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Perceptron
  

historically a significant algorithm
(first neural network, or rather just a neuron)

old implementation (1960's)

biologically motivated model
simple learning algorithm
convergence proof
beginning of connectionist AI
it's criticism in the book  "Perceptrons" was a factor in AI winter

image:https://cs.stanford.edu/people/eroberts/courses/soco/projects/neural-networks/Neuron/index.html

f(x) = sign(w x+⊤ w )0Model
f(x) = w x+⊤ w0

f(x) = σ(w x+⊤ w )0

compare with models for
linear and logistic
regression:
 
 
 

note that we're using +1/-1 for labels rather than 0/1.
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Perceptron: objective
  

x2

x1

x(n)

(w
x

+

∣∣w
∣∣1

⊤
(n
)

w
)
0

label and prediction have different signs

misclassified if                       , try to make it positivey <(n) ŷ(n) 0

−y (w x +(n) ⊤ (n) w )0minimize
this is positive for points that are
on the wrong side, minimize it
and push them to the right side

=ŷ(n) sign(w x +⊤ (n) w )0
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=ŷ(n) sign(↓)

y > 0

y < 0

y = w x+⊤ w =0 w x +2 2 w x +1 1 w =0 0



Perceptron: optimization
  

otherwise, do nothing

if                        minimizey <(n)ŷ(n) 0 J (w) =n −y (w x )(n) ⊤ (n)

use stochastic gradient descent ∇J (w) =n −y x(n) (n)

now we included bias in w

w ←{t+1} w −{t} α∇J (w) =n w +{t} αy x(n) (n)

Perceptron uses learning rate of 1
this is okay because scaling w does not affect prediction

sign(w x) =⊤ sign(αw x)⊤

the algorithm is guaranteed to converge in finite steps if linearly separable
Perceptron convergence theorem
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Perceptron: example
  

note that the code is not chacking for convergence

        if yh != y[n]:
         w = w + y[n]*x[n,:]

    N,D = x.shape1
    w = np.random.rand(D)2
    for t in range(max_iters):3
     n = np.random.randint(N)4
        yh = np.sign(np.dot(x[n,:], w))5

6
7

iteration 10

observations:
after finding a linear separator no further updates happen

the final boundary depends on the order of instances
(different from all previous methods)

Iris dataset
(linearly separable case)
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Perceptron: example
  

Iris dataset
(NOT linearly
separable case)

the algorithm does
not converge
there is always a wrong
prediction and the weights
will be updated

Iris dataset
(linearly separable case)

converged at iteration 10
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Building more expressive model 
  

Perceptron is not expressive enough, can not
model the data that is not linearly separable
(gets stuck in cyclic updates)

There is an influential book on the
limitations of the perceptrons, see here

how to increase the model's expressiveness?

f(x) = w ϕ (x; v )∑m m m m

use adaptive bases: learn the parameters of the bases as well

e.g., in regression

use fixed nonlinear bases:  similar to what we have seen

before
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https://en.wikipedia.org/wiki/Perceptrons_(book)
https://en.wikipedia.org/wiki/Perceptrons_(book)


 Adaptive Gaussian Bases
  

the model is linear in its parameters
the cost is convex in w

model: f(x;w) = w ϕ (x)∑m m m

cost: J(w) = (f(x ;w) −2
1 ∑n

(n) y )(n) 2

not convex in all model parameters
use gradient descent to find a local minimum

note that the basis centers are adaptively changing

non-adaptive case

we can make the bases adaptive by learning the centers

model: f(x;w,μ) = w ϕ (x;μ )∑m m m m

adaptive case

example

adaptive case gives a better fit with the same number of bases (4)
9

...ϕ1 ϕ2 ϕM

w1 wM
w2

ŷ

x

we have seen this before, centers ( ) are fixedμm
ϕ (x) =m e− s2

(x−μ )m
2

 s = 1

input has one dimension (D=1)

x

y

x

y



 Adaptive Sigmoid Bases
  

the model is linear in its parameters
the cost is convex in w

model: f(x;w) = w ϕ (x)∑m m m

cost: J(w) = (f(x ;w) −2
1 ∑n

(n) y )(n) 2

non-adaptive case

example

adaptive case gives a better fit with the same number of bases (3)

...ϕ1 ϕ2 ϕM

w1 wM
w2

ŷ

x

10
we have seen this before, centers ( ) are fixedμm

ϕ (x) =m
1+e

−( )
sm

x−μm

1

adaptive case

rewrite the sigmoid basis
ϕ (x) =m σ( ) =

sm

x−μm σ(v x+m b )m

model: f(x;w, v, b) = w σ(v x+∑m m m b )m

optimize using gradient descent (find a local optima)

x

y

x

y

input has one dimension (D=1)



Adaptive Sigmoid Bases: General Case
  

ϕ (x) =m σ(v x+m
⊤ b ) ∀mm

each basis is the logistic regression model

this is a neural network with two layers!!

