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generalization
bias and variance trade-off
validation and cross-validation
evaluation 

Learning objectives
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1 (n) )ŷ(n) 2cost function:

input
features
 

x
output
labels
 

ML algorithm
with parameters w

y
f(x;w)

w =∗ argmin J(w)w

J(w) = l(y , f(x ;w))
N
1 ∑n=1

N (n) (n)

Example: Linear regression
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D = {(x , y )}(n) (n)
n=1
N

training: parameter estimation

=ŷ f(x;w )∗inference: 
on unseen data for which we haven't seen the label

D = 5

D = 10

D = 50

D = 200

Generalization

does the trained model generalizes to unseen data?
how accurate is the model in general?



Generalization and model complexity

simple models cannot fit the data

large training error due to underfitting

regularization can help us trade-off between bias and variance

we want to see how these two terms contribute to the generalization error

bias

expressive models can overfit the data

small training error
large test error due to overfitting

variance
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Generalization and model complexity

image:Duda, R. O., Hart, P. E., & Stork, D. G. (2012). Pattern classification.

example

the complex model varies more with the dataset
higher variance

it may not generalize well for this reason

the simple model is biased to a particular type of data
it underfits, but it has a low variance

higher bias

columns: a different type of model
rows: different datasets

g(x)
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datasets are from the same distribution

x , y ∼(n) (n) p(x, y)
F (x) the best possible model



let          be our model based on the datasetf̂D

assume a true distribution p(x, y)

f(x) = E [y∣x]pbest prediction given L2 loss

assume that a dataset                                      is sampled fromD = {(x , y )}(n) (n)
n p(x, y)

what we care about is the generalization error (aka expected loss, expected risk)

E[( (x) −f̂D y) ]2

all blue items are random variables

decompose the generalization error to see the effect of bias and variance (for L2 loss)

Bias-variance decomposition: Setup
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Bias-variance decomposition

what we care about is the generalization error

E[( (x) −f̂D y) ]2

f(x) + ϵ

bias^2variance unavoidable
noise error

= E[( (x) −f̂D E [ (x)]) ]D f̂D
2 +E[(f(x) − E [ (x)]) ]D f̂D

2 +E[ϵ ]2

(x) +f̂D E [ (x)] −D f̂D E [ (x)]D f̂D add and subtract a term

= E[( (x) −f̂D E [ (x)] −D f̂D y + E [ (x)]) ]D f̂D
2
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above simplifies to the following (the remaining terms are going to be zero)



Bias-variance decomposition

bias: how average over all datasets
differs from the regression function

variance: how change of dataset
affects the prediction

noise error: the error
even if we used  the
true model f(x)

the expected loss is decomposed to:

different models vary in their trade off
between error due to bias and variance

simple models: often more biased
complex models: often have more variance

image from here

= E[( (x) −f̂D E [ (x)]) ]D f̂D
2 +E[(f(x) − E [ (x)]) ]D f̂D

2 +E[ϵ ]2

8

http://snoek.ddns.net/~oliver/mysite/


image:Duda, R. O., Hart, P. E., & Stork, D. G. (2012). Pattern classification.
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example

Bias vs. variance

distribution of error (cost) due to randomness of
dataset
we care about the expected error
bias causes a high error for all choices of dataset
higher variance also increases the expected error

image:Duda, R. O., Hart, P. E., & Stork, D. G. (2012). Pattern classification. 9



x x

y

their average E[ ]f̂D

true model fmodels for different datasets f̂D

random datasets of size N=25 instances are not shown

using Gaussian bases

bias is the difference (in L2 norm)
between two curves

variance is the average difference (in
squared L2 norm) between these curves
and their average

Example: bias vs. variance
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x x

y

x x

y

using larger regularization penalty: higher bias - lower variance

the average fit is very good, despite high variance

model averaging: uses "average" prediction of

expressive models to prevent overfitting

side note

Example: bias vs. variance
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the lowest expected loss (test error) is somewhere between the two extremes

Example: bias vs. variance

increasing variance
increasing bias

in practice, how to decide which model to use?

