# Applied Machine Learning 

Linear Regression

Isabeau Prémont-Schwarz

COMP 551 (Fall 2023)

## Sometimes all you need is a linear regression ...

from 2020 Kaggle's survey on the state of Machine Learning and Data Science, you can read the full version here

METHODS AND ALGORITHMS USAGE


## Learning objectives

- linear model
- evaluation criteria
- how to find the best fit
- geometric interpretation
- maximum likelihood interpretation


## $\left.\left.x\right|_{\text {features }} ^{\text {in ut }} \rightarrow \underset{\substack{\text { with } \\ \text { waranmeses } \theta}}{\text { ML aloirthm }} \rightarrow y\right|_{\text {labels }} ^{\substack{\text { output }}}$ Notation $\quad f(x ; \theta)$

each instance: $\left\lvert\, \begin{aligned} & x \in \mathbb{R}^{D} \\ & y \in \mathbb{R}\end{aligned}\right.$

$\mathbb{R}$ denotes set of real numbers | $\operatorname{T}_{-3}^{1}$ |
| :---: |
|  |
| $\mathbb{R}$ |
| $\mathbb{R}$ |

vectors are assume to be column vectors $x=\left[\begin{array}{c}x_{1} \\ x_{2} \\ \vdots \\ x_{D}\end{array}\right]=\left[\begin{array}{lll}x_{1}, & x_{2}, & \ldots,\end{array} \quad x_{D}\right]^{\top}$

## example

<tumorsize, texture, perimeter> $=<18.2,27.6,117.5>$
growth = +2

$$
\begin{aligned}
& x=\left[\begin{array}{lll}
18.2, & 27.6, & 117.5
\end{array}\right]^{\top} \\
& x=\left[\begin{array}{lll}
x_{1}, & x_{2}, & x_{3}
\end{array}\right]^{\top}
\end{aligned}
$$

$$
y=2
$$

##  Notation $\quad f\left(x^{(n)} ; \theta\right)$

each instance:

## instance number <br> $$
\left\lvert\, \begin{aligned} & x^{(n)} \in \mathbb{R}^{D} \\ & y^{(n)} \in \mathbb{R} \end{aligned}\right.
$$

$$
\mathcal{D}=\left\{\left(x^{(n)}, y^{(n)}\right)\right\}_{n=1}^{N}
$$

we assume N instances in the dataset $\mathcal{D}=\left\{\left(x^{(n)}, y^{(n)}\right\}_{n=1}^{N}\right.$ each instance has $D$ features indexed by $d$
for example, $x_{d}^{(n)} \in \mathbb{R}$ is the feature d of instance n

## Notation

design matrix: concatenate all instances $\mathcal{D}=\left\{\left(x^{(n)}, y^{(n)}\right)\right\}_{n=1}^{N}$ each row is a datapoint, each column is a feature

$$
X=\left[\begin{array}{c}
x^{(1)^{\top}} \\
x^{(2)^{\top}} \\
\vdots \\
x^{(N)^{\top}}
\end{array}\right]=\left[\begin{array}{cccc}
x_{1}^{(1)}, & x_{2}^{(1)}, & \cdots, & x_{D}^{(1)} \\
\vdots & \vdots & \ddots & \vdots \\
x_{1}^{(N)}, & x_{2}^{(N)}, & \cdots, & x_{D}^{(N)}
\end{array}\right] \text { one instance } \quad Y=\mathbb{R}^{N \times D}=\left[\begin{array}{c}
y^{(1)} \\
y^{(2)} \\
\vdots \\
y^{(N)}
\end{array}\right] \in \mathbb{R}^{N \times 1}
$$

## Example:

instances: 5 documents features: 7 words

## Example:

Micro array data (X), contains gene expression levels labels (y) can be \{cancer/no cancer classification\} label for each patient, or how fast it is growing (regression)


## Regression: examples

## Age-estimating.

input: face output: age


## Protein folding.

input: sequences output: 3D structure


Image from Marks et al. link
instead of is it cancer? yes, no


## Colourization.

input: gray scale image output: colour image


## Origin of Regression

Method of least squares was invented by Legendre and Gauss (1800's)
Gauss used it to predict the future location of Ceres (largest asteroid in the asteroid belt)
 used it


