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intuition for model complexity and overfitting
regularization penalty (L1 & L2)
probabilistic interpretation

Learning objectives
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Linear regression
recall

what if linear fit is not the best?
how to increase the model's expressiveness?

 use nonlinear basis to create new nonlinear features from the existing ones⇒

=ŷ f (x) =w w x :⊤ R →D Rmodel:

J =w (y −
N
1 ∑n 2

1 (n) ) =ŷ(n) 2 ∣∣y −2
1 Xw∣∣2cost

function:

w =∗ (X X) X y⊤ −1 ⊤closed form solution:how to find ?w∗

J =∂wd

∂
w ( −

N
1 ∑n ŷ(n) y )x(n)

d

(n)
partial derivatives:

∇J(w) = ( −
N
1 ∑n ŷ(n) y )x =(n) (n) X ( − y)

N
1 ⊤ ŷgradient (all partial derivatives):

partial derivatives:

w ←{t+1} w −{t} α∇J(w ){t}
 repeat until stopping criterion:

optimization with gradient descent:

Or use
gradient
descent
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Nonlinear basis functions

replace original features in f (x) =w w x∑d d d

with nonlinear bases f (x) =w w ϕ (x)∑d d d

(Φ Φ)w =⊤ ∗ Φ y⊤linear least squares solution

Φ =

⎣⎢
⎢⎢⎢
⎡ ϕ (x ),1

(1)

ϕ (x ),1
(2)

⋮
ϕ (x ),1

(N)

ϕ (x ),2
(1)

ϕ (x ),2
(2)

⋮
ϕ (x ),2

(N)

⋯ ,
⋯ ,

⋱
⋯ ,

ϕ (x )D
(1)

ϕ (x )D
(2)

⋮
ϕ (x )D

(N) ⎦⎥
⎥⎥⎥
⎤

replacing X with Φ
a (nonlinear) feature

one instance

recall
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examples x ∈ R

polynomial bases

ϕ (x) =k xk

Gaussian bases

ϕ (x) =k e− s2
(x−μ )k

2
Sigmoid bases

ϕ (x) =k
1+e− s

x−μk
1

original input is scalar

Nonlinear basis functions

recall
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Example: Gaussian bases ϕ (x) =k e− s2
(x−μ )k

2

y =(n) sin(x ) +(n) cos( ) +∣x ∣(n) ϵ

our fit to data using 10 Gaussian bases

f(x ) =′ ϕ(x ) (Φ Φ) Φ y′ ⊤ ⊤ −1 ⊤

new instance
w

features evaluated for the new point

prediction for a new instance

found using Least Squares Loss
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our fit to data using 10 Gaussian bases

why not more?

Example: Gaussian bases ϕ (x) =k e− s2
(x−μ )k

2
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using 50 bases!

why not more?

Example: Gaussian bases ϕ (x) =k e− s2
(x−μ )k

2
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cost              is zero and we have a "perfect" fit!J(w)
using 200, thinner bases (s=.1)

Example: Gaussian bases ϕ (x) =k e− s2
(x−μ )k

2
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Generalization?

which one of these models performs better at test time?

D = 5

D = 10

D = 50

D = 200

lower training error
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Overfitting

which one of these models performs better at test time?

predictions of 4 models for the same input

x′

D = 5

D = 10

D = 50

D = 200
y

lowest test error

overfitting

underfitting
f(x )′
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An observation
when overfitting, we sometimes see large weights

dashed lines are w ϕ (x) ∀dd d

idea: penalize large parameter values

D = 10 D = 20D = 17

f (x) =w w ϕ (x)∑d d d
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Ridge regression

L2 regularized linear least squares regression:

J(w) = ∣∣Xw −2
1 y∣∣ +2

2 ∣∣w∣∣2
λ

2
2

(y −2
1 ∑n

(n) w x)⊤ 2
sum of squared error squared L2 norm of w

w w =T w∑d d
2

regularization parameter              controls the strength of regularizationλ > 0

a good practice is to not penalize the intercept λ(∣∣w∣∣ −2
2 w )0

2

also known as

is a hyper-parameter (use a validation set or cross-validation to pick the best value)λ
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Ridge regression
Visualizing the effect of regularization on the cost function

(y −2N
1 ∑x,y∈D w x) +⊤ 2 ∣∣w∣∣2

λ
2
2

example

w0

w1

is the new cost function convex?

w0 w0 14



Ridge regression

set the derivative to zero J(w) = (y −2
1 ∑x,y∈D w x) +⊤ 2 w w2

λ ⊤

∇J(w) = x(w x−∑x,y∈D
⊤ y) + λw

(X X +⊤ λI)w = X y⊤

w = (X X +⊤ λI) X y−1 ⊤

the only part different due to regularization

       makes it invertible, adds a small value to the diagonals 

we can have linearly dependent features
the solution will be unique!