E[ϵ ]2
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model complexity

pr
ed

ic
tio

n 
er

ro
r

error for random dataset

average training error

average test error

D

high variance in more
complex models means
that test and training error
can be very different

high bias in
simplistic models
means that training
error can be high

Effect on training and test error
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Model selection
many ML algorithms have hyper-parameters
(e.g., the number of nonlinear basis to use)

how should we select the best hyper-parameter?

performance of a regression model on California Housing Datasetexample

overfitting to the training data
bad performance on unseen data

underfitting the model can more closely fit the
training data and still get good test error

best model
lo

w
er

 b
et

te
r

ho
us

e 
pr

ic
e

total_rooms
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Model selection
what if unseen data is completely different from training data?

no point in learning!

unseen data comes from the same distribution.

assumption: training data points are samples from an unknown distribution

x , y ∼(n) (n) p(x, y)
independent identically distributed (IID)

train unseenone instance in train set
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how to estimate this?

f : ↦ 3assume we have a model                            for examplef : x↦ y

and we have a loss function that measures the error in our prediction ℓ : y, →ŷ R

for example
ℓ(y, ) =ŷ (y − )ŷ 2

ℓ(y, ) =ŷ I(y = )ŷ

for regression

for classification
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we train our models to minimize the cost function:

J = ℓ(y, f(x))∣D ∣train

1 ∑x,y∈Dtrain

E ℓ(y, f(x))x,y∼pwhat we really care about is the generalization error:
we can not measure this, why?

we can set aside part of the given data and use it to estimate generalization error

Loss, cost and generalization

We can drop this, why?



how to estimate this?

Validation set
E ℓ(y, f(x))x,y∼pwhat we really care about is the generalization error:

we can set aside part of the training data and use it to estimate the generalization error

validation unseen (test)training

at the very end, we report the error on test set

pick a hyper-parameter that gives us the best validation error

validation and test error could be different
because they use limited amount of data

hyper parameter 17



Cross validation
how to get a better estimate of generalization error?
increase the size of the validation set?

testtraining validation

this reduces the training set

L = 5 test
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Cross-validation helps us in getting better estimates + uncertainty measure

divide the (training + validation) data into L parts
use one part for validation and L-1 for training



Cross validation

use the average validation error and its variance (uncertainty) to pick the best model

divide the (training + validation) data into L parts
use one part for validation and L-1 for training

validationtrain trainrun 2

testvalidationtrainrun 1
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validationtrain trainrun 3
validationtrain trainrun 4

validation trainrun 5

this is called L-fold cross-validation
in leave-one-out cross-validation L=N (only one instance is used for validation)

report the test error for the final model



Cross validation

use the average
validation error and its
variance (uncertainty) to
pick the best model

 
            
 

divide the (training + validation) data into L parts
use one part for validation and L-1 for training

validationtrain trainrun 2

validationtrainrun 1

validationtrain trainrun 3
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validationtrain trainrun 4
validation trainrun 5

this is called L-fold cross-validation
in leave-one-out cross-validation L=N (only one instance is used for validation)

report the test error for the final model

 validation error

e1

e2
e3
e4
e5

test

train et

=ē e5
1 ∑i=1

5
i



Cross validation
example the plot of the mean and standard deviation in 10 fold cross-validation

test error is plotted only to show its agreement with
the validation error; in practice we don't look at the
test set for hyper-parameter tunning

a rule of thumb: pick the simplest model within one std of the model with lowest validation error

hyper parameter
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Performance metrics for classification
Not all errors are the same
In particular in classification, we have different types of mistakes

 

patient does not have disease but received positive diagnostic (Type I error)
patient has disease but it was not detected (Type II error)

  example:

a message that is not spam is assigned to the spam folder (Type I error)
a message that is spam appears in the regular folder (Type II error)

false positive (type I) and false negative (type II)
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Performance metrics for classification

false positive (type I)
false negative (type II)
true positive
 

Po
sit

iv
e

N
eg

at
iv

e
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binary classification results:

TP
TN

FP
FN

true negative

TN + TP + FN + FP =?