Legendre published it

ocean navigation
image from wiki history of navigation

## Linear model of regression

$$
\begin{aligned}
& f_{\mathscr{W}}(x)=w_{0}+w_{1} x_{1}+\ldots+w_{D} x_{D} \\
& \text { model parameters or weights ( } \downarrow \text { ve also called them } \theta \text { before) } \\
& {\left[w_{0}, w_{1}, \ldots w_{D}\right] \quad \stackrel{\downarrow}{\text { bias or intercept }}} \\
& \text { assuming a scalar output } \quad f_{w}: \mathbb{R}^{D} \rightarrow \mathbb{R} \\
& \text { will generalize to a vector later }
\end{aligned}
$$

## Linear model of regression: example $D=1$



## Linear model of regression

$\underset{\substack{\downarrow \\ \text { model parameters or weights } \\ f_{w}^{\downarrow} \\ \text { bias or intercept }}}{w_{0}}+w_{1} x_{1}+\ldots+w_{D} x_{D}$

## simplification

concatenate a 1 to $x \longrightarrow x=\left[1, x_{1}, \ldots, x_{D}\right]^{\top}$

$$
f_{w}(x)=w^{\top} x \quad w=\left[w_{0}, w_{1}, \ldots, w_{D}\right]^{\top}
$$

## Linear regression: Objective

objective: find parameters to fit the data model: $f_{w}(x)=w^{\top} x$

$$
\begin{aligned}
& \text { example } D=1 \\
& w=\left[w_{0}, w_{1}\right]
\end{aligned}
$$

Which line is better?


## Linear regression: Objective

## objective: find parameters to fit the data



## Linear regression: Objective

## objective: find parameters to fit the data

how to consider all observations? sum all residuals?
square error loss
(a.k.a. L2 loss)

$$
L(y, \hat{y}) \triangleq(y-\hat{y})^{2}
$$



## Linear regression: cost function

objective: find parameters to fit the data

$$
f_{w}\left(x^{(n)}\right) \approx y^{(n)} \quad x^{(n)}, y^{(n)} \quad \forall n
$$

minimize a measure of difference between $\hat{y}^{(n)}=f_{w}\left(x^{(n)}\right)$ and $y^{(n)}$
square error loss (a.k.a. L2 loss) $L(y, \hat{y}) \triangleq \frac{1}{2}(y-\hat{y})^{2}$
for a single instance (a function of labels)
versus for the whole dataset
sum of squared errors cost function

$$
\begin{gathered}
J(w)=\frac{1}{2} \sum_{n=1}^{N}\left(y^{(n)}-w^{\top} x^{(n)}\right)^{2} \\
w^{*}=\arg \min _{w} J(w)
\end{gathered}
$$

## Example ( $\mathrm{D}=1$ ) +bias ( $\mathrm{D}=2$ )!



Linear Least Squares solution: $\quad w^{*}=\arg \min _{w} \sum_{n} \frac{1}{2}\left(y^{(n)}-w^{T} x^{(n)}\right)^{2}$

## Example ( $\mathrm{D}=2$ 2) +bias ( $\mathrm{D}=3$ )!



## Minimizing the cost

 Simple case: $D=1$ (no intercept)model: $f_{w}(x)=w x$
both scalar
cost function $J(w)=\frac{1}{2} \sum_{n}\left(y^{(n)}-w x^{(n)}\right)^{2}$
derivative: $\frac{\mathrm{d} J}{\mathrm{~d} w}=\sum_{n} x^{(n)}\left(w x^{(n)}-y^{(n)}\right)$
set to 0: $\left.0=w \sum_{n} x^{(n)} x^{(n)}-\sum_{n} x^{(n)} y^{(n)}\right)$

setting the derivative to zero $w^{*}=\frac{\sum_{n} x^{(n)} y^{(n)}}{\sum_{n} x^{(n)}}$
global minimum because the cost function is smooth and convex

## Minimizing the cost

model: $f_{w}(x)=w_{0}+w_{1} x$
cost: a multivariate function $J\left(w_{0}, w_{1}\right)$


the cost function is a smooth function of w find minimum by setting partial derivatives to zero

