Applied Machine Learning

Dimensionality reduction

Isabeau Prémont-Schwarz
Learning objectives

What is dimensionality reduction?
What is it good for?
Linear dimensionality reduction:
 • Principal Component Analysis
 • Relation to Singular Value Decomposition
Motivation

Scenario: we are given high dimensional data and asked to make sense of it!

Real-world data is high-dimensional

- **Visualization:** we can't visualize beyond 3D
- **Compression:** processing and storage is costly
- **Downstream analysis, e.g. clustering or classification**
 - features may not have any semantics (value of the pixel vs happy/sad)
 - many features may not vary much in our dataset (e.g., background pixels in face images)

Dimensionality reduction: faithfully represent the data in low dimensions

- We can often do this with real-world data (*manifold hypothesis*)
- finding meaningful low-dimensional structures in high-dimensional observations
Dimensionality reduction

Dimensionality reduction: faithfully represent the data in low dimensions

- learn a mapping between (coordinates) at low-dimension and high-dimensional data

\[x^{(n)} \in \mathbb{R}^3 \quad \leftrightarrow \quad z^{(n)} \in \mathbb{R}^2 \]

some methods give this mapping in both directions and some only in one direction.
Dimensionality reduction: faithfully represent the data in low dimensions

- learn a mapping between (coordinates at) low-dimension and high-dimensional data

\[x^{(n)} \in \mathbb{R}^{400} \]

\[z^{(n)} \in \mathbb{R}^{2} \]

each image is 20x20
Principal Component Analysis (PCA)

PCA is a **linear** dimensionality reduction method

\[x^{(n)} \in \mathbb{R}^3 \]

\[z^{(n)} \in \mathbb{R}^2 \]

where \(Q \) has orthonormal columns \(Q^\top Q = I \)

it follows that the pseudo-inverse of \(Q \) is \(Q^\dagger = (Q^\top Q)^{-1}Q^\top = Q^\top \)
PCA: optimization objective

PCA is a **linear** dimensionality reduction method

\[x^{(n)} \in \mathbb{R}^{784} \]

each image has 28x28=784 pixels

\[Q \in \mathbb{R}^{784 \times 2} \]

\[Q^\top \]

faithfulness is measured by the reconstruction error

\[
\min_Q \sum_n \| x^{(n)} - x^{(n)} \top Q^\top z^{(n)}\|_2^2 \quad s.t. \quad Q^\top Q = I
\]
PCA: optimization objective

PCA is a **linear** dimensionality reduction method. Faithfulness is measured by the reconstruction error:

$$\min_{Q} \sum_{n} \| x^{(n)} - \bar{x}^{(n)^{\top}} Q Q^{\top} z^{(n)} \|^{2}_{2} \quad s.t. \quad Q^{\top} Q = I$$

Strategy: find $D \times D$ matrix Q, and only use D' columns. Since Q is orthogonal we can think of it as a change of coordinates.

Since Q is orthogonal we can think of it as a change of coordinates.

\[
Q = \begin{bmatrix}
Q_{1,1}, \ldots, & Q_{1,D} \\
\vdots, & \vdots, \\
Q_{D,1}, \ldots, & Q_{D,D}
\end{bmatrix}
\]
PCA: a change of coordinates

strategy: find \(D \times D \) matrix \(Q \), and only use \(D' \) columns

Since \(Q \) is orthonormal we can think of it as a change of coordinates

we want to change coordinates such that coordinates 1,2,...,\(D' \) best explain the data for any given \(D' \)
PCA preserves variance

Find a change of coordinate using orthonormal matrix $Q = \begin{bmatrix} Q_{1,1}, \ldots, Q_{1,D} \\ \vdots \\ Q_{D,1}, \ldots, Q_{D,D} \end{bmatrix}$

first new coordinate has maximum variance (lowest reconstruction error)

second coordinate has the next largest variance

... along which one of these directions the data has a higher variance? more spread out?

