Applied Machine Learning

Gradient Computation \& Automatic Differentiation

Isabeau Prémont-Schwarz

Learning objectives

using the chain rule to calculate the gradients automatic differentiation

- forward mode
- reverse mode (backpropagation)

Landscape of the cost function

model two layer MLP
$f(x ; W, V)=g(W h(V x))$

objective $\min _{W, V} \sum_{n} L\left(y^{(n)}, f\left(x^{(n)} ; W, V\right)\right)$
loss function depends on the task

this is a non-convex optimization problem

Landscape of the cost function

model two layer MLP

$$
f(x ; W, V)=g(W h(V x))
$$

there are exponentially many optima
given one optimum V^{*}, W * we can create many more with the same cost:

- permute hidden units in each layer (M!) weight space symmetry
- for symmetric activations: negate input/ouput of a unit
- for ReLU: rescale input/output weights attached to a unit

objective $\min _{W, V} \sum_{n} L\left(y^{(n)}, f\left(x^{(n)} ; W, V\right)\right)$
loss function depends on the task

this is a non-convex optimization problem

many critical points (points where gradientis zero)

local max

Landscape of the cost function

there are exponentially many optima
given one optimum V^{*}, W * we can create many more with the same cost:

- permute hidden units in each layer (M!)
- for symmetric activations: negate input/ouput of a unit
- for ReLU: rescale input/output weights attached to a unit
this is a non-convex optimization problem

general beliefs

supported by empirical and theoretical results in a special settings
many more saddle points than local minima number of local minima increases for lower costs therefore most local optima are close to global optima

Jacobian matrix

$f: \mathbb{R} \rightarrow \mathbb{R} \quad$ we have the derivative $\frac{d}{d w} f(w) \in \mathbb{R}$
$f(x)=x^{2} \Rightarrow \frac{d}{d w} f(w)=2 x$
$f: \mathbb{R}^{D} \rightarrow \mathbb{R}$ gradient is the vector of all partial derivatives

$$
f(x, y)=x^{2}+y^{2} \Rightarrow
$$

$$
\nabla_{w} f(w)=\left[\frac{\partial}{\partial w_{1}} f(w), \ldots, \frac{\partial}{\partial w_{D}} f(w)\right]^{\top} \in \mathbb{R}^{D}
$$

$$
\nabla_{w=[x, y]} f(w)=[2 x, 2 y]
$$

$f: \mathbb{R}^{D} \rightarrow \mathbb{R}^{M} \quad$ the Jacobian matrix of all partial derivatives
note that we use J also for cost function $\nabla_{w} f_{1}(w)\left[\begin{array}{ccc}\frac{\partial f_{1}(w)}{\partial w_{1}}, & \ldots, & \frac{\partial f_{1}(w)}{\partial w_{D}} \\ \vdots & \ddots & \vdots \\ \frac{\partial f_{M}(w)}{\partial w_{1}}, & \ldots, & \frac{\partial f_{M}(w)}{\partial w_{D}}\end{array}\right] \in \mathbb{R}^{M \times D} \quad \begin{aligned} & \\ & J_{i j}=\frac{\partial f_{i}(w)}{\partial w_{j}}\end{aligned}$

$f(x, y)$	$=\left[x^{2}, y^{2}, 2 x y\right] \Rightarrow$
J	$=\left[\begin{array}{cc}2 x, & 0 \\ 0, & 2 y \\ 2 y, & 2 x\end{array}\right]$

for all three case we may simply write $\frac{\partial}{\partial w} f(w)$, where M, D will be clear from the context what if W is a matrix? we assume it is reshaped into a vector for these calculations