## Minimizing the cgst

for a multivariate function $J\left(w_{0}, w_{1}\right)$
partial derivatives instead of derivative
= derivative when other vars. are fixed
$\frac{\partial}{\partial w_{0}} J\left(w_{0}, w_{1}\right) \triangleq \lim _{\epsilon \rightarrow 0} \frac{J\left(w_{0}+\epsilon, w_{1}\right)-J\left(w_{0}, w_{1}\right)}{\epsilon}$
critical point: all partial derivatives are zero gradient: vector of all partial derivatives

$$
\nabla J(w)=\left[\frac{\partial}{\partial w_{1}} J(w), \cdots \frac{\partial}{\partial w_{D}} J(w)\right]^{\top}
$$



## Minimizing the cost for general case (any D)

find the critical point by setting $\frac{\partial}{\partial w_{d}} J(w)=0$

$$
\frac{\partial}{\partial w_{d}} \sum_{n} \frac{1}{2}\left(y^{(n)}-f_{w}\left(x^{(n)}\right)\right)^{2}=0
$$

using chain rule: $\frac{\partial J}{\partial w_{d}}=\frac{\mathrm{d} J}{\mathrm{~d} f_{w}} \frac{\partial f_{w}}{\partial w_{d}}$

cost is a smooth and convex function of w
we get $\quad \sum_{n}\left(w^{\top} x^{(n)}-y^{(n)}\right) x_{d}^{(n)}=0 \quad \forall d \in\{1, \ldots, D\}$
$D$ equations with $D$ unknowns

## Linear regression: Matrix form

$$
\begin{aligned}
& \text { instead of } \\
& \hat{y}_{\in \mathbb{R}}^{(n)}={\underset{1 \times D}{\top} x_{D \times 1}^{(n)}}_{x^{(n)}}
\end{aligned}
$$

use design matrix to write $\underset{N \times 1}{\hat{y}}=\underbrace{}_{N \times D} W_{D \times 1}$


Linear least squares

$$
\arg \min _{w} \frac{1}{2}\|y-X w\|_{2}^{2}=\frac{1}{2}(y-X w)^{\top}(y-X w)
$$

## Minimizing the cost: Matrix form

Linear least squares

$$
\begin{array}{ll}
J(w)=\frac{1}{2}\|y-X w\|^{2}=\frac{1}{2}(y-X w)^{T}(y-X w) & \\
\begin{array}{ll}
\frac{\partial J(w)}{\partial w}=\frac{\partial}{\partial w}\left[y^{T} y+w^{T} x^{T} X^{T} y\right. \\
& \left.W^{T} X w-2 y^{T} X w\right]
\end{array} & \frac{\partial X w}{\partial w}=X^{T} \\
\text { Using matrix differentiation } & \frac{\partial w^{T} X w}{\partial w}=2 X w \\
\frac{\partial J(w)}{\partial w}=0+X^{T} X w-X^{T} y=X^{T}(X w-y)
\end{array}
$$

## Minimizing the cost: Matrix form

## Linear least squares

$$
\begin{aligned}
J(w)=\frac{1}{2}\|y-X w\|^{2} & =\frac{1}{2}(y-X w)^{T}(y-X w) \\
\frac{\partial J(w)}{\partial w_{i}} & =\frac{1}{2} \frac{\partial}{\partial w_{i}}\left[y^{T} y+w^{T} X^{T} X w-2 y^{T} X w\right]
\end{aligned}
$$

## Minimizing the cost: Matrix form

## Linear least squares

$$
J(w)=\frac{1}{2}\|y-X w\|^{2}=\frac{1}{2}(y-X w)^{T}(y-X w)
$$

$$
\begin{aligned}
& \frac{\partial J(w)}{\partial w_{i}}=\frac{1}{2} \frac{\partial}{\partial w_{i}}\left[y^{T} y+w^{T} X^{T} X w-2 y^{T} X w\right] \\
& \frac{\partial J(w)}{\partial w_{i}}=\frac{1}{2} \frac{\partial}{\partial w_{i}}\left[\sum_{j} y_{j 1} y_{j 1}+\sum_{j, k, m} w_{j 1} X_{k j} X_{k m} w_{m 1}-\sum_{j, k} 2 y_{j 1} X_{j k} w_{k 1}\right]
\end{aligned}
$$

