Sequences Part II: Attention & Transformers COMP 551 Applied Machine Learning

Isabeau Prémont-Schwarz School of Computer Science McGill University

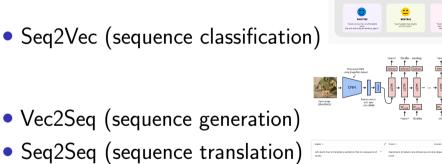
Fall 2024

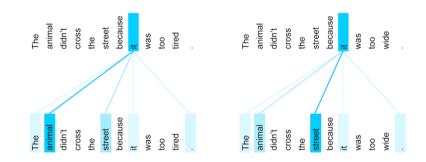
Learning Objectives

• Attention Mechanism

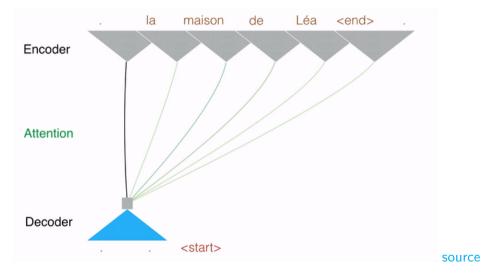
- Motivation
- How it works
- Self-Attention
- Multihead attention
- Positional Encoding
- Transformers
 - Encoder
 - Decoder
- Fine-tuning

