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Learning Objectives

• Attention Mechanism
• Motivation
• How it works
• Self-Attention
• Multihead attention

• Positional Encoding
• Transformers

• Encoder
• Decoder

• Fine-tuning
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Types of Tasks with Sequences

• Seq2Vec (sequence classification)

• Vec2Seq (sequence generation)

• Seq2Seq (sequence translation)
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The Idea

source
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https://mchromiak.github.io/articles/2017/Sep/12/Transformer-Attention-is-all-you-need/
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Attention Mechanism – High Level

source
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http://jalammar.github.io/illustrated-transformer/
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Attention Mechanism – High Level
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Attention Mechanism – Math
Let {xt ∈ Rn|t ∈ {1, . . .T}} be a sequence of vectors being attended to, and
{ys ∈ Rm|s ∈ {1, . . .S}} being a sequence of vectors doing the attending. Then we
have that:

Query vector: qs = WQ︸︷︷︸
d×m

·ys ∈ Rd .

Key vector: kt = WK︸︷︷︸
d×n

·xt ∈ Rd .

Value vector: vt = W V︸︷︷︸
r×n

·xt ∈ Rr .

The more qs is aligned with kt , the more the
token at time s pays attention to the token
at time t. The attention paid by the token
at time s to the token at time t is

ast =
exp(qs · kt/

√
d)∑T

i=1 exp(qs · kt/
√
d)
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Attention Mechanism – Math

X︸︷︷︸
T×n

=

x1
· · ·
xT

 , Y︸︷︷︸
S×m

=

y1
· · ·
yS

 , Z︸︷︷︸
S×r

=

 z1
· · ·
zS

 ,

Q︸︷︷︸
S×d

= Y ·WQ⊤
=

q1
· · ·
qS

 , K︸︷︷︸
T×d

= X ·WK⊤
=

k1
· · ·
kT

 , V︸︷︷︸
T×r

= X ·W V⊤
=

v1
· · ·
vT


A︸︷︷︸

S×T

= softmaxdim=T(Q · K⊤/
√
d), Z︸︷︷︸

S×r

= A · V
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Self-Attention

If the sequence {xt ∈ Rn|t ∈ {1, . . .T}} being attended to, is the same as the sequence
{ys ∈ Rm|s ∈ {1, . . .S}} doing the attending, i.e. if X = Y , we call it
SELF-ATTENTION.
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Attention Mechanism – Example

xt =



1
0
0
0

 ,


0
1
0
0

 ,


1
0
0
0


 , y =

 1
−1
0

 .

WK = I, ,W V =

[
1 0 0 0
0 1 1 0

]
, WQ =


0 1 0
1 0 0
0 0 1
1 0 −1

 .

z =
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Attention Mechanism – Multi-Head Attention
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Attention Mechanism – Multi-Head Attention

image source
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https://www.tensorflow.org/text/tutorials/transformer?


Positional Encoding

• Attention is permutation invariant and therefore ignores the input word ordering.
To make it aware of the word position we can use positional encoding (PE) to
represent the sentence with N tokens with P ∈ RN×D .

• A commonly used PE is a set of sinusoidal basis functions. To encode the ith word
position using the jth encoding dimension for j ∈ {0, . . . ,D/2}, we have

pi ,2j = sin
(

i
C2j/D

)
, pi ,2j+1 = cos

(
i

C2j/D

)
, where C (e.g., C = 10, 000) is

some large constant that is not important here.

• For example, if D = 4, the encoding for the ith token is:

pi =
[
sin

(
i

C0/4

)
, cos

(
i

C0/4

)
, sin

(
i

C2/4

)
, cos

(
i

C2/4

)]
• We can then combine the PE P ∈ RN×D with the original word embedding

Z ∈ RN×K by either concatenating them Z ∗ = [P,Z ] or adding them Z ∗ = P + Z .
For the latter, we will need to make sure K = D.
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Positional Encoding

Positional encoding for 10 tokens and D = 64:
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Transformers

PDF of article: https://arxiv.org/pdf/1706.03762
Unless otherwise specified, images in this section are taken from the above paper.
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https://arxiv.org/pdf/1706.03762


Encoder
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Decoder
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Decoder

source: Jalammar Blog
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http://jalammar.github.io/illustrated-transformer/
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Vec2Seq and Seq2Vec ?

With a Transformer we saw how to do Seq2Seq. How can we do Vec2Seq or Seq2Vec?
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Open AI Generative Pre-Trained Transformer (i.e. ChatGPT)

Figure: Open AI GPT architecture (source: Wikipedia)

Trained on next word(s) prediction.
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Open AI GPT (i.e. ChatGPT)

Model
Architecture Parameters Training data Release date Training cost

GPT-1
12-level, 12-headed
Transformer decoder
(no encoder).

117 million BookCorpus: 4.5 GB of
text, from 7000 unpub-
lished books.

June 11, 2018 30 days on 8
P600 GPUs, or 1
petaFLOP/s-day.

GPT-2
GPT-1, but with modi-
fied normalization

1.5 billion WebText: 40 GB of
text, 8million documents,
from 45 million webpages
upvoted on Reddit.

February 14, 2019 (ini-
tial/limited version) and
November 5, 2019 (full
version)

”tens of petaflop/s-
day”, or 1.5e21
FLOP.

GPT-3
GPT-2, but with mod-
ification to allow larger
scaling

175 billion 499 billion tokens of
CommonCrawl (570
GB), WebText, English
Wikipedia, book corpora
(Books1 and Books2).

May 28, 2020 3640 petaflop/s-day.

GPT-3.5
Undisclosed 175 billion Undisclosed March 15, 2022 Undisclosed

GPT-4
Trained with both text
prediction and RLHF.

Estimated
1.7 trillion.

Undisclosed March 14, 2023 Undisclosed. Esti-
mated 2.1 × 10
FLOP.

source: wiki
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https://en.wikipedia.org/wiki/Generative_pre-trained_transformer


LLMs
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Fine-Tuning

How to fine-tune?
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Summary

• Attention Mechanism
• Z = softmax(Q · K⊤/

√
d) · V

• Self-Attention
• Multihead attention

• Positional Encoding
• Transformers

• Encoder (self-attention)
• Decoder (self-attention to previous output + attention to encoder output)

• Fine-tuning
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