confusion matrix

RP = TP + FP

RN = TN + FN

P = TP + FN

N = TN + FPm
ar

gi
na

ls
 

RN

RP

  example:

classifier



false positive rate

sensitivity

specificity

Accuracy = P+N
TP+TN

F score =1 2Precision+Recall
Precision×Recall

Recall = P
TP

Precision = RP
TP

 {Harmonic mean}

Miss rate = P
FN

Fallout = N
FP

False discovery rate = RP
FP

Selectivity = N
TN

False omission rate = RN
FN

Negative predictive value = RN
TN

le
ss

 c
om

m
on

Performance metrics for classification

confusion matrix

F score =β (1 + β )2
β Precision+Recall2
Precision×Recall
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recall is β times more important compared to precision  example:

Recall =
P
TP

Precision =
RP
TP

= 17
14

= 16
14

=
F scoreβ

1 +1+β2
1

Precision
1

1+β2
β2

Recall
1



Trade-off between precision and recall
How many false positives do we tolerate? 
How important are false negatives?
e.g. spam in inbox v.s. negative test for cancer test

1 0

threshold

no false positive
also no true positive

no false negative
also no true negative

We can often control the trade-off between type I & type II error
e.g. by changing the threshold of  if we produce class score (probability)p(y = 1∣x)

p(y = 1∣x)
Most ML algorithm produces class score or probability

goal: evaluate class scores/probabilities (independent of

choice of threshold)
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Trade-off between precision and recall
How many false positives do we tolerate? 
How important are false negatives?
e.g. spam in inbox v.s. negative test for cancer test

1 0

threshold
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no false positive
also no true positive

no false negative
also no true negative

We can often control the trade-off between type I & type II error
e.g. by changing the threshold of  if we produce class score (probability)p(y = 1∣x)

p(y = 1∣x)
Most ML algorithm produces class score or probability

goal: evaluate class scores/probabilities (independent of

choice of threshold)

TPR(t) = TP(t)/P (recall, sensitivity at t, hit rate)
FPR(t) = FP(t)/N (fallout, false alarm at t, type I error rate)

Receiver Operating Characteristic ROC curve, a function of threshold t

Area Under the Curve (AUC) is used as a threshold independent
measure of quality of the classifier

 , box-rule approximationAUC = TPR(t)(FPR(t) −∑t FPR(t− 1))

what is the maximum value for AUC? what is AUC of a random classifier?



Precision-recall curves 

1 0

threshold

no false positive
also no true positive

no false negative
also no true negative

p(y = 1∣x)
Most ML algorithm produces class score or probability

Similar to ROC curve but more helpful in some situation

when size of negative set is also a model parameter, e.g.
in information retrieval
when there is class imbalance, e.g. in fraud detection
when ), since ROC curves are insensitive to class
imbalance

Instead we curve Precision vs Recall for different  thresholds

N ≫ P

ROC Precision-Recall
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Confusion Matrix for multiclass classification

   when evaluating a classifier it is useful to look at the confusion matrix

A CxC table that shows how many samples of each class are classified as belonging to another class
sample images from Cifar-10 dataset

classifier's accuracy is the sum of diagonal divided by the sum-total of the matrix,
you can also report the average of the F_1 scores per class (macro), or weight the average by class sizes

M =rc N{ =ŷ r, y = c}

per class
precisions:

per class
recalls:
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Bias and Fairness Challenge
The model learns from the distribution of the input data
{train, validation, test are still sampled based on some process}

the demographic and phenotypic composition of training and benchmark datasets are important

Growing use, growing concerns

Amazon's hiring algorithm decides not to invite women to interview, read it here

Google's online ad algorithm decides to show high-income jobs to men much more often
than to women, read about it here

A machine learning algorithm denies you credit based on race or gender, read it here

Health care algorithm offers less care to black patients, read it , and here here

Florida risk score algorithm used in courts assign higher risk to black defendants, read it here

Many recent works, for example see this book on fairness & ML, , read
this article on , or  on data ethics

here
 bias detectives this course

How can we factor these in the evaluation of models?