## Minimizing the cost: Matrix form

## Linear least squares

$$
J(w)=\frac{1}{2}\|y-X w\|^{2}=\frac{1}{2}(y-X w)^{T}(y-X w)
$$

$$
\begin{aligned}
& \frac{\partial J(w)}{\partial w_{i}}=\frac{1}{2} \frac{\partial}{\partial w_{i}}\left[y^{T} y+w^{T} X^{T} X w-2 y^{T} X w\right] \\
& \frac{\partial J(w)}{\partial w_{i}}=\frac{1}{2} \frac{\partial}{\partial w_{i}}\left[\sum_{j} y_{j 1} y_{j 1}+\sum_{j, k, m} w_{j 1} X_{k j} X_{k m} w_{m 1}-\sum_{j, k} 2 y_{j 1} X_{j k} w_{k 1}\right]
\end{aligned}
$$

Einstein notation: implicit sum on repeated indices ${ }^{+}+(A B)_{i j}=A_{i k} B_{k j}$ $\frac{\partial J(w)}{\partial w_{i}}=\frac{1}{2} \frac{\partial}{\partial w_{i 1}}\left[y_{j 1} y_{j 1}+w_{j 1} X_{k j} X_{k m} w_{m 1}-2 y_{j 1} X_{j k} w_{k 1}\right]$

## Minimizing the cost: Matrix form

## Linear least squares

$$
\begin{gathered}
J(w)=\frac{1}{2}\|y-X w\|^{2}=\frac{1}{2}(y-X w)^{T}(y-X w) \\
\frac{\partial J(w)}{\partial w_{i}}=\frac{1}{2} \frac{\partial}{\partial w_{i}}\left[y^{T} y+w^{T} X^{T} X w-2 y^{T} X w\right] \\
\frac{\partial J(w)}{\partial w_{i}}=\frac{1}{2} \frac{\partial}{\partial w_{i 1}}\left[y_{j 1} y_{j 1}+w_{j 1} X_{k j} X_{k m} w_{m 1}-2 y_{j 1} X_{j k} w_{k 1}\right] \\
\quad=\frac{1}{2}\left[\delta_{i j} X_{k j} X_{k m} w_{m 1}+w_{j 1} X_{k j} X_{k m} \delta_{m i}-2 y_{j 1} X_{j k} \delta_{k i}\right]
\end{gathered}
$$

## Minimizing the cost: Matrix form

## Linear least squares

$$
J(w)=\frac{1}{2}\|y-X w\|^{2}=\frac{1}{2}(y-X w)^{T}(y-X w)
$$

$$
\begin{aligned}
\frac{\partial J(w)}{\partial w_{i}} & =\frac{1}{2} \frac{\partial}{\partial w_{i 1}}\left[y_{j 1} y_{j 1}+w_{j 1} X_{k j} X_{k m} w_{m 1}-2 y_{j 1} X_{j k} w_{k 1}\right] \\
& =\frac{1}{2}\left[\delta_{i j} X_{k j} X_{k m} w_{m 1}+w_{j 1} X_{k j} X_{k m} \delta_{m i}-2 y_{j 1} X_{j k} \delta_{k i}\right] \quad(A B)_{i j}= \\
& =\frac{1}{2}\left[X_{k i} X_{k m} w_{m 1}+w_{j 1} X_{k j} X_{k i}-2 y_{j 1} X_{j i}\right]=\left(\frac{2}{2} X^{T}(X w-y)\right)_{i 1}
\end{aligned}
$$

## Minimizing the cost: Matrix form

## Linear least squares

$$
\begin{aligned}
& J(w)=\frac{1}{2}\|y-X w\|^{2}=\frac{1}{2}(y-X w)^{T}(y-X w) \\
& \frac{\partial J(w)}{\partial w_{i}}=\frac{1}{2} \frac{\partial}{\partial w_{i}}\left[y^{T} y+w^{T} X^{T} X w-2 y^{T} X w\right]
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{1}{2}\left[\delta_{i j} X_{k j} X_{k m} w_{m 1}+w_{j 1} X_{k j} X_{k m} \delta_{m i}-2 y_{j 1} X_{j k} \delta_{k i}\right] \quad(A B)_{i j}=A_{i k} B_{k j} \\
& =\frac{1}{2}\left[X_{k i} X_{k m} w_{m 1}+w_{j 1} X_{k j} X_{k i}-2 y_{j 1} X_{j i}\right]=\left(\frac{2}{2} X^{T}(X w-y)\right)_{i 1}
\end{aligned}
$$

$$
0=\frac{\partial J(w)}{\partial w}=X^{T}(X w-y)
$$

## Minimizing the cost: Matrix form

Linear least squares

$$
\begin{aligned}
& 0=\frac{\partial J(w)}{\partial w}=X^{T}(X w-y) \\
& 0=X^{T} X w-X^{T} y \Longrightarrow X^{T} X w=X^{T} y \\
& \quad \Longrightarrow w=\left(X^{T} X\right)^{-1} X^{T} y
\end{aligned}
$$