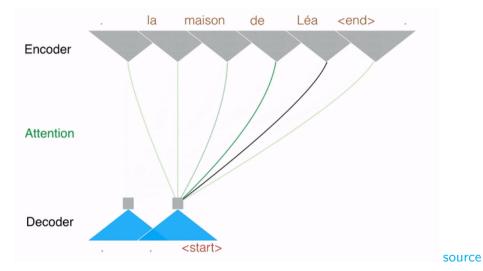
Types of Tasks with Sequences

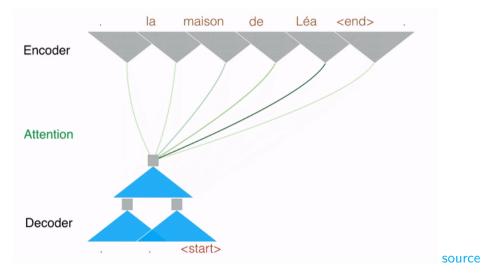


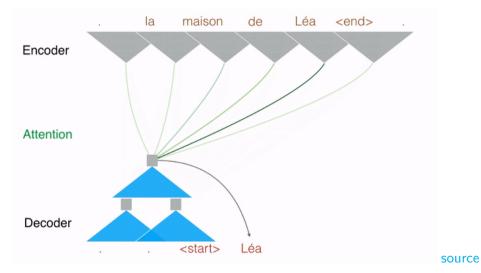


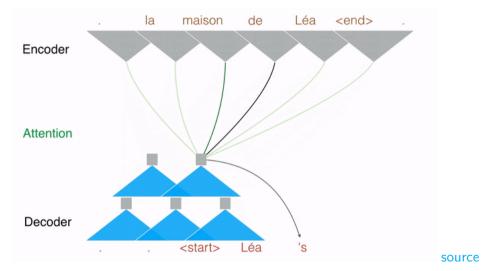
source

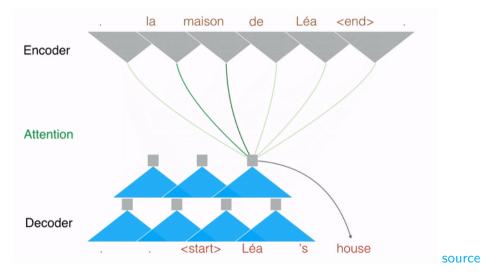


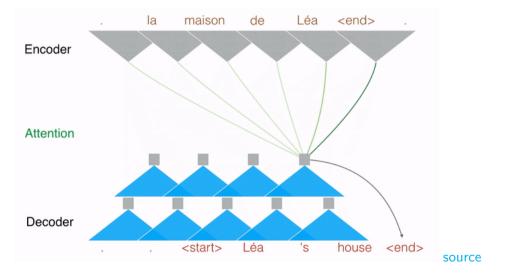




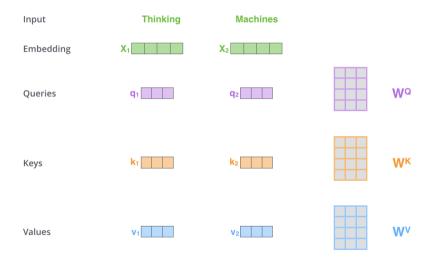




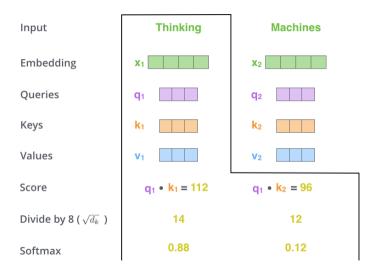




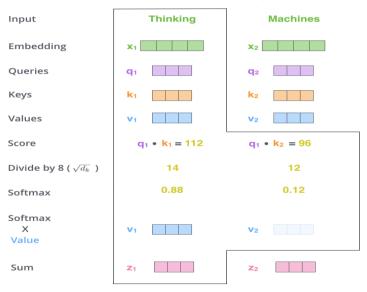
Attention Mechanism - High Level



Attention Mechanism - High Level



Attention Mechanism - High Level



Attention Mechanism - Math

Let $\{x_t \in \mathbb{R}^n | t \in \{1, \dots, T\}\}$ be a sequence of vectors being attended to, and $\{y_s \in \mathbb{R}^m | s \in \{1, \dots, S\}\}$ being a sequence of vectors doing the attending. Then we have that:

Attention Mechanism - Math

Let $\{x_t \in \mathbb{R}^n | t \in \{1, \dots, T\}\}$ be a sequence of vectors being attended to, and $\{y_s \in \mathbb{R}^m | s \in \{1, \dots, S\}\}$ being a sequence of vectors doing the attending. Then we have that:

Query vector:
$$q_s = \underbrace{W^Q}_{d \times m} \cdot y_s \in \mathbb{R}^d$$
.
Key vector: $k_t = \underbrace{W^K}_{d \times n} \cdot x_t \in \mathbb{R}^d$.
Value vector: $v_t = \underbrace{W^V}_{r \times n} \cdot x_t \in \mathbb{R}^r$.

Attention Mechanism - Math

Let $\{x_t \in \mathbb{R}^n | t \in \{1, ..., T\}\}$ be a sequence of vectors being attended to, and $\{y_s \in \mathbb{R}^m | s \in \{1, ..., S\}\}$ being a sequence of vectors doing the attending. Then we have that:

Query vector:
$$q_s = \underbrace{W^Q}_{d \times m} \cdot y_s \in \mathbb{R}^d$$
.
Key vector: $k_t = \underbrace{W^K}_{d \times n} \cdot x_t \in \mathbb{R}^d$.
Value vector: $v_t = \underbrace{W^V}_{r \times n} \cdot x_t \in \mathbb{R}^r$.

The more q_s is aligned with k_t , the more the token at time s pays attention to the token at time t. The attention paid by the token at time s to the token at time t is

$$a_{st} = rac{\exp(q_s \cdot k_t/\sqrt{d})}{\sum_{i=1}^T \exp(q_s \cdot k_t/\sqrt{d})}$$

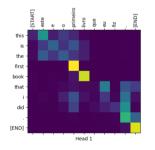
Attention Mechanism – Math

Let $\{x_t \in \mathbb{R}^n | t \in \{1, ..., T\}\}$ be a sequence of vectors being attended to, and $\{y_s \in \mathbb{R}^m | s \in \{1, ..., S\}\}$ being a sequence of vectors doing the attending. Then we have that:

Query vector:
$$q_s = \underbrace{W^Q}_{d \times m} \cdot y_s \in \mathbb{R}^d$$
.
Key vector: $k_t = \underbrace{W^K}_{d \times n} \cdot x_t \in \mathbb{R}^d$.
Value vector: $v_t = \underbrace{W^V}_{r \times n} \cdot x_t \in \mathbb{R}^r$.

$$a_{st} = rac{\exp(q_s \cdot k_t/\sqrt{d})}{\sum_{i=1}^T \exp(q_s \cdot k_t/\sqrt{d})}$$

The more q_s is aligned with k_t , the more the token at time s pays attention to the token at time t. The attention paid by the token at time s to the token at time t is



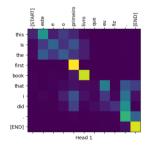
Attention Mechanism – Math

Let $\{x_t \in \mathbb{R}^n | t \in \{1, \dots, T\}\}$ be a sequence of vectors being attended to, and $\{y_s \in \mathbb{R}^m | s \in \{1, \dots, S\}\}$ being a sequence of vectors doing the attending. Then we have that:

Query vector:
$$q_s = \underbrace{W^Q}_{d \times m} \cdot y_s \in \mathbb{R}^d$$
.
Key vector: $k_t = \underbrace{W^K}_{d \times n} \cdot x_t \in \mathbb{R}^d$.
Value vector: $v_t = \underbrace{W^V}_{r \times n} \cdot x_t \in \mathbb{R}^r$.
 $a_{st} = \frac{\exp(q_s \cdot k_t/\sqrt{d})}{\sum_{i=1}^T \exp(q_s \cdot k_t/\sqrt{d})}$
 $z_s = \sum_{t=1}^T a_{st} v_t$

V

The more a_s is aligned with k_t , the more the token at time *s* pays attention to the token at time t. The attention paid by the token at time s to the token at time t is



Attention Mechanism – Math

$$\underbrace{X}_{T \times n} = \begin{bmatrix} x_1 \\ \cdots \\ x_T \end{bmatrix}, \qquad \underbrace{Y}_{S \times m} = \begin{bmatrix} y_1 \\ \cdots \\ y_S \end{bmatrix}, \qquad \qquad \underbrace{Z}_{S \times r} = \begin{bmatrix} z_1 \\ \cdots \\ z_S \end{bmatrix},$$

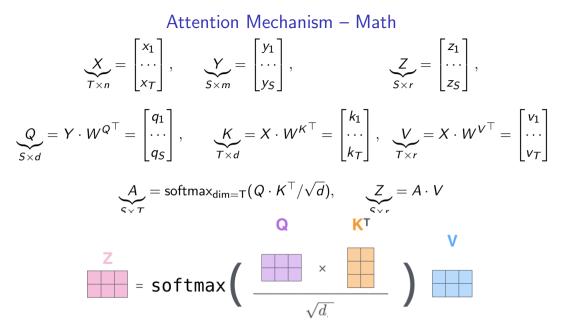
Attention Mechanism – Math

$$\underbrace{X}_{T \times n} = \begin{bmatrix} x_1 \\ \cdots \\ x_T \end{bmatrix}, \quad \underbrace{Y}_{S \times m} = \begin{bmatrix} y_1 \\ \cdots \\ y_S \end{bmatrix}, \quad \underbrace{Z}_{S \times r} = \begin{bmatrix} z_1 \\ \cdots \\ z_S \end{bmatrix},$$

$$\underbrace{Q}_{S \times d} = Y \cdot W^{Q^{\top}} = \begin{bmatrix} q_1 \\ \cdots \\ q_S \end{bmatrix}, \quad \underbrace{K}_{T \times d} = X \cdot W^{K^{\top}} = \begin{bmatrix} k_1 \\ \cdots \\ k_T \end{bmatrix}, \quad \underbrace{V}_{T \times r} = X \cdot W^{V^{\top}} = \begin{bmatrix} v_1 \\ \cdots \\ v_T \end{bmatrix}$$

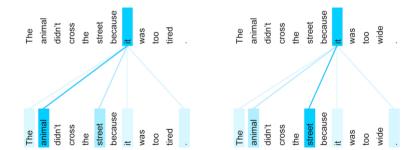
Attention Mechanism – Math

$$\begin{array}{l}
\underbrace{X}_{T \times n} = \begin{bmatrix} x_{1} \\ \cdots \\ x_{T} \end{bmatrix}, \quad \underbrace{Y}_{S \times m} = \begin{bmatrix} y_{1} \\ \cdots \\ y_{S} \end{bmatrix}, \quad \underbrace{Z}_{S \times r} = \begin{bmatrix} z_{1} \\ \cdots \\ z_{S} \end{bmatrix}, \\
\underbrace{Z}_{S \times r} = \begin{bmatrix} z_{1} \\ \cdots \\ z_{S} \end{bmatrix}, \\
\underbrace{Z}_{S \times r} = \begin{bmatrix} x_{1} \\ \cdots \\ z_{S} \end{bmatrix}, \\
\underbrace{Z}_{S \times r} = \begin{bmatrix} x_{1} \\ \cdots \\ z_{S} \end{bmatrix}, \\
\underbrace{Z}_{S \times r} = X \cdot W^{V^{\top}} = \begin{bmatrix} v_{1} \\ \cdots \\ v_{T} \end{bmatrix}, \quad \underbrace{Z}_{S \times r} = X \cdot W^{V^{\top}} = \begin{bmatrix} v_{1} \\ \cdots \\ v_{T} \end{bmatrix} \\
\underbrace{A}_{S \times T} = \operatorname{softmax_{dim} = T}(Q \cdot K^{\top} / \sqrt{d}), \quad \underbrace{Z}_{S \times r} = A \cdot V
\end{array}$$