29

https://www.newscientist.com/article/2161028-face-recognition-software-is-perfect-if-youre-a-white-man/
http://gendershades.org/overview.html
https://theconversation.com/did-artificial-intelligence-deny-you-credit-73259
https://www.reuters.com/article/us-amazon-com-jobs-automation-insight/amazon-scraps-secret-ai-recruiting-tool-that-showed-bias-against-women-idUSKCN1MK08G
https://arxiv.org/abs/1408.6491
https://theconversation.com/did-artificial-intelligence-deny-you-credit-73259
https://www.wired.com/story/how-algorithm-favored-whites-over-blacks-health-care/
https://www.nature.com/articles/d41586-019-03228-6
https://www.propublica.org/article/machine-bias-risk-assessments-in-criminal-sentencing
https://fairmlbook.org/
https://www.nature.com/articles/d41586-018-05469-3
https://ethics.fast.ai/


Inductive bias

e.g., we are often biased towards simplest explanations of our data

why does is make sense for learning algorithms to be biased?
the world is not random
there are regularities, and induction is possible (why do you think the sun will rise in the east tomorrow morning?

learning algorithms make implicit assumptions learning or inductive bias

Occam's razor between two models (explanations) we should prefer the simpler one

(x) =f̂ x2

both of the following models perfectly fit the data

(x) =f̂ x ∧1 x2

example

this one is simpler

what are some of the inductive biases in using linear regression?
30



Curse of dimensionality
learning in high dimensions can be difficult since the volume of space grows exponentially fast with the dimension

suppose our data is uniformly distributed in some range, say x ∈ [0, 3]D

predict the label by counting labels in the same unit of the grid
to have at least one example per unit, we need  training examples3D

for D=180 we need more training examples than the number of particles in the universe

  example:

31
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in high dimensions most points have similar distances!

histogram of pairwise distance of 1000 points with random features of D dimensions

as we increase dimension,
distances become "similar"!

Curse of dimensionality

D = 3 (2r)D

DΓ(D/2)
2r πD D/2

D = 2 D = 3 D = 4

lim =D→∞ volum(□)
volum(∘) 0  

Q. why are most distances similar?
A. in high dimensions most of the volume is close to the corners!

a "conceptual" visualization of the same idea
# corners and the mass in the corners grow quickly with D

image: Zaki's book on Data Mining and Analysis
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Real-word vs. randomly generated data
how come ML methods work for image data (D=number of pixels)?

pairwise distance for random data

pairwise distance for D pixels of MNIST digits

the statistics do not match that of
random high-dimensional data!

in fact KNN works well for image classification

see here for more  on MNISTresults

optional
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http://yann.lecun.com/exdb/mnist/


Manifold hypothesis
real-world data is often far from uniformly random
manifold hypothesis: real data lies close to the surface of a manifold

data dimension: D = 3

manifold dimension: =D̂ 2

example example data dimension: D = number of pixels (64x64)

manifold dimension: =D̂ 2

image from here

optional
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https://science.sciencemag.org/content/suppl/2000/12/21/290.5500.2319.DC1


No free lunch
consider the binary classification task:

suppose this is our dataset

our learning algorithm can produce one of these as our classifier :f̂ {0, 1} →3 {0, 1}

there are                  binary functions that perfectly fit our dataset 2 =4 16

no free lunchthe same algorithm cannot perform well for all possible class of problems (f)

each ML algorithm is biased to perform well on some class of problems

there is no single algorithm that performs well on all class of problems

optional

read more here
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https://en.wikipedia.org/wiki/There_ain%27t_no_such_thing_as_a_free_lunch


Summary

complex models can have very different training and test error (generalization gap)
regularization bounds this gap by penalizing model complexity
bias-variance trade off:

formalizes the relation between
training error (bias)
complexity (variance) and
and the test error (bias + variance)

not so elegant beyond L2 loss
what we care about is the generalization of ML algorithms

overfitting: good performance on the training set doesn't mean the same for
the test set
underfitting: we don't even have a good performance on the training set

estimated using a validation set or better, we could use cross-validation
36