W

x1 ...

...

x2 xD 1

ϕ1 ϕ2 ϕM

V

1

=ŷ Wϕ(x) = w ϕ (x)∑m m m

ϕ(x) = σ(V x)
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optimize V, W using gradient descent (find a local optima)

input has D dimension

...ϕ1 ϕ2 ϕM

w1 wM
w2

=ŷ w ϕ (x)∑m m m

x

v1
vM

v2
b1

bMb2

1

this is the same as having a bias for each nonlinear basis

ϕ =1 σ(v x+1 b )1

v ∈m R(1+1)×1 v ∈m R(D+1)×1

V ∈ R(D+1)×M

input has 1 dimension

ϕ (x) =1 σ(v x)1
⊤

= σ( v x )∑d d,1 d



  
Multilayer Perceptron (MLP)

suppose we have

D inputs
C outputs
M hidden units

x ,… ,x1 D

z ,… , z1 M

,… ,ŷ1 ŷC

more compressed form

=ŷ g(W h(V x))
non-linearities are applied elementwise

Z = h(V x) ∈ RM×1

x ∈ RD×1

V ∈ RM×D

W ∈ RC×M

y ∈ RC×1

for simplicity we may drop bias terms

W

x1 ...

...

...

x2 xD 1

1z1 z2 zM

ŷ1 ŷ2 ŷC

input

hidden units

output

V
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=ŷc g ( W h( V x ))∑m c,m ∑d m,d d

nonlinearity, activation function: we have different choices

model



Regression using Neural Networks
  

the choice of activation function in the final layer depends on the task

regression

no activation (identity function)

L2 loss = Gaussian likelihood

=ŷ g(Wz ) =Wz

L(y, ) =ŷ ∣∣y −2
1 ∣∣ =ŷ 2

2 − logN (y; , I) +ŷ constant

we may have one or more output variables W

x1 ...

...

...

x2 xD 1

1z1 z2 zM

ŷ1 ŷ2 ŷC

input

hidden units

output

V
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=ŷ g(W h(V x))model

we may explicitly produce a distribution at output - e.g.,

mean and variance of a Gaussian
the loss will be the log-likelihood of the data under our model

L(y, ) =ŷ log p(y; f(x))
neural network outputs the parameters of a distribution

more generally



Classification using neural networks
  

the choice of activation function in the final layer depends on the task

L(y, ) =ŷ −y log −ŷ (1 − y) log(1 − ) =ŷ − logBernoulli(y; )ŷ

binary classification =ŷ g(Wz) = 1+e−Wz
1

activation function is logistic sigmoid
CE loss = Bernoulli likelihood

scalar output C=1

multiclass classification =ŷ g(Wz) = softmax(Wz)

softmax activation
multi-class cross entropy loss = categorical likelihood L(y, ) =ŷ − y log =∑k k ŷk − logCategorical(y; )ŷ

C is the number of classes

W
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x1 ...

...

x2 xD 1

1z1 z2 zM

ŷ1

input

...ŷ2 ŷC

hidden units

output

V

=ŷ g(W h(V x))model



M < min(D,C)

so nothing is gained (in representation power) by stacking linear layers

exception: if                            then the hidden layer is
compressing the data (W' is low-rank)

  
Activation function

for middle layer(s) there is more freedom in the choice of activation function

identity (no activation function)h(x) = x

composition of two linear functions is linear

x =
W ′

WV W x′
C ×M M ×D C ×D

=ŷ g(W h(V x))model
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Activation function
  

logistic functionh(x) = σ(x) = 1+e−x
1

the same function used in logistic regression
used to be the function of choice in neural networks
away from zero it changes slowly, so the derivative is small (leads to vanishing gradient)

hyperbolic tangenth(x) = 2σ(x) − 1 =
e +ex −x
e −ex −x

similar to sigmoid, but symmetric

σ(x) =∂x
∂ σ(x)(1 − σ(x))

its derivative is easy to remember

often better for optimization because close to zero it
similar to a linear function (rather than an affine function when using logistic)