Self-Attention

If the sequence $\{x_t \in \mathbb{R}^n | t \in \{1, ..., T\}\}$ being attended to, is the same as the sequence $\{y_s \in \mathbb{R}^m | s \in \{1, ..., S\}\}$ doing the attending, i.e. if X = Y, we call it **SELF-ATTENTION**.



•

$$x_{t} = \left\{ \begin{bmatrix} 1\\0\\0\\0 \end{bmatrix}, \begin{bmatrix} 0\\1\\0\\0 \end{bmatrix}, \begin{bmatrix} 1\\0\\0\\0 \end{bmatrix}, \begin{bmatrix} 1\\0\\0\\0 \end{bmatrix} \right\}, \quad y = \begin{bmatrix} 1\\-1\\0 \end{bmatrix}$$
$$W^{K} = \mathbb{I}, \quad , W^{V} = \begin{bmatrix} 1&0&0&0\\0&1&1&0\\0&1&1&0 \end{bmatrix}, \quad W^{Q} = \begin{bmatrix} 0&1&0\\1&0&0\\0&0&1\\1&0&-1 \end{bmatrix}.$$

z =

 $v_t =$

$$\begin{aligned} x_t &= \left\{ \begin{bmatrix} 1\\0\\0\\0\\0 \end{bmatrix}, \quad \begin{bmatrix} 0\\1\\0\\0\\0 \end{bmatrix} \right\}, \quad y = \begin{bmatrix} 1\\-1\\0\\0\\0 \end{bmatrix}. \\ k_t &= \left\{ \begin{bmatrix} 1\\0\\0\\0\\0 \end{bmatrix}, \quad \begin{bmatrix} 0\\1\\0\\0\\0 \end{bmatrix} \right\}, \quad v_t = \left\{ \begin{bmatrix} 1\\0\\1\\0\\1 \end{bmatrix}, \quad \begin{bmatrix} 0\\1\\0\\1 \end{bmatrix}, \quad \begin{bmatrix} 1\\0\\0\\1 \end{bmatrix} \right\}, \quad q = \begin{bmatrix} -1\\1\\0\\1\\1 \end{bmatrix}. \\ q \cdot k_t &= \end{aligned} \end{aligned}$$

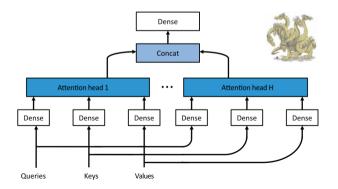
$$\begin{aligned} x_t &= \left\{ \begin{bmatrix} 1\\0\\0\\0\\0 \end{bmatrix}, \quad \begin{bmatrix} 0\\1\\0\\0\\0 \end{bmatrix} \right\}, \quad y = \begin{bmatrix} 1\\-1\\0\\0\\0 \end{bmatrix}. \\ k_t &= \left\{ \begin{bmatrix} 1\\0\\0\\0\\0 \end{bmatrix}, \quad \begin{bmatrix} 0\\1\\0\\0\\0 \end{bmatrix} \right\}, \quad v_t = \left\{ \begin{bmatrix} 1\\0\\1\\0\\1 \end{bmatrix}, \quad \begin{bmatrix} 1\\0\\0\\1 \end{bmatrix}, \quad \begin{bmatrix} 1\\0\\0\\1 \end{bmatrix}, \quad q = \begin{bmatrix} -1\\1\\0\\1\\1 \end{bmatrix}. \\ q \cdot k_t &= [-1, 1, -1] \end{aligned} \right\}$$

Attention Mechanism – Example

Attention Mechanism – Multi-Head Attention

Besides going deep, we can also go wide by having MHA with each head indexed by $i \in \{1, \dots, H\}$:

Query: $\mathbf{Q}_i = \mathbf{X} \mathbf{W}_i^{(q)}$; Key: $\mathbf{K}_i = \mathbf{X} \mathbf{W}_i^{(k)}$; Value: $\mathbf{V}_i = \mathbf{X} \mathbf{W}_i^{(v)}$ Self-attention: $\mathbf{A}_i = \operatorname{Attn}(\mathbf{Q}_i, \mathbf{K}_i)$; Word embedding: $\mathbf{Z}_i = \mathbf{A}_i \mathbf{V}_i$