Chain rule

for $f: x \mapsto z \quad$ and $\quad h: z \mapsto y \quad$ where $\quad x, y, z \in \mathbb{R}$

$$
\begin{aligned}
& \frac{d y}{d x}=\frac{d y}{d z} \frac{d z}{d x} \\
& \left\lvert\, \begin{array}{c}
\text { speed of change in } z \text { as we change } x \\
\text { speed of change in y as we change } z
\end{array}\right. \\
& \text { speed of change in } y \text { as we change } x
\end{aligned}
$$

more generally $\quad x \in \mathbb{R}^{D}, z \in \mathbb{R}^{M}, y \in \mathbb{R}^{C}$

$$
\begin{aligned}
\frac{\partial y}{\partial x}= & \frac{\partial y}{\partial z} \frac{\partial z}{\partial x} \quad \text { in matrix form } \\
C \times D \text { Jacobian } & \left.\right|_{C \times M \times D \text { Jacobian }} \\
\frac{\partial y_{c}}{\partial x_{d}}= & \sum_{m=1}^{M} \frac{\partial y_{c}}{\partial z_{m}} \frac{\partial z_{m}}{\partial x_{d}}
\end{aligned}
$$

Training a two layer network

$$
\hat{y}=g(W h(V x))
$$

Cost function we want to minimize
$J(W, V)=\sum_{n} L\left(y^{(n)}, g\left(W h\left(V x^{(n)}\right)\right)\right.$
need gradient wrt W and $\mathrm{V}: \frac{\partial}{\partial W} J, \frac{\partial}{\partial V} J$

for simplicity we drop the bias terms
simpler to write this for one instance (n)
so we will calculate $\frac{\partial}{\partial W} L, \frac{\partial}{\partial V} L$ and recover

$$
\frac{\partial}{\partial W} J=\sum_{n=1}^{N} \frac{\partial}{\partial W} L\left(y^{(n)}, \hat{y}^{(n)}\right) \text { and } \frac{\partial}{\partial V} J=\sum_{n=1}^{N} \frac{\partial}{\partial V} L\left(y^{(n)}, \hat{y}^{(n)}\right)
$$

Gradient calculation

using the chain rule

$$
\frac{\partial}{\partial W_{c, m}} \boldsymbol{L}=\frac{\partial L}{\partial \hat{y}_{c}} \frac{\partial \hat{y}_{c}}{\partial u_{c}} \frac{\partial u_{c}}{\partial W_{c, m}}
$$

depends on the activation function
similarly for V

$$
\frac{\partial}{\partial V_{m, d}} L=\sum_{c} \frac{\partial L}{\partial \hat{y}_{c}} \frac{\partial \hat{y}_{c}}{\partial u_{c}} \frac{\partial u_{c}}{\partial z_{m}} \frac{\partial z_{m}}{\partial q_{m}} \frac{\partial q_{m}}{\partial V_{m, d}}
$$

Gradient calculation

using the chain rule

$$
\frac{\partial}{\partial W_{c, m}} L=\frac{\partial L}{\partial \hat{y}_{c}} \frac{\partial \hat{y}_{c}}{\partial u_{c}} \frac{\partial u_{c}}{\partial W_{c, m}}
$$

$$
\hat{y}=g(u)=u
$$

$$
\begin{aligned}
& L(y, \hat{y}) \\
& \uparrow \\
& \hat{y}_{c}=g\left(u_{c}\right) \\
& \uparrow \\
& u_{c}=\sum_{m=1}^{M} W_{c, m} z_{m} \\
& \uparrow \\
& z_{m}=h\left(q_{m}\right) \\
& \uparrow \\
& q_{m}=\sum_{d=1}^{D} V_{m, d} x_{d} \\
& \uparrow \\
& x_{d}
\end{aligned}
$$

combining the three terms above

$$
\frac{\partial}{\partial W_{m}} L=(\hat{y}-y) z_{m} \quad \text { we have seen this in linear regression lecture! }
$$

more generally:

$$
\frac{\partial}{\partial W_{c, m}} L=\left(\hat{y}_{c}-y_{c}\right) z_{m}
$$

Gradient calculation

using the chain rule

$$
\frac{\partial}{\partial W_{c, m}} L=\frac{\partial L}{\partial \hat{y}_{c}} \frac{\partial \hat{y}_{c}}{\partial u_{c}} \frac{\partial u_{c}}{\partial W_{c, m}}
$$

$$
\begin{aligned}
& \text { depends on the loss function } \\
& \text { depends on the activation function } \\
& \text { sification } \\
& \hat{y}=g(u)=\left(1+e^{-u}\right)^{-1}
\end{aligned}
$$