X X⊤λI

when using gradient descent, this term reduces the
weights at each step (weight decay)

= X (Xw −⊤ y) + λw = 0

linear system of equations
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Example: polynomial bases

degree 2 (D=3)

polynomial bases

ϕ (x) =k xk

degree 4 (D=5) degree 9 (D=10)

Without regularization:
using D=10 we can perfectly fit the data (high test error)
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with regularization:

fixed D=10, changing the amount of regularization

λ = 0 λ = .1 λ = 10

Example: polynomial bases

polynomial bases

ϕ (x) =k xk
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Probabilistic interpretation

linear regression & logistic regression maximize log-likelihood

w =MLE argmax p(y∣X,w)w

w =MLE argmax N (y∣w x,σ )w ∏x,y∈D
⊤ 2linear regression

w =MLE argmax Bernoulli(y;σ(w x))w ∏x,y∈D
⊤logistic regression

can we do Bayesian inference instead of maximum likelihood?
p(w∣y,X) ∝ p(w)p(y∣w,X)

posterior prior likelihood

recall
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Maximum a Posteriori (MAP)

MAP estimate w =MAP argmax p(w)p(y∣X,w)w

can we do Bayesian inference instead of maximum likelihood?
p(w∣y,X) ∝ p(w)p(y∣w,X)

posterior prior likelihood

in general, this is expensive, but there's a cheap compromise:

= argmax log p(y∣X,w) +w log p(w)
likelihood: original objective prior

all that is changing is the additional penalty on w
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Gaussian Prior

MAP estimate w =MAP argmax log p(y∣X,w) +w log p(w)
prior

assume independent zero-mean Gaussians

log p(w) = log N (w ∣0, τ ) =∏
d=1
D

d
2 − +∑

d 2τ 2
w2 const.

does not depend on w
so it doesn't affect the optimization

lets call →
τ 2
1 λ

then we get the L2 regularization penalty ∣∣w∣∣2
λ

2
2

smaller variance of the prior  gives larger regularization τ λ

20

N (μ,σ) = e
σ 2π
1 − ( )2

1
σ

x−μ 2



Laplace prior
another notable choice of prior is the Laplace distribution

image from here

minimizing negative log-likelihood log p(w ) =∑d d − ∣w ∣∑d β
1

d = − ∣∣w∣∣
β
1

1

L1 norm of w

p(w;β) = e2β
1 −

β

∣w∣

w

notice the peak around zero

J(w) ← J(w) + λ∣∣w∣∣1L1 regularization: also called lasso
(least absolute shrinkage and selection operator)
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https://stats.stackexchange.com/questions/177210/why-is-laplace-prior-producing-sparse-solutions


 regularizationL  vs L1 2

regularization path shows how           change as we change{w }d λ

decreasing regularization coef.      λ

wd′

Lasso produces sparse weights (many are zero, rather than small)

red-line is the optimal  from cross-validation, for lasso the model uses only 3 of the 8 features

           lasso results in sparse models

λ

⇒

wd

Ridge regressionLasso

D = 8
Example
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D = 8D = 3

see the code here

https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/11/lassoPathProstate.ipynb


figures below show the constraint and the isocontours of J(w)
optimal solution with L1-regularization is more likely to have zero components

w1 w1

w2 wMLEwMLE

wMAP
wMAP

w2

∣∣w∣∣ ≤2
2 λ

~∣∣w∣∣ ≤1 λ
~

J(w)J(w) any convex cost function
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 is equivalent to  subject to  for an appropriate choice ofmin J(w)w ∣∣w∣∣ ≤p
p λ

~
min J(w) +w λ∣∣w∣∣p

p

λ
~

optional

 regularizationL  vs L1 2



Subset selection

penalizes the number of features with non-zero weights

J(w) + λ∣∣w∣∣ =0 J(w) + λ I(w =∑d d  0)
enforces a penalty of  for each feature to be included in
the model   performs feature selection