We then concatenate the outputs from all H attention heads and feed them into a dense layer (i.e., a full-connected layer) to get the final embedding:

$$\mathsf{Z} = [\mathsf{Z}_1, \dots, \mathsf{Z}_H] \mathsf{W}_o \in \mathbb{R}^{N imes K}$$

where \mathbf{W}_{o} is a $(\sum_{i=1}^{H} K_{i}) \times K$ matrix.

2.4

Attention Mechanism - Multi-Head Attention

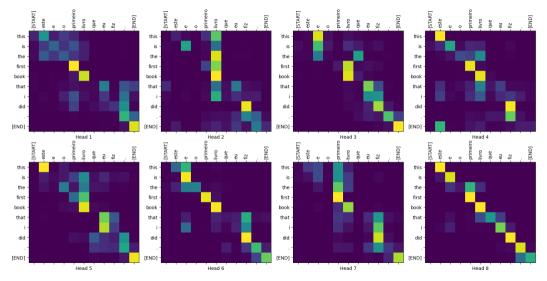


image source

 Attention is permutation invariant and therefore ignores the input word ordering. To make it aware of the word position we can use positional encoding (PE) to represent the sentence with N tokens with P ∈ ℝ^{N×D}.

- Attention is permutation invariant and therefore ignores the input word ordering. To make it aware of the word position we can use positional encoding (PE) to represent the sentence with N tokens with P ∈ ℝ^{N×D}.
- A commonly used PE is a set of sinusoidal basis functions. To encode the i^th word position using the j^th encoding dimension for $j \in \{0, \ldots, D/2\}$, we have $p_{i,2j} = \sin\left(\frac{i}{C^{2j/D}}\right)$, $p_{i,2j+1} = \cos\left(\frac{i}{C^{2j/D}}\right)$, where C (e.g., C = 10, 000) is some large constant that is not important here.

- Attention is permutation invariant and therefore ignores the input word ordering. To make it aware of the word position we can use positional encoding (PE) to represent the sentence with N tokens with P ∈ ℝ^{N×D}.
- A commonly used PE is a set of sinusoidal basis functions. To encode the i^th word position using the j^th encoding dimension for $j \in \{0, \ldots, D/2\}$, we have $p_{i,2j} = \sin\left(\frac{i}{C^{2j/D}}\right)$, $p_{i,2j+1} = \cos\left(\frac{i}{C^{2j/D}}\right)$, where C (e.g., C = 10, 000) is some large constant that is not important here.
- For example, if D = 4, the encoding for the i^th token is: $p_i = \left[\sin\left(\frac{i}{C^{0/4}}\right), \cos\left(\frac{i}{C^{0/4}}\right), \sin\left(\frac{i}{C^{2/4}}\right), \cos\left(\frac{i}{C^{2/4}}\right) \right]$

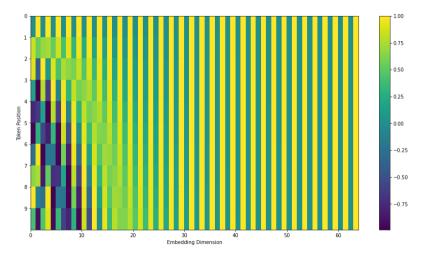
- Attention is permutation invariant and therefore ignores the input word ordering. To make it aware of the word position we can use positional encoding (PE) to represent the sentence with N tokens with P ∈ ℝ^{N×D}.
- A commonly used PE is a set of sinusoidal basis functions. To encode the i^t h word position using the j^t h encoding dimension for $j \in \{0, \ldots, D/2\}$, we have $p_{i,2j} = \sin\left(\frac{i}{C^{2j/D}}\right)$, $p_{i,2j+1} = \cos\left(\frac{i}{C^{2j/D}}\right)$, where C (e.g., C = 10, 000) is some large constant that is not important here.

• For example, if D = 4, the encoding for the i^th token is:

$$p_i = \left[\sin\left(\frac{i}{C^{0/4}}\right), \cos\left(\frac{i}{C^{0/4}}\right), \sin\left(\frac{i}{C^{2/4}}\right), \cos\left(\frac{i}{C^{2/4}}\right) \right]$$

• We can then combine the PE $P \in \mathbb{R}^{N \times D}$ with the original word embedding $Z \in \mathbb{R}^{N \times K}$ by either concatenating them $Z^* = [P, Z]$ or adding them $Z^* = P + Z$. For the latter, we will need to make sure K = D.

