Multilayer Perceptron

Isabeau Prémont-Schwarz

‘é T McGill

School of Computer Science

(Fall 2023)'



Learning objectives

perceptron:

e model, objective, optimization
multilayer perceptron:

e model|

m different supervised learning tasks
m gctivation functions
m architecture of a neural network

e regularization techniques



Perceptron

historically a significant algorithm

(first neural network, or rather just a neuron)

biologically motivated model

simple learning algorithm

convergence proof

beginning of connectionist Al

it's criticism in the book "Perceptrons" was a factor in Al winter

old implementation (1960's)

compare with models for

Model  f(z) = sign(w'z + wo)

f(z) =w"z+ wpy

~ N f(z) = o(w'z +wo)
g, ,!—'L i P Stefunction

.,-_:;:.: :" Frees -..f'“'-lf‘ p— [ )

g f N Wtad ] note that we're using +1/-1 for labels rather than 0/1.

—— surm

image:https://cs.stanford.edu/people/eroberts/courses/soco/projects/neural-networks/Neuron/index.html



Perceptron: objective

g = sign(me(") + wo)

misclassified if (™4™ <0, try to make it positive

label and prediction have different signs

T2 minimize —y™ (w " 2™ + wy)

T CII(n) this is positive for points that are
on the wrong side, minimize it
and push them to the right side

Zq

-
y=w -+ wy = wx2 +wixs +wyg =20



Perceptron: optimization

if y™g™ <0 minimize J,(w)=—y™ (wz™)

otherwise, do nothing

use stochastic gradient descent  VJ,(w) = —y™z™

sign(w'z) = sign(cw' x)

Perceptron convergence theorem

the algorithm is guaranteed to converge in finite steps if linearly separable



iteration 10

Perceptron: example

Iris dataset
(linearly separable case)

6 if yh != y[n]:
7 w=w + y[n]*x[n, :]

note that the code is not chacking for convergence

observations:
after finding a linear separator no further updates happen

the final boundary depends on the order of instances
(different from all previous methods)




converged at iteration 10

Perceptron: example

Iris dataset

(linearly separable case)

Iris dataset

(NOT linearly
separable case)

not converge

there is always a wrong

will be updated

the algorithm does

prediction and the weights



Building more expressive model

Perceptron is not expressive enough, can not
model the data that is not linearly separable
(gets stuck in cyclic updates)

how to increase the model's expressiveness?

use fixed nonlinear bases: simiarto what we have seen
use adaptive bases: learn the parameters of the bases as well

e e.g., inregression f(z)=>_,, Wndm(T;vm)

There is an influential book on the
limitations of the perceptrons, see here |



https://en.wikipedia.org/wiki/Perceptrons_(book)
https://en.wikipedia.org/wiki/Perceptrons_(book)

Adaptive Gaussian Bases

input has one dimension (D=1)

non-adaptive case adaptive case

model: f(z;w) = Z Wi O () we can make the bases adaptive by learning the centers
: 1
cost: J(w) = 53, (F(z;w) —y™)>? model: f(z;w, ) = 32, Wi (T; )
the model is Ilnear in its parameters not convex in all model parameters
the cost is convex in w use gradient descent to find a local minimum
Y7 |
. note that the basis centers are adaptively changing
Yy
Wy Wpm
Wy N~ 1 Tr/rtt/y/™m\N TS
M
T [ A m— — 1z
¢m($) = e 52

adaptive case gives a better fit with the same number of bases (4)



Adaptive Sigmoid Bases

input has one dimension (D=1)

non-adaptive case adaptive case

model: f(z;w) =)  Wpnom(x) rewrite the sigmoid basis
cost: J(w) =13 (f (x(n w) — y™)?2 Om(z) = o(5E2) = o(vnz + b))
the model is linear in its parameters model: f(z;w,v,b) = > w0 (Vn® + by)
the cost is convex in w optimize using gradient descent (find a local optima)
A Yy
Yy
(1] Wprr
Wy
1 ¢2 L)
¢m($) = _(1$;Em_)

we have seen this before, centers (u,,) are fixed 4o © om adaptive case gives a better fit with the same number of bases (3)



Adaptive Sigmoid Bases: General Case

this is a neural network with two layers!!