$$
\begin{aligned}
L(y, \hat{y})= & -y \log \hat{y}-(1-y) \log (1-\hat{y}) \quad \frac{\partial \hat{y}}{\partial u}=\hat{y}(1-\hat{y}) \\
& \frac{\partial}{\partial \hat{y}} L(y, \hat{y})=-\frac{y}{\hat{y}}+\frac{(1-y)}{(1-\hat{y})}
\end{aligned}
$$

$$
\begin{aligned}
& L(y, \hat{y}) \\
& \uparrow \\
& \hat{y}_{c}=g\left(u_{c}\right) \\
& \uparrow \\
& u_{c}=\sum_{m=1}^{M} W_{c, m} z_{m} \\
& \uparrow \\
& z_{m}=h\left(q_{m}\right) \\
& \uparrow \\
& q_{m}=\sum_{d=1}^{D} V_{m, d} x_{d} \\
& \uparrow \\
& x_{d}
\end{aligned}
$$

combining the three terms above

$$
\frac{\partial}{\partial W_{m}} L=(\hat{y}-y) z_{m}
$$

Gradient calculation

using the chain rule

$$
\frac{\partial}{\partial W_{c, m}} L=\sum_{k=1}^{C} \frac{\partial L}{\partial \hat{y}_{k}} \frac{\partial \hat{y}_{k}}{\partial u_{c}} \frac{\partial u_{c}}{\partial W_{c, m}}
$$

multiclass classification
C is the number of classes

$$
\begin{array}{ll}
L(y, \hat{y})=-\sum_{c} y_{c} \log \hat{y}_{c} & \hat{y}=g(u)=\operatorname{softmax}(u) \quad \text { softmax takes a vector and produces a vector } \\
\frac{\partial}{\partial \hat{y}_{k}} L=-\frac{y_{k}}{\hat{y}_{k}} & \hat{y}_{k}=\frac{e^{u}}{\sum_{i} e^{u_{i}}} \text { need to calculate the Jacobian } \frac{\partial}{\partial u_{c}} \hat{y}_{k}= \begin{cases}\hat{y}_{k}\left(1-\hat{y}_{k}\right) & k=c \\
-\hat{y}_{c} \hat{y}_{k} & k \neq c\end{cases}
\end{array}
$$

combining the three terms above

$$
\frac{\partial}{\partial W_{c, m}} L=\left(\hat{y}_{c}-y_{c}\right) z_{m}
$$

Gradient calculation

gradient wrt V:
we already did this part

$$
\begin{array}{r}
\frac{\partial}{\partial V_{m, d}} \boldsymbol{L}=\sum_{c} \frac{\partial L}{\partial \hat{y}_{c}} \frac{\partial \hat{y}_{c}}{\partial u_{c}} \frac{\partial u_{c}}{\partial z_{m}} \frac{\partial z_{m}}{\partial q_{m}} \frac{\partial q_{m}}{\partial V_{m, d}} \\
W_{c, m} \mid x_{d}
\end{array}
$$

depends on the middle layer activation

logistic function	$\sigma\left(q_{m}\right)\left(1-\sigma\left(q_{m}\right)\right)$
hyperbolic tan.	$1-\tanh \left(q_{m}\right)^{2}$
ReLU	$\begin{cases}0 & q_{m} \leq 0 \\ 1 & q_{m}>0\end{cases}$

example
logistic sigmoid

$$
\begin{aligned}
\frac{\partial}{\partial V_{m, d}} L & =\sum_{c}\left(\hat{y}_{c}-y_{c}\right) W_{c, m} \sigma\left(q_{m}\right)\left(1-\sigma\left(q_{m}\right)\right) x_{d} \\
& =\sum_{c}\left(\hat{y}_{c}-y_{c}\right) W_{c, m} z_{m}\left(1-z_{m}\right) x_{d} \quad \Rightarrow \frac{\partial}{\partial V_{m, d}} J=\sum_{n} \sum_{c}\left(\hat{y}_{c}^{(n)}-y_{c}^{(n)}\right) W_{c, m} z_{m}^{(n)}\left(1-z_{m}^{(n)}\right) x_{d}^{(n)}
\end{aligned}
$$

for biases we simply assume the input is $1 . x_{0}^{(n)}=1 \quad \frac{\partial}{\partial b_{m}^{\text {L }}} L=\sum_{c}\left(\hat{y}_{c}-y_{c}\right) W_{c, m} \sigma\left(q_{m}\right)\left(1-\sigma\left(q_{m}\right)\right)$