Positional encoding for 10 tokens and D = 64:



Transformers

Attention Is All You Need

Ashish Vaswani* Google Brain avaswani@google.com Noam Shazeer* Google Brain noam@google.com Niki Parmar* Jakob Uszkoreit* Google Research nikip@google.com usz@google.com

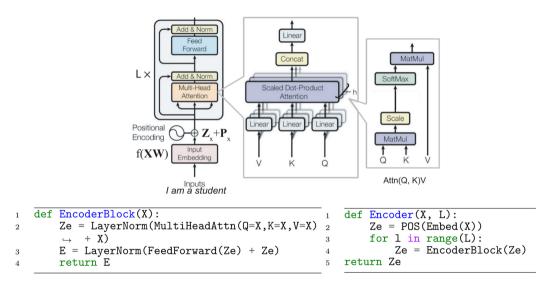
Llion Jones* Google Research llion@google.com Aidan N. Gomez^{*}[†] University of Toronto aidan@cs.toronto.edu Łukasz Kaiser* Google Brain lukaszkaiser@google.com

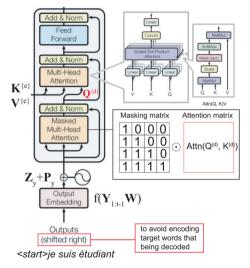
Illia Polosukhin* [‡] illia.polosukhin@gmail.com

PDF of article: https://arxiv.org/pdf/1706.03762

Unless otherwise specified, images in this section are taken from the above paper.

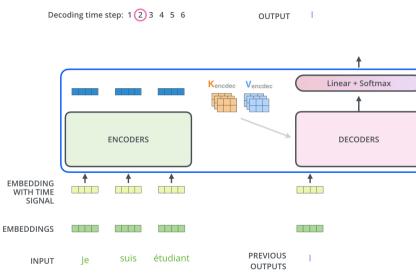
Encoder

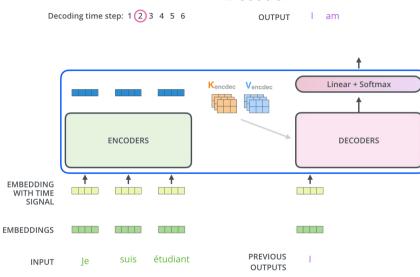


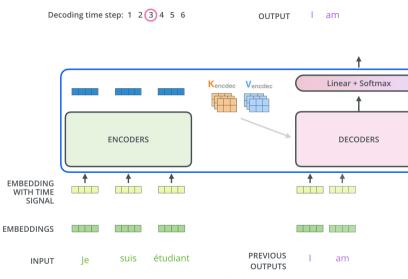


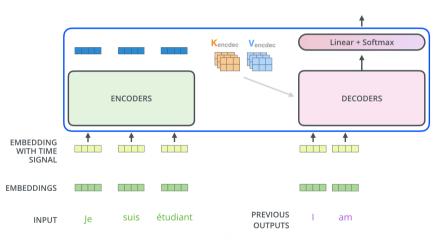
def DecoderBlock(Y, Ke, Ve): Zd = LayerNorm(MaskedMultiHeadAttn(Q=Y,K=Y,V=Y) + Y) Zd = LayerNorm(MultiHeadAttn(Q=Zd, K=Ke, V=Ve) + Zd) Zd = LayerNorm(FeedForward(Zd) + Zd) return Zd

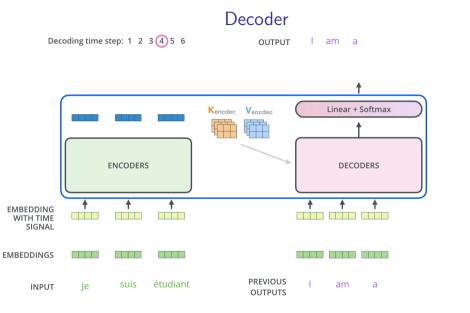
```
def Decoder(Y, Ke, Ve, L):
    Zd = POS(Embed(Y))
    for 1 in range(L):
        Zd = DecoderBlock(Zd, Ke, Ve)
    return Zd
```