each basis is the logistic regression model
dm(z) = o(v,x +bp) Ym

optimize V, W using gradient descent (find a local optima)

input has 1 dimension input has D dimension

9= 2 WmPm(z) g=Wo(z) = >, wndn(z)

wy Wnm
w2

¢1 = O'(le + bl) ¢1 ¢2 ',l:]\'/[ ¢M » ¢1 (.’IJ) = O'(UIZB)
V) bM = (X4 va12a)
b1

¢ ! v, € RIHHx1 v, € R(D+1)x1 2l T2 Tp 1

this is the same as having a bias for each nonlinear basis
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Multilayer Perceptron (MLP)

suppose we have

e Dinputs L1y++3TD
« Coutputs U1,---»Yc
e M hidden units #1---,2M

gc = Zm Wc,m ( Zd Vm,dwd)
| |

nonlinearity, activation function: we have different choices

more compressed form

x € RPx1
N V € RMxD

Yy = Q(W h(V :13)) Z = h(Vz) € RMx1
non-linearities are applied elementwise W e RO*M

y € RCxl

output (¥ Y2 . Yo

e

hidden units (21 %2 vee AM 1

v XS N

input (%1 L2

for simplicity we may drop bias terms

step function
T

Wizighter
HIG
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Reg I‘eSSion using Neural Networks

the choice of activation function in the final layer depends on the task

Uy = g(W h(V a:))

SO §=g(Wz) =Wz output ¥ #20.., (de

e we may have one or more output variables w M

® No activation (identity function) hidden units (% 29 . 2y 1
e |2 |oss = Gaussian likelihood
: : : v [(REE=IN
L(y,9) = %Ily — 9|2 = —log N (y; §,I) + constant
input (%1 T2 ... D 1

more generally
we may explicitly produce a distribution at output - e.g.,

* mean and variance of a Gaussian
e the loss will be the log-likelihood of the data under our model

L(y,9) = log p(y; )
13



C|aSSificati0n using neural networks

the choice of activation function in the final layer depends on the task

j=g(Wh(Vz))

N 1
§=9W2z) =1 output

e scalar output C=1 w
e Qactivation function is logistic sigmoid

e CE loss = Bernoulli likelihood hidden units

|4

L(y,9) = —ylog§ — (1 — y)log(1 — §) = —log Bernoulli(y; )
input

g = g(Wz) = softmax(Wz)

Cis the number of classes

softmax activation

multi-class cross entropy loss = categorical likelihood L(y,9) = — >_;, yx log i = — log Categorical(y; 9)

21
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Activation function

for middle layer(s) there is more freedom in the choice of activation function

10:01 h(x) = identity (no activation function)
7:57 composition of two linear functions is linear
5.0
CxM MxD C xD
2.5+
/
WVze=W'a
T T T T 00 T T T T \/
-100 -7.5 50 =25 0[0 25 5.0 7.5 10.( W'
—2.5+
SO Nothing is gained nrepresentation power) DY Stacking linear layers
—5.0
exception: if M < min(D,C) then the hidden layer is
—75 compressing the data w: is low-rank)
—10.0

15



. . . g:g(Wh(Va:))
Activation function

for middle layer(s) there is more freedom in the choice of activation function

logistic function

the same function used in logistic regression
used to be the function of choice in neural networks

away from zero it changes slowly, so the derivative is small (leads to vanishing gradient)
its derivative is easy to remember

0 . oh \
I P P P P T %‘7(37) =o(z)(1 - o(z)) \

J - \
1.00- hd -100 =75 7—50 =25 olo 25 5077 75 10.0
0751 ’

0.50

0.254

similar to sigmoid, but symmetric

o

The G5 S0 3o 25 o Wb o often better for optimization because close to zero it
o similar to a linear function (rather than an affine function when using logistic)
otk similar problem with vanishing gradient
) _ 2
Ao s-tanh(z) = 1 — tanh(z)




Activation function

for middle layer(s) there is more freedom in the choice of activation function

EIEBEN (D] Rectified Linear Unit (ReLU)
| replacing logistic with ReLU significantly improves the training of deep networks

zero derivative if the unit is "inactive"

4

initialization should ensure active units at the beginning of optimization

2

T T T T T T T T
-100 -75 -50 -25 0!0 2.5 5.0 7.5 10.0

Softplus (differentiable everywhere) h(w) _ log(l + ea:)
VLN (2) — max(0,z) +  min(0, z) N it doesn't perform as well
in practice
E fixes the zero-gradient problem 67
parameteric ReLU: “
2 make 7y a learnable parameter >