Gradient calculation

Example: classification

cost is softmax-cross-entropy

 yh \(=\) softmax(u)
 nll $=$ - np.mean(np.sum(u*y, 1) - logsumexp(u))
return nll
$\longmapsto J=-\sum_{n=1}^{N} y^{(n)} u^{(n)}+\log \sum_{c} e^{u_{c}^{(n)}}$
Iris dataset ($D=2$ features +1 bias)
$M=16$ hidden units
C=3 classes

```
```

def cost(x, \#N x D

```
```

def cost(x, \#N x D

```
```

def cost(x, \#N x D
y, \#N x C
y, \#N x C
y, \#N x C
y, \#N x C C
):
):
):
q = np.dot(x, v) \#N x M
q = np.dot(x, v) \#N x M
z = logistic(q) \#N x M
z = logistic(q) \#N x M
u = np.dot(z, w) \#N x C

```
```

 u = np.dot(z, w) #N x C
    ```
```

10
11

Iris dataset ($\mathrm{D}=2$ features +1 bias)
$M=16$ hidden units
C=3 classes
5

Example: classification

$$
u_{c}=\sum_{m=1}^{M} W_{c, m} z_{m}
$$

1
x_{d}
z = logistic(np.dot(x, v))\#N x M
N,D = x.shape
yh $=\operatorname{softmax}(n p \cdot \operatorname{dot}(z, w)) \# N \mathrm{x} C$
$d y=y h-y \# N x C$
check your gradient function using finite difference $d w=n p \cdot \operatorname{dot}(z \cdot T, d y) / N \# M \times C \quad$ approximation that uses the cost function $d z=n p \cdot \operatorname{dot}(d y, w \cdot T)$ \#N x M
$d v=n p \cdot \operatorname{dot}(x . T, d z * z *(1-z)) / N$ \#D x M
return $d w, ~ d v$
def gradient(x,\#N x D y, \#N x C $\mathrm{w}, \# \mathrm{M}$ x C $\mathrm{v}, \# \mathrm{D}$ x M) :
Iris dataset ($\mathrm{D}=2$ features +1 bias)
$M=16$ hidden units
C=3 classes

Example: classification

using GD for optimization
while Condition:
dw, dv = gradient(x, y, w, v)
$\mathrm{w}=\mathrm{w}-\mathrm{lr} * \mathrm{dw}$
$\mathrm{v}=\mathrm{v}-\mathrm{lr} \mathrm{N}_{\mathrm{d}}$
the resulting decision boundaries

Automating gradient computation

gradient computation is tedious and mechanical. Can we automate it?
using numerical differentiation?
approximates partial derivatives using finite difference $\frac{\partial f}{\partial w} \approx \frac{f(w+\epsilon)-f(w)}{\epsilon}$
needs multiple forward passes (for each input output pair)
can be slow and inaccurate
useful for black-box cost functions or checking the correctness of gradient functions
symbolic differentiation: symbolic calculation of derivatives
does not identify the computational procedure and reuse of values
automatic / algorithmic differentiation is what we want
write code that calculates various functions, e.g., the cost function
automatically produce (partial) derivatives e.g., gradients used in learning

Automatic differentiation

idea
use the chain rule + derivative of simple operations $*, \sin , \frac{1}{x} \ldots$
use a computational graph as a data structure (for storing the result of computation)
step 1 break down to atomic operations

$$
L=\frac{1}{2}(w x-y)^{2} \longrightarrow
$$

step 2
step 3
build a graph with operations as internal nodes and input variables as leaf nodes
forward mode: start from the leafs and propagate derivatives upward

reverse mode:

1. first in a bottom-up (forward) pass calculate the values a_{1}, \ldots, a_{4}
2. in a top-down (backward) pass calculate the derivatives
this second procedure is called backpropagation when applied to neural networks

Forward mode

suppose we want the derivative $\frac{\partial y_{1}}{\partial w_{1}}$ where $\left\{\begin{array}{l}y_{1}=\sin \left(w_{1} x+w_{0}\right) \\ y_{2}=\cos \left(w_{1} x+w_{0}\right)\end{array}\right.$