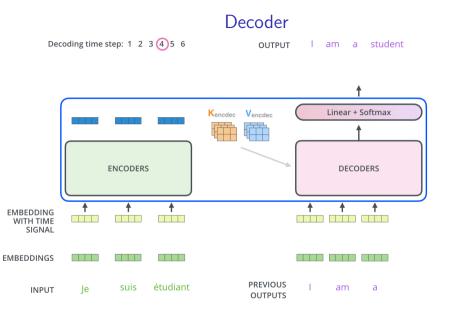


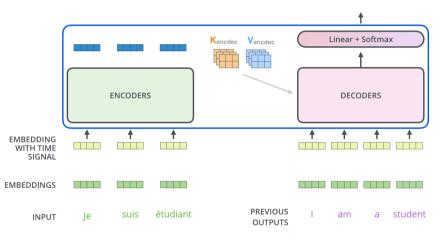


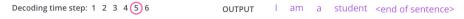


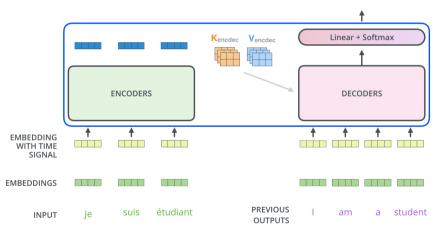






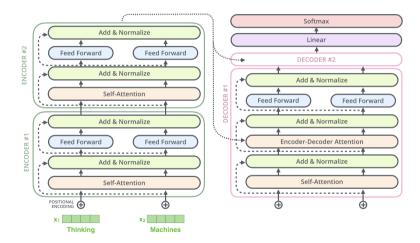






Vec2Seq and Seq2Vec ?

With a Transformer we saw how to do Seq2Seq. How can we do Vec2Seq or Seq2Vec?



Open AI Generative Pre-Trained Transformer (i.e. ChatGPT)

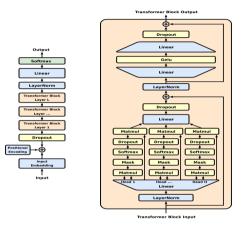


Figure: Open AI GPT architecture (source: Wikipedia)

Trained on next word(s) prediction.

Open AI GPT (i.e. ChatGPT)

Model	Architecture	Parameters	Training data	Release date	Training cost
GPT-1	12-level, 12-headed Transformer decoder (no encoder).	117 million	BookCorpus: 4.5 GB of text, from 7000 unpub- lished books.	June 11, 2018	30 days on 8 P600 GPUs, or 1 petaFLOP/s-day.
GPT-2	GPT-1, but with modi- fied normalization	1.5 billion	WebText: 40 GB of text, 8 million documents, from 45 million webpages upvoted on Reddit.	February 14, 2019 (ini- tial/limited version) and November 5, 2019 (full version)	"tens of petaflop/s- day", or 1.5e21 FLOP.
GPT-3	GPT-2, but with mod- ification to allow larger scaling	175 billion	499 billion tokens of CommonCrawl (570 GB), WebText, English Wikipedia, book corpora (Books1 and Books2).	May 28, 2020	3640 petaflop/s-day.
GPT-3.5	Undisclosed	175 billion	Undisclosed	March 15, 2022	Undisclosed
GPT-4	Trained with both text prediction and RLHF.	Estimated 1.7 trillion.	Undisclosed	March 14, 2023	$\begin{array}{llllllllllllllllllllllllllllllllllll$

LLMs

- ELMO (Embeddings from Language Model)
 - RNN based, trained unsupervised to minimize the negative log likelihood of the input sentence, i.e. $y_t = x_{t-1}$
- BERT (Bidirectional Encoder Representations from Transformers)
 - Transformer-based: map a modified version of a sequence back to the unmodified form and compute the loss at the masked locations: fill-in-the-blank :

Let's make [MASK] chicken! [SEP] It [MASK] great with orange sauce

- **GPT** (Generative Pre-training Transformer)
 - uses a masked transformer as the decoder, see an open-source model here (20 billion parameters)

How to fine-tune?

Summary

• Attention Mechanism

- $Z = \operatorname{softmax}(Q \cdot K^{\top} / \sqrt{d}) \cdot V$
- Self-Attention
- Multihead attention
- Positional Encoding
- Transformers
 - Encoder (self-attention)
 - Decoder (self-attention to previous output + attention to encoder output)

• Fine-tuning