00 -75 =50 =25 0!0 2.5 5.0 7.5 104 17



Network architecture

architecture is the overall structure of the network
feedforward network (aka multilayer perceptron)

e can have many layers
o # layersis called the depth of the network

e each layer can be fully connected (dense) or sparse

fully connected sparsely connected

all outputs of one layer's units are input to
all the next units

A = (WD 1)

output of one layer is input to the next

18



Network architecture

architecture is the overall structure of the network
feed-forward network (aka multilayer perceptron)

e can have many layers
e #layers is called the depth of the network P A A
e each layer can be fully connected (dense) or sparse R
* layers may have skip layer connections

* units may have different activations

. ~N
e parameters may be shared across units (eg, in conv-nets) )(><
y N

e 055@0 more generally a directed acyclic graph (DAG) expresses the
X feed-forward architecture

19



Multilayer Perceptron

Recall Perceptron

L1
Ts Step functing
J_ L
ID™ wizighter
SUM
Yy = (Zd WqZq ‘|‘w0)
Y
w1y wa Wo
input z1 ) Zp

T 7
§ =

sign(w' z + w)

sign"(z) = I(z > 0)

Heaviside sign function, which is 0
for 0 and negative values

** we drop this for simplicity, it is similar to
XTW, since w z is for one instance, however
we use them interchangably to show an affine

function of input instances

21

0
J sign®(w'z — 1) = [g]
i
0o
-1

20



Multilayer Perceptron

Lo
111 0
Iy 0 0 1
T step function —ﬁ Z1
[ 2 2 1
Tp : 0 0
:ﬂi’?hm Z:[l 0} wo W _ |1 .
[1 0J o W =2 w z
= 11
Yy = (Zd WLy + ’wo)
T T g = sign"(w'z) =
o Yy
/ w
input T3 T2 ... ZD 1 21 22
R T I e
A e T .
g = sign(w ' & + wy) input (@) (=2 1 @ 1

T 7 T 7

O = = O



Multilayer Perceptron

e $(; :12)2 0
_ —z(® - [O 1] H 1
1 T _ _ 1 0
0 1 1 2 _e® 7 _ 1 ol Y71
V= [ ] = [1 Ve = [ ’ [ J
11 1 1 @7 11 I_OJ o 1
1 i x 0 T
— _% 1
W =1[0,1, 2] . a2 vl
e h(Vz) = |1~ [0 0} [Ow
1 1t oo _ w1 1
j=g(Wn(Vz)) e “"[wz]‘[—zl v
Wh(Ve) = —1 i | 1]
0
T §=g(Wh(Vz)=0
5 ( ) /l: § = sign"(w' z) = i
& g
W y N w 0
! 1 wy N
zZ1 22 21 22 :
Vv /\1 ‘ 1
T
input T T 1 Vz = [_1,1, ]-] input x Ty 1 ml\wg 1

T - - 2



Multilayer Perceptron

0 1 1 1 2]
V= [—1 1 1] = h V= [1_
W =[0,1,-2] h(Ve) = F 2
. 1|2,
a g(W v )) Wh(Vz) = —1-

~ %
1% WN
1
Z1 zZ9
1% /\1
input 1 ) 1 Vo = [_17 1, 1]
T 7

Yy = g(W h(V :1:))

V e RMXD 1 c ROxM
2 = h(me) = h(zd Vm,dmd)
Up = g(szz) — g( Zm Wk,mzm)
T T T
g 92 . e
A pe—
hidden units 21 2 . a1
v = IN
|nput L1 U e Tp 1
T 7 T
2 layers MLP

23

model any suitably smooth function, given enough hidden units, to any desired level of accuracy



MNIST Example

classifying handwritten digits

see this video for better intuition
https://www.youtube.com/watch?v=aircAruvnKk&list=PLZHQObOWTQDNU6R1_67000Dx_ZCJB-3pi&index=2&t=7s

24


https://www.youtube.com/watch?v=aircAruvnKk&list=PLZHQObOWTQDNU6R1_67000Dx_ZCJB-3pi&index=2&t=7s

Expressive power

an MLP with single hidden layer can approximate any continuous function with arbitrary accuracy

Yy for 1D input we can see this even with fixed bases
| M =100 in this example
the fit is gOOd (hard to see the blue line)

however # bases (M) should grow exponentially
with D (curse of dimensionality)

Caveats of the universality

e we may need a very wide network (large M)
e this is only about training error, we care
about test error




Depth vs Width

Deep networks (with ReLU activation) of bounded width are also shown to be universal

e empirically, increasing the depth is often more effective than increasing the width (#¥parameters per layer)
e compositional functional form through depth is a useful inductive bias

increasing depth LI =R increasing the width (# parameters)