we can calculate both y_{1}, y_{2} and derivatives $\frac{\partial y_{1}}{\partial w_{1}} \frac{\partial y_{2}}{\partial w_{1}}$ in a single forward pass

$$
\begin{aligned}
& \text { evaluation } \\
& \text { partial derivatives } \\
& a_{1}=w_{0} \\
& a_{2}=w_{1} \\
& a_{3}=x \\
& w_{1} x \\
& a_{4}=a_{2} \times a_{3} \\
& w_{1} x+w_{0} \\
& y_{1}=\sin \left(w_{1} x+w_{0}\right) \\
& y_{2}=\cos \left(w_{1} x+w_{0}\right) \\
& \begin{array}{l}
a_{4}=a_{2} \times a_{3} \\
a_{5}=a_{4}+a_{1} \\
a_{6}=\sin \left(a_{5}\right) \\
a_{7}=\cos \left(a_{5}\right)
\end{array} \\
& \begin{array}{l}
\dot{a_{1}}=0 \\
\dot{a_{2}}=1 \\
\dot{a_{3}}=0
\end{array} \\
& \text { we initialize these to identify which derivative we want } \\
& \text { this means } \\
& =\frac{\partial \square}{\partial w_{1}} \\
& \dot{a_{4}}=a_{2} \times \dot{a_{3}}+\dot{a_{2}} \times a_{3} \\
& x \\
& \dot{a_{5}}=\dot{a_{4}}+\dot{a_{1}} \\
& \dot{a_{6}}=\dot{a_{5}} \cos \left(a_{5}\right) \\
& x \cos \left(w_{1} x+w_{0}\right)=\frac{\partial y_{1}}{\partial w_{1}} \\
& \dot{a_{7}}=-\dot{a_{5}} \sin \left(a_{5}\right) \\
& -x \sin \left(w_{1} x+w_{0}\right)=\frac{\partial y_{2}}{\partial w_{1}}
\end{aligned}
$$

note that we get all partial derivatives $\frac{\partial \square}{\partial w_{1}}$ in one forward pass

Forward mode: computational graph

suppose we want the derivative $\frac{\partial y_{1}}{\partial w_{1}}$ where $\left\{\begin{array}{l}y_{1}=\sin \left(w_{1} x+w_{0}\right) \\ y_{2}=\cos \left(w_{1} x+w_{0}\right)\end{array}\right.$
we can represent this computation using a graph
once the nodes up stream calculate their values and derivatives we may discard a node

- e.g., once a_{5}, a_{5} are obtained we can discard the values and partial derivatives for $a_{4}, a_{4}, a_{1}, a_{1}$

Reverse mode

suppose we want the derivative $\frac{\partial y_{2}}{\partial w_{1}}$ where $y_{2}=\cos \left(w_{1} x+w_{0}\right)$
first do a forward pass for evaluation

1) evaluation

we get all partial derivatives $\frac{\partial y_{2}}{\partial \square}$ in one backward pass

Reverse mode: computational graph

suppose we want the derivative $\frac{\partial y_{2}}{\partial w_{1}}$ where $y_{2}=\cos \left(w_{1} x+w_{0}\right)$ we can represent this computation using a graph

1. in a forward pass we do evaluation and keep the values
2. use these values in the backward pass to get partial derivatives
1) evaluation

$$
\begin{array}{rlrl}
a_{1} & =w_{0} & & \text { 2) partial derivatives } \\
a_{2} & =w_{1} & & \overline{a_{7}}=1 \\
a_{3} & =x & & \overline{a_{6}}=0 \\
a_{4} & =a_{2} \times a_{3} & & \overline{a_{5}}=\overline{a_{6}} \cos \left(a_{5}\right)-\overline{a_{7}} \sin \left(a_{5}\right) \\
a_{5} & =a_{4}+a_{1} & \overline{a_{4}}=\overline{a_{5}} \\
y_{1}=a_{6} & =\sin \left(a_{5}\right) & \overline{a_{3}}=a_{2} \overline{a_{4}} \\
y_{2}=a_{7} & =\cos \left(a_{5}\right) & & \overline{a_{2}}=a_{3} \overline{a_{4}} \\
& & \overline{a_{1}}=\overline{a_{5}}
\end{array}
$$

$$
\begin{array}{|llll}
\hline & & \\
& & \frac{\partial o}{\partial x_{j}}=\sum_{k \in \operatorname{chi}(j)} \frac{\partial o}{\partial x_{k}} \frac{\partial x_{k}}{\partial x_{j}}
\end{array}
$$

Forward vs Reverse mode

forward mode is more natural, easier to implement and requires less memory a single forward pass calculates $\frac{\partial y_{1}}{\partial w}, \ldots, \frac{\partial y_{c}}{\partial w}$
however, reverse mode is more efficient in calculating gradient