λ

⇒

closer to 0-norm L norm0

p-norms with             induces sparsityp ≤ 1
p-norms with              are convex (easier to optimize)p ≥ 1
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w(∑d d
4)1/4 w(∑d d

2) 2
1

∣w ∣∑d d ∣w ∣(∑d d 2
1 )2 ∣w ∣(∑d d 10

1 )10

optional



Subset selection

L1 regularization is
a viable alternative
to L0 regularization

p-norms with             induces sparsityp ≤ 1

p-norms with              are convex (easier to optimize)p ≥ 1

closer to 0-norm
optimizing  regularization
is a difficult combinatorial
problem: search over all 
subsets

l0

2D

L norm0

optional

w(∑d d
4)1/4 w(∑d d

2) 2
1

∣w ∣∑d d ∣w ∣(∑d d 2
1 )2
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Adding       regularization

do not penalize the bias

L2

L2 penalty makes the optimization easier too!
w0

w0

w1

λ = 0

w1w1

λ = .01 λ = .1

note that the optimal         shrinksw1
    grad[1:] += lambdaa * w[1:]

def gradient(x, y, w, lambdaa):1
    N,D = x.shape2
    yh = logistic(np.dot(x, w))3
    grad = np.dot(x.T, yh - y) / N 4

5
    return grad6 weight decay

26

example for logistic regression

similar pattern for linear regression, see example in the colab



Sub-derivatives

L1 penalty is no longer smooth or differentiable (at 0)

extend the notion of derivative to non-smooth functions

sub-differential is the set of all sub-derivatives at a point

lim , lim[ w→ŵ− w−ŵ
f(w)−f( )ŵ

w→ŵ+ w−ŵ
f(w)−f( )ŵ ]∂f( ) =ŵ

if f is differentiable at          then sub-differential has one memberŵ f( )
dw
d ŵ

∂f( ) =ŵ {g ∈ R∣ f(w) > f( ) +ŵ g(w − )}ŵ

another expression for sub-differential

ŵ

optional
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Subgradient

subgradient is a vector of sub-derivatives

recall, gradient was the vector of partial derivatives

we can use sub-gradient with diminishing step-size for optimization

example subdifferential for f(w) = ∣w∣

∂f(0) = [−1, 1]

∂f(w = 0) = {sign(w)}

∂f( ) =ŵ {g ∈ R ∣f(w) >D f( ) +ŵ g (w −⊤ )}ŵ

subdifferential for functions of multiple variables

image credit: G. Gordon

optional
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Adding       regularizationL1

do not penalize the bias
using diminishing learning rate

w0

note that the optimal         becomes 0w1

    grad[1:] += lambdaa * np.sign(w[1:])

def gradient(x, y, w, lambdaa):1
    N,D = x.shape2
    yh = logistic(np.dot(x, w))3
    grad = np.dot(x.T, yh - y) / N 4

5
    return grad6

L1-regularized linear regression has efficient solvers
subgradient method for L1-regularized logistic regression

λ = .1 λ = 1λ = .1λ = .1

w0

λ = 0

w1 w1 w1 29



Regularization serves many purposes

w =∗ (X X) X y⊤ −1 ⊤

D ×N N × 1D × 1 N ×D

what if linear fit is not the best?
     use nonlinear basis

what if X X⊤ is not invertible?
add a small value to the diagonals, a.k.a. regularize

How to avoid overfitting then? regularize

what if we want a sparse model?
     do feature selection and only keep important parameters with regularizing
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Data normalization

what if we scale the input features, using different factors =xd
~ (n) γ x ∀d,nd d

(n)

with regularization: ∣∣ ∣∣ =w~ 2  ∣∣w∣∣2
2 so the optimal w will be different!

if we have no regularization: =wd
~ w ∀d

γd

1
d

everything remains the same because: ∣∣Xw − y∣∣ =2
2 ∣∣ −X

~
w~ y∣∣2

2

features of different mean and variance will be penalized differently

μ =d x
N
1

d
(n)

σ =d
2 (x −

N−1
1

d
(n)

μ )d 2{normalization

makes sure all features have the same mean and variance x ←d

(n)
σd

x −μ
d

(n)
d

we saw that this also helps with the optimization!

optional
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Summary

complex models can overfit to training data

regularization avoids this by penalizing model complexity

L1 & L2 regularization

probabilistic interpretation: different priors on weights

L1 produces sparse solutions (useful for feature selection)
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