16
tanh(x) =∂x

∂ 1 − tanh(x)2
similar problem with vanishing gradient

for middle layer(s) there is more freedom in the choice of activation function

=ŷ g(W h(V x))model



Activation function
  

replacing logistic with ReLU significantly improves the training of deep networks

zero derivative if the unit is "inactive"
initialization should ensure active units at the beginning of optimization

Rectified Linear Unit (ReLU)h(x) = max(0,x)

leaky ReLU h(x) = max(0,x) + γmin(0,x)

fixes the zero-gradient problem

parameteric ReLU:
make     a learnable parameterγ

Softplus (differentiable everywhere) h(x) = log(1 + e )x

it doesn't perform as well
in practice

for middle layer(s) there is more freedom in the choice of activation function
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Network architecture
  

architecture is the overall structure of the network
feedforward network (aka multilayer perceptron)

can have many layers
# layers is called the depth of the network

x1 ...

...

...

x2 xD

z1 z2 zM

ŷ1 ŷ2 ŷC... ... ...

...z1
{ℓ}

z2
{ℓ} zM

{ℓ}

... ... ...

de
pt

h

width
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x1 ...

...

x2 xD

z1 z2 zM

fully connected

x1 ...

...

x2 xD

z1 z2 zM

sparsely connected

each layer can be fully connected (dense) or sparse

all outputs of one layer's units are input to
all the next units

z ={l} h(W z ){l} {l−1}

output of one layer is input to the next

W {1}

W {2}

W {3}



Network architecture
  

architecture is the overall structure of the network
feed-forward network (aka multilayer perceptron)

can have many layers
# layers is called the depth of the network
each layer can be fully connected (dense) or sparse
layers may have skip layer connections
units may have different activations
parameters may be shared across units (e.g., in conv-nets)

x1 ...

...

...

x2 xD

z1 z2 zM

ŷ1
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ŷ2 ŷC... ... ...

...z1
{ℓ}

z2
{ℓ} zM

{ℓ}

... ... ...skip connection

parameter sharing

more generally a directed acyclic graph (DAG) expresses the
feed-forward architecture



w x =⊤ (i)
i∈[1..4]∗∗ ⎣⎢

⎢⎢⎡
0
1
1
2⎦⎥
⎥⎥⎤

Multilayer Perceptron

=ŷ sign(w x+⊤ w )0

=ŷ sign( w x +∑d d d w )0

x1
x2

xD

x1 ...x2 xD 1
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input 

ŷ

w1 w2 wD w0

Recall Perceptron

output
 

y =

⎣⎢
⎢⎢⎡
0
1
1
0⎦⎥
⎥⎥⎤

x1 x2 1input 

ŷ

w1 w2
w0

output
 

w = =[w1
w2

] [11]

X = =

⎣⎢
⎢⎢⎢⎢
⎡−x −(1)⊤

−x −(2)⊤

−x −(3)⊤

−x −(4)⊤ ⎦⎥
⎥⎥⎥⎥
⎤

⎣⎢
⎢⎢⎡
0
0
1
1

0
1
0
1⎦⎥
⎥⎥⎤

x1 x2

w x−⊤ 1 =

⎣⎢
⎢⎢⎡
−1
0
0
1 ⎦⎥
⎥⎥⎤

Example

0

01

x1

x2

0 1

0

1

1

sign (w x) =h ⊤

⎣⎢
⎢⎢⎡
0
1
1
1⎦⎥
⎥⎥⎤ sign (w x−h ⊤ 1) =

⎣⎢
⎢⎢⎡
0
0
0
1⎦⎥
⎥⎥⎤

0

0

1
z1

z2

0 1

0

1

1
y =

⎣⎢
⎢⎢⎡
0
1
1
0⎦⎥
⎥⎥⎤z =

⎣⎢
⎢⎢⎡
0
1
1
1

0
0
0
1⎦⎥
⎥⎥⎤

z1 z2

w =0 0 w =0 −1

sign (x) =h I(x > 0)
 Heaviside sign function, which is 0

for 0 and negative values

** we drop this for simplicity, it is similar to 
, since  is for one instance, however

we use them interchangably to show an affine
function of input instances 

X W⊤ w x⊤



=ŷ sign(w x+⊤ w )0

=ŷ sign( w x +∑d d d w )0

x1
x2

xD

x1 ...x2 xD 1input 

ŷ
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w1 w2 wD w0

output
 

x1 x2 1input 

z1

w = =[w1
w2

] [ 1−2]

