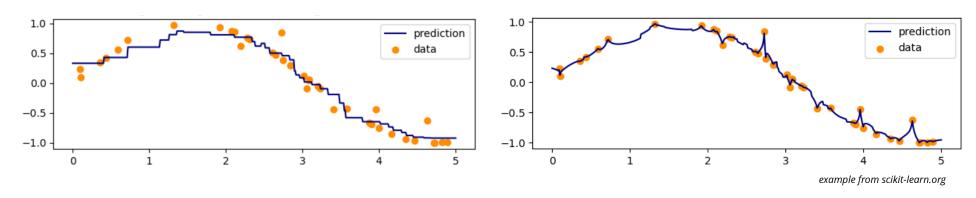


example from scikit-learn.org, see here

Some variations

in **weighted K-NN** the neighbors are weighted inversely proportional to their distance

- for classification the votes are weighted
- for regression calculate the weighted average



in **fixed radius nearest neighbors** all neighbors in a fixed radius are considered in dense neighbourhoods we get more neighbors

K-NN for unsuprevised and semi-supervised learning

Semi-supervided setting:

Propagate labels to nearby points



see the learning from labeled and unlabeled data with label propagation

Unsupervised setting:

Partition the k-NN graphs to cluster the data

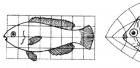
connects each point to its k-nearest neighbor in the [training] data

read more on KNN here, and on clustering with Knn here

Summary

K-NN performs classification/regression by finding similar instances in training set

- need a notion of distance, performance improves a lot with a better similarity measure e.g. see here
- how many neighbors to consider (fixed K, or fixed radius)
- how to weight the neighbors



K-NN is a *non-parametric* method and a *lazy* learner

- non-parametric: our model has no parameters (in fact the training data points are model parameters)
- Lazy, because we don't do anything during the training
 - test-time complexity grows with the size of the data, as well as space complexity (store all data)
 - good performance when we have lots of data, see here

K-NN is sensitive to feature scaling and noise