96.5 T T T T I 1 I 97 T T T ! !
96.0 — e—e 3 convolutional
e 5 %6 i
g 955 g +—+ 3, fully connected
-
g 950 A 95 |- V—V¥ 11, convolutional [
. 94,
- 945 5 ol i
£ 940 5
g 935 S o3t M i
© . ]
+ +
£ 93.0 17
2 £ ozt 1
92.5
| | | | 1 | 1 91 : . I : :
92.0
3 n 5 6 = 3 9 10 11 0.0 0.2 0.4 0.6 0.8 1.0 .
Number of layers Number of parameters x10
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Depth vs Width

Deep networks (with ReLU activation) of bounded width are also shown to be universal

number of regions (in which the network is linear) grows exponentially with depth

h(Wz) = ||

o o
0O
o

27



Regularization strategies

universality of neural networks also means they can overfit
strategies for variance reduction:

data augmentation

noise robustness

early stopping

dropout

bagging

sparse representations (e.g., L1 penalty on hidden unit activations)
semi-supervised and multi-task learning

adversarial training

parameter-tying

28



Regularization using Data augmentation

a larger dataset results in a better generalization

example: in all 3 examples below training error is close to zero

however, a larger training dataset leads to better generalization

N =20 N =40 N =80

29



Regularlzatlon usmg Data augmentatlon

increase the size of dataset by adding reasonable transformations ()
that change the label in predictable ways; e.g., f(7(z)) = f(z)

special approaches to data-augmentation

e adding noise to the input
e adding noise to hidden units

= noise in higher level of abstraction

e learn a generative model p(, y) of the data
= use x("/),y("') ~ p for training

sometimes we can achieve the same goal by designing the
models that are invariant to a given set of transformations

image: https://github.com/aleju/imgaug/blob/master/README.md

30


https://www.youtube.com/watch?v=6zGHHTMme1Q

Regularization using Noise robustness

1. input (data augmentation)

2. hidden units (e.g., in dropout as we see soon)
3. Weights the cost is not sensitive to small changes in the weight (flat minima)

Training Function

.
| Testing Function

flat minima generalize better

| good performance of SGD using small minibatch is attributed to converging to
| flat minima which generalizes better (train loss closer to test loss)

. in this case, SGD regularizes the model due to gradient noise

Vo

Flat Minimum Sharp Minimum

https://arxiv.org/pdf/1609.04836.pdf

4. output (avoid overfitting, specially to wrong labels)
a heuristic is to replace hard labels with "soft-labels"

e.g.[0,0,1,0] = [$,5,1—¢, 5]

31
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image credit: Keshkar et al'17


https://arxiv.org/pdf/1609.04836.pdf

Regularization using Early stopping

= 0.20 - r r T

S e—e Training set loss

< cy

EJ 0.15 H —— Validation set loss |
&

9

- 010} i
g W

e

«©

=T4)

g 0.05F ]
@

o]

= 0.00 -

50

100 150 200 25
Time (epochs)

the test loss-vs-time step is "often" U-shaped
use validation for early stopping
also saves computation!

early stopping bounds the region of the parameter-space that is reachable in T time-steps

assuming

* bounded gradient
* starting with a small w

it has an effect similar to L2 regularization
we get the regularization path (various }

m™
3 /

w un

early stopping L2 32



Regularization using Dropout

randomly remove a subset of units during training

dodgeh ;

a) Standard Neural Net (b) After applying dropout. Base network

can be viewed as exponentially many subnetworks that share parameters

Ol ©
ColR e
©

is one of the most effective regularization schemes for MLPs

(5)
O
()
©x6. ©x6
o O eh
6
©
®
o
0|0,

Ensemble of subnetworks
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Regularization using Dropout

during training
for each instance (n):

randomly dropout each unit with probability p (e.g., p=.5) X
only the remaining subnetwork participates in training (

a) Standard Neural Net (b) After applying dropout.

at test time

ideally we want to average over the prediction of all possible sub-networks
this is computationally infeasible, instead:

1) Monte Carlo dropout: average the prediction of several feed-forward passes using dropout

2) weight scaling: scale the weights by p to compensate for dropout

e.g., for 50% dropout, scale by a factor of 2

either multiply by 2 in training or divide by 2 at the end of training
34



Summary

Deep feed-forward networks learn adaptive bases

more complex bases at higher layers

increasing depth is often preferable to width

various choices of activation function and architecture

universal approximation power
their expressive power often necessitates using regularization schemes
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