```
\nabla}\mp@subsup{w}{w}{}y=[\frac{\partialy}{\partial\mp@subsup{w}{1}{}},\ldots,\frac{\partialy}{\partial\mp@subsup{w}{D}{}}\mp@subsup{]}{}{\top
```

this is more efficient if we have single output (cost) and many variables (weights)
for this reason, in training neural networks, reverse mode is used the backward pass in the reverse mode is called backpropagation
many machine learning software implement autodiff:

- autograd (extends numpy)
- pytorch
- tensorflow

Improving optimization in deep learning

Initialization of parameters:

- random initialization (uniform or Gaussian) with small variance
- break the symmetry of hidden units
- small positive values for bias (so that input to ReLU is >0)
models that are simpler to optimize:
this block is correcting for the residual error in the predictions of the previous layers
- using ReLU activation
- using skip-connection $x^{\{\ell+l\}}=\operatorname{ReLU}\left(W^{\{\ell+l\}} \operatorname{ReLU}\left(\ldots \operatorname{ReLU}\left(W^{\{\ell\}} x^{\{\ell\}}\right) \ldots\right)+x^{\{\ell\}}\right.$),
- using batch-normalization (next)

Pretrain a (simpler) model on a (simpler) task and
fine-tune on a more difficult target setting (has many forms)

continuation methods in optimization

- gradually increase the difficulty of the optimization problem
- good initialization for the next iteration
curriculum learning (similar idea)
- increase the number of "difficult" examples over time
- similar to the way humans learn

Batch Normalization

- gradient descent: parameters in all layers are updated
- distribution of inputs to layer ℓ changes
- each layer has to re-adjust
- inefficient for very deep networks
idea normalize the input to each unit (m) of a layer ℓ
activation for the instance (n) at layer ℓ

alternatively: apply the batch-norm to $W^{\{\ell\}} x^{\{\ell\}}$
each unit is unnecessarily constrained to have zero-mean and std=1 (we only need to fix the distribution)

$$
\text { introduce learnable parameters } \operatorname{ReLU}\left(\gamma^{\{\ell\}} \mathrm{BN}\left(W^{\{\ell\}} x^{\{\ell\}}\right)+\beta^{\{\ell\}}\right)
$$

- mean and std per unit is calculated for the minibatch during the forward pass
- we backpropagate through this normalization
- at test time use the mean and std. from the whole training set
- BN regularizes the model
recent observations the change in distribution of activations is not a big issue empirically
BN works so well because it makes the loss function smooth

Summary

optimization landscape in neural networks is special and not yet fully understood

- exponentially many local optima and saddle points
- most local minima are good
- calculate the gradients using backpropagation
automatic differentiation
- simplifies gradient calculation for complex models
- gradient descent becomes simpler to use
- forward mode is useful for calculating the jacobian of $f: \mathbb{R}^{Q} \rightarrow \mathbb{R}^{P}$ when $P \geq Q$
- reverse mode can be more efficient when $Q>P$
- backpropagation is reverse mode autodiff.

Better optimization in deep learning:

- better initialization
- models that are easier to optimize (using skip-connection, batch-norm, ReLU)
- pre-training and curriculum learning