Example

0

01

x1

x2

0 1

0

1

1

z =

⎣⎢
⎢⎢⎡
0
1
1
1

0
0
0
1⎦⎥
⎥⎥⎤

z1 z2

x1 x2 1

z2

output
 

1

ŷ

w1 w2

w0

w z =⊤

⎣⎢
⎢⎢⎡
0
1
1
−1⎦⎥
⎥⎥⎤

=ŷ sign (w z) =h ⊤

⎣⎢
⎢⎢⎡
0
1
1
0⎦⎥
⎥⎥⎤

1 1
0

1 1
−1

Multilayer Perceptron



=ŷ g(W h(V x)) = 0

y =

⎣⎢
⎢⎢⎡
0
1
1
0⎦⎥
⎥⎥⎤

w = =[w1
w2

] [ 1−2]

Example

0

01

x1

x2

0 1

0

1

1
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z =

⎣⎢
⎢⎢⎡
0
1
1
1

0
0
0
1⎦⎥
⎥⎥⎤

z1 z2

w z =⊤

⎣⎢
⎢⎢⎡
0
1
1
−1⎦⎥
⎥⎥⎤

=ŷ sign (w z) =h ⊤

⎣⎢
⎢⎢⎡
0
1
1
0⎦⎥
⎥⎥⎤

x1 x2 1input 

z1

x1 x2 1

z2

output
 

1

ŷ

w1 w2

w0

1 1
0

1 1
−1V =1 [ 0 , 1, 1]

V =2 [−1, 1, 1]

=ŷ g(W h(V x))

W = [0, 1,−2]

V = [ 0−1 1
1
1
1]

hidden 

x1 x2 1input 

z1 z2

output
 

1

ŷ

w1 w2

w0

1 1
0 1

1 −1V

W

V x = [21]

h(V x) = ⎣⎢
⎡1
1
1⎦⎥
⎤
z1

z2

Wh(V x) = −1

x = ⎣⎢
⎡1
1
1⎦⎥
⎤

Multilayer Perceptron

=

⎣⎢
⎢⎢⎢⎢
⎡−x −(1)⊤

−x −(2)⊤

−x −(3)⊤

−x −(4)⊤ ⎦⎥
⎥⎥⎥⎥
⎤

⎣⎢
⎢⎢⎡
0
0
1
1

0
1
0
1⎦⎥
⎥⎥⎤

x1 x2



=ŷ g(W h(V x)) = 0

z =m h(V x) =m h( V x )∑d m,d d

V =1 [ 0 , 1, 1]

V =2 [−1, 1, 1]

=ŷ g(W h(V x))

W = [0, 1,−2]

V = [ 0−1 1
1
1
1]

hidden 

x1 x2 1input 

z1 z2

output
 

1

ŷ

w1 w2

w0

1 1
0 1

1 −1V

W
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V x = [21]

h(V x) = ⎣⎢
⎡1
1
1⎦⎥
⎤
z1

z2

Wh(V x) = −1

x = ⎣⎢
⎡1
1
1⎦⎥
⎤

W

x1 ...x2 xD 1

1z1 z2

ŷ

hidden units

V
v1,1 v1,2

input 

output 

V ∈ RM×D̂ W ∈ RC×M̂

... zM

...ŷ2 ŷC

=ŷk g(W z) =k g( W z )∑m k,m m

Multilayer Perceptron
Example

2 layers MLP

=ŷ g(W h(V x))

universal function approximator
model any suitably smooth function, given enough hidden units, to any desired level of accuracy



https://www.youtube.com/watch?v=aircAruvnKk&list=PLZHQObOWTQDNU6R1_67000Dx_ZCJB-3pi&index=2&t=7s
see this video for better intuition

MNIST Example
classifying handwritten digits

higher level of

abstraction
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https://www.youtube.com/watch?v=aircAruvnKk&list=PLZHQObOWTQDNU6R1_67000Dx_ZCJB-3pi&index=2&t=7s