## Closed form solution

$$
\begin{aligned}
& D \times N \quad N \times 1
\end{aligned}
$$

$$
X^{\top} X w=X^{\top} y \text { system of } \mathrm{D} \text { linear equations }(A w=b)
$$

## each row enforces one of $D$ equations

similar to non-matrix form: optimal weights w* satisfy
$\sum_{n}\left(y^{(n)}-w^{\top} x^{(n)}\right) x_{d}^{(n)}=0 \quad \forall d$
$D$ equations with $D$ unknowns

$$
D \text { equations with } D \text { unknowns }
$$

$$
\begin{aligned}
& w^{*}=\left(X^{\top} X\right)^{-1} X^{\top} y \\
& D \times D \quad D \times N N \times 1
\end{aligned}
$$

closed form solution

## Closed form solution

Geometric interpretation

Normal equation: because for optimal w, the residual vector is normal to column space of the design matrix
$X^{\top} X w=X^{\top} y$ system of $D$ linear equations $(A w=b)$

$$
w^{*}=\left(\underset{\substack{D \times D \\ \text { closed form solution }}}{\left(X^{\top} X\right)^{-1} X^{\top} y}\right.
$$

$$
\hat{y}=X w=X\left(X^{\top} X\right)^{-1} X^{\top} y
$$

$$
\text { projection matrix into column space of } X
$$

## Uniqueness of the solution

we can get a closed form solution!

$$
w^{*}=\left(X^{\top} X\right)^{-1} X^{\top} y
$$

unless $D \geq N$
or when the $X^{\top} X$ matrix is not invertible this matrix is not invertible when some of eigenvalues are zero! that is, if features are completely correlated
... or more generally if features are not linearly independent
examples having a binary feature $x_{1}$ as well as its negation $x_{2}=\left(1-x_{1}\right)$

## Time complexity


total complexity for is $\mathcal{O}\left(N D^{2}+D^{3}\right)$ which becomes $\mathcal{O}\left(N D^{2}\right)$ for $N>D$
in practice we don't directly use matrix inversion (unstable)
however, other more stable solutions (e.g., Gaussian elimination) have similar complexity

## Multiple targets

instead of $y \in \mathbb{R}^{N}$ we have $Y \in \mathbb{R}^{N \times D^{\prime}}$
a different weight vectors for each target
each column of $Y$ is associated with a column of $W$

$$
\hat{Y}=X W
$$

$$
\hat{Y}=\left[\begin{array}{cc}
\hat{y}_{1}^{(1)} & \hat{y}_{2}^{(1)} \\
\hat{y}_{1}^{(2)} & \hat{y}_{2}^{(2)} \\
\vdots & \\
\hat{y}_{1}^{(N)} & \hat{y}_{2}^{(N)}
\end{array}\right]=\left[\begin{array}{ccccc}
1 & x_{1}^{(1)}, & x_{2}^{(1)}, & \cdots, & x_{D}^{(1)} \\
1 & \vdots & \vdots & \ddots & \vdots \\
1 & x_{1}^{(N)}, & x_{2}^{(N)}, & \cdots, & x_{D}^{(N)}
\end{array}\right]\left[\begin{array}{cc}
w_{0,1} & w_{0,2} \\
w_{1,1} & w_{1,2} \\
w_{2,1} & w_{2,2} \\
\vdots & \\
w_{D, 1} & w_{D, 2}
\end{array}\right]
$$

$$
W^{*}=\left(X_{D \times D}^{\top} X\right)^{-1} X_{D \times N}^{\top} Y
$$

$$
\begin{aligned}
& \hat{y}_{(1)}^{(1)}=w_{0,1}+x_{1}^{(1)} w_{1,1}+x_{2}^{(1)} w_{2,1}+\cdots+x_{D}^{(1)} w_{D, 1} \\
& \hat{y}_{2}^{(1)}=w_{0,2}+x_{1}^{(1)} w_{1,2}+x_{2}^{(1)} w_{2,2}+\cdots+x_{D}^{(1)} w_{D, 2}
\end{aligned}
$$