Expressive power
  

an MLP with single hidden layer can approximate any continuous function with arbitrary accuracy

universal approximation theorem

for 1D input we can see this even with fixed bases
M = 100 in this example
the fit is good (hard to see the blue line)

however # bases (M) should grow exponentially
with D (curse of dimensionality)

Caveats of the universality

we may need a very wide network (large M)
this is only about training error, we care
about test error

x

y
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Depth vs Width
  

Deep networks (with ReLU activation) of bounded width are also shown to be universal

empirically, increasing the depth is often more effective than increasing the width (#parameters per layer)
compositional functional form through depth is a useful inductive bias

increasing depth increasing the width (# parameters)
in image recognition

Number of layers
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Depth vs Width
  

Deep networks (with ReLU activation) of bounded width are also shown to be universal
number of regions (in which the network is linear) grows exponentially with depth

W x ={ℓ} {ℓ} 0

 layer ℓ

h(W x) ={ℓ} ∣W x∣{ℓ}simplified demonstration

W x ={ℓ+1} {ℓ+1} 0

optional
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Regularization strategies
  

universality of neural networks also means they can overfit
strategies for variance reduction:

L1 and L2 regularization (weight decay)
data augmentation
noise robustness
early stopping
dropout
bagging
sparse representations (e.g., L1 penalty on hidden unit activations)
semi-supervised and multi-task learning
adversarial training
parameter-tying
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Regularization using Data augmentation
  

a larger dataset results in a better generalization

N = 20 N = 40 N = 80

example: in all 3 examples below training error is close to zero

however, a larger training dataset leads to better generalization
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special approaches to data-augmentation

adding noise to the input
adding noise to hidden units

noise in higher level of abstraction

a larger dataset results in a better generalization 

increase the size of dataset by adding reasonable transformations
that change the label in predictable ways; e.g.,

τ(x)

f(τ(x)) = f(x)

sometimes we can achieve the same goal by designing the
models that are invariant to a given set of transformations

image: https://github.com/aleju/imgaug/blob/master/README.md

idea

(x, y)p̂

x , y ∼(n )′ (n )′ p̂

learn a generative model                 of the data
use                              for training

  
Regularization using Data augmentation
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https://www.youtube.com/watch?v=6zGHHTMme1Q


label smoothing

4. output (avoid overfitting, specially to wrong labels)

a heuristic is to replace hard labels with "soft-labels"

[0, 0, 1, 0] → [ , , 1 −3
ϵ
3
ϵ ϵ, ]3

ϵe.g.,

3. weights the cost is not sensitive to small changes in the weight (flat minima)

flat minima generalize better
good performance of SGD using small minibatch is attributed to converging to
flat minima which generalizes better (train loss closer to test loss)

in this case, SGD regularizes the model due to gradient noise

image credit: Keshkar et al'17

     1. input (data augmentation)

     2. hidden units (e.g., in dropout as we see soon)

  
Regularization using Noise robustness

https://arxiv.org/pdf/1609.04836.pdf
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https://arxiv.org/pdf/1609.04836.pdf


the test loss-vs-time step is "often" U-shaped
use validation for early stopping
also saves computation!

early stopping bounds the region of the parameter-space that is reachable in T time-steps
assuming

bounded gradient
starting with a small w

it has an effect similar to L2 regularization
we get the regularization path (various    )λ

  
Regularization using Early stopping

L2early stopping 32



randomly remove a subset of units during training

exponentially many subnetworks that share parameterscan be viewed as    

is one of the most effective regularization schemes for MLPs

  
Regularization using Dropout
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at test time

ideally we want to average over the prediction of all possible sub-networks

1) Monte Carlo dropout: average the prediction of several feed-forward passes using dropout

2) weight scaling: scale the weights by p to compensate for dropout

during training

for each instance (n):
randomly dropout each unit with probability p (e.g., p=.5)
only the remaining subnetwork participates in training

this is computationally infeasible, instead:

  
Regularization using Dropout

e.g., for 50% dropout, scale by a factor of 2
either multiply by 2 in training or divide by 2 at the end of training
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Summary
  

Deep feed-forward networks learn adaptive bases
more complex bases at higher layers
increasing depth is often preferable to width
various choices of activation function and architecture
universal approximation power
their expressive power often necessitates using regularization schemes
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