## Fitting non-linear data

so far we learned a linear function $f_{w}=\sum_{d} w_{d} x_{d}$ sometimes this may be too simplistic

## example

Synthetic data when we generated data
from a function

$$
y^{*}=\sin (x)+\cos (\sqrt{x})
$$

$$
\mathcal{D}=\left\{\left(x^{(n)}, y^{*}\left(x^{(n)}\right)+\epsilon\right\}_{\substack{\text { small } \\ \text { noise }}}^{N=1}\right.
$$


we see linear fit is not close to correct model that the data is generated from, can we get a better fit?

$$
\text { e.g., } x_{1}^{2}, x_{1} x_{2}, \log (x), \quad \text { how about } x_{1}+2 x_{3} \text { ? }
$$

## Nonlinear basis functions

so far we learned a linear function $f_{w}=\sum_{d} w_{d} x_{d}$
let's denote the set of all features by $\phi_{d}(x) \forall d$ the problem of linear regression doesn't change $\quad f_{w}=\sum_{d} w_{d} \phi_{d}(x)$ solution simply becomes $\left(\Phi^{\top} \Phi\right) w^{*}=\Phi^{\top} y$ $\phi_{d}(x)$ is the new $x$ replacing $X$ with $\Phi$

$$
\begin{gathered}
\text { a (nonlinear) feature } \\
\Phi=\left[\begin{array}{cccc}
\phi_{1}\left(x^{(1)}\right), & \phi_{2}\left(x^{(1)}\right), & \cdots, & \phi_{D}\left(x^{(1)}\right) \\
\phi_{1}\left(x^{(2)}\right), & \phi_{2}\left(x^{(2)}\right), & \cdots, & \phi_{D}\left(x^{(2)}\right) \\
\vdots & \vdots & \ddots & \vdots \\
\phi_{1}\left(x^{(N)}\right), & \phi_{2}\left(x^{(N)}\right), & \cdots, & \phi_{D}\left(x^{(N)}\right)
\end{array}\right] \quad \text { one instance }
\end{gathered}
$$

## Nonlinear basis functions

## example original input is scalar $x \in \mathbb{R}$


$\phi_{k}(x)=x^{k}$


Gaussian bases
$\phi_{k}(x)=e^{-\frac{\left(x-\mu_{k}\right)^{2}}{s^{2}}}$


$$
\phi_{k}(x)=\frac{1}{1+e^{-\frac{x-\mu_{k}}{s}}}
$$

## Linear regression with nonlinear bases: example



Gaussian bases

$$
\phi_{k}(x)=e^{-\frac{\left(x-\mu_{k}\right)^{2}}{s^{2}}}
$$

we are using a fixed standard deviation of $s=1$


Sigmoid bases
$\phi_{k}(x)=\frac{1}{1+e^{-\frac{x-\mu_{k}}{s}}}$
we are using a fixed standard deviation of $s=1$

$$
\hat{y}^{(n)}=w_{0}+\sum_{k} w_{k} \phi_{k}(x)
$$


the green curve (our fit) is the sum of these scaled Gaussian bases plus the intercept. Each basis is scaled by the corresponding weight


## Probailistic interpretation

idea
given the dataset $\mathcal{D}=\left\{\left(x^{(1)}, y^{(1)}\right), \ldots,\left(x^{(N)}, y^{(N)}\right)\right\}$
learn a probabilistic model $p(y \mid x ; w)$

consider $p(y \mid x ; w)$ with the following form

$$
\begin{gathered}
p_{w}(y \mid x)=\mathcal{N}\left(y \mid w^{\top} x, \sigma^{2}\right)=\frac{1}{\sqrt{2 \pi \sigma^{2}}} e^{-\frac{\left.(y-w)^{\top} x\right)^{2}}{2 \sigma^{2}}} \\
\text { assume a fixed variance, say } \sigma^{2}=1
\end{gathered}
$$

Q: how to fit the model?
A: maximize the conditional likelihood!

## Maximum likelihood \& linear regression



## Summary

linear regression:

- models targets as a linear function of features
- fit the model by minimizing the sum of squared errors
- has a direct solution with $\mathcal{O}\left(N D^{2}+D^{3}\right)$ complexity
- probabilistic interpretation
we can build more expressive models:
- using any number of non-linear features