this direction is the vector q_1

projection is given by $\frac{x^{(n)\top} q_1}{||q_1||_2} = x^{(n)\top} q_1$

projection of the whole dataset is $X q_1 = z_1$

$z_1\top = [z^{(1)}_1, z^{(2)}_1, \ldots, z^{(N)}_1]$
PCA preserves variance

Find a change of coordinate using orthonormal matrix

first new coordinate has maximum variance

projection of the whole dataset is \[z_1 = X q_1 \]

assuming features have zero mean, maximize the variance of the projection:

\[
\max_{q_1} \frac{1}{N} z_1^\top z_1 = \max_{q_1} \frac{1}{N} q_1^\top X^\top X q_1 = \max_{q_1} q_1 \Sigma q_1^\top
\]

dx\,d\text{covariance matrix}

\[
\Sigma = \frac{1}{N} X^\top X = \frac{1}{N} \sum_n (x^{(n)} - 0)(x^{(n)} - 0)^\top
\]

because the mean is zero

\[
\Sigma_{i,j} \quad \text{is the sample covariance of feature } i \text{ and } j
\]

\[
\Sigma_{i,j} = \text{Cov}[X_{:,i}, X_{:,j}] = \frac{1}{N} \sum_n x_i^{(n)} x_j^{(n)}
\]
covariance matrix

variance of a random variable \(\text{Var}(x) = \mathbb{E}[(x - \mathbb{E}[x])^2] = \mathbb{E}[x^2] - \mathbb{E}[x]^2 \)
covariance of two random variable \(\text{Cov}(x, y) = \mathbb{E}[(x - \mathbb{E}[x])(y - \mathbb{E}[y])] = \mathbb{E}[xy] - \mathbb{E}[x]\mathbb{E}[y] \)
for \(x \in \mathbb{R}^D \) we have covariance matrix

\[
\Sigma = \begin{bmatrix}
\Sigma_{1,1} & \cdots & \Sigma_{1,D} \\
\vdots & \ddots & \vdots \\
\Sigma_{D,1} & \cdots & \Sigma_{D,D}
\end{bmatrix}
= \mathbb{E}[(x - \mathbb{E}[x])(x - \mathbb{E}[x])^\top] = \mathbb{E}[xx^\top] - \mathbb{E}[x]\mathbb{E}[x]^\top
\]

given a dataset \(\mathcal{D} = \{x^{(1)}, \ldots, x^{(N)}\} \) sample covariance matrix

\[
\hat{\Sigma} = \mathbb{E}_\mathcal{D}[(x - \mathbb{E}_\mathcal{D}[x])(x - \mathbb{E}_\mathcal{D}[x])^\top]
\]

the empirical estimate

\(x - \left(\frac{1}{N} \sum_{x \in \mathcal{D}} x \right) \)
Correlation and dependence

correlation is normalized covariance

\[
\text{Corr}(x_i, x_j) = \frac{\text{Cov}(x_i, x_j)}{\sqrt{\text{Var}(x_i)\text{Var}(x_j)}} \in [-1, +1]
\]

two variables that are independent are uncorrelated as well

\[
p(x_i, x_j) = p(x_i)p(x_j) \Rightarrow \mathbb{E}[x_i x_j] = \mathbb{E}[x_i]\mathbb{E}[x_j] \Rightarrow \text{Cov}(x_i x_j) = 0
\]

the inverse is generally not true (zero correlation doesn't mean independence)

in each example above correlation between two coordinates is zero, but they are not independent
Decomposing the covariance matrix

covariance matrix is symmetric positive semi definite

- symmetric
 - $\Sigma_{d,d'} = \text{Cov}(x_d, x_{d'}) = \text{Cov}(x_{d'}, x_d) = \Sigma_{d',d}$

- positive semi definite
 - for any $y \in \mathbb{R}^D$ we have $y^T \Sigma y = (y^T \mathbb{E}[(x - \mathbb{E}[x])(x - \mathbb{E}[x])^T] y) = \text{Var}(y^T x) \geq 0$

any symmetric positive semi-definite matrix can be decomposed as

$$
\Sigma = Q \Lambda Q^T
$$

Spectral Decomposition

Λ is diagonal $D \times D$

orthogonal $QQ^T = Q^T Q = I$ (rotation and reflection)
PCA with Eigenvalue decomposition

find a change of coordinate using an orthogonal matrix

first new coordinate has maximum variance

\[\max_{q_1} q_1 \Sigma q_1^\top \quad \text{s.t.} \quad ||q_1|| = 1 \]

covariance matrix is symmetric and positive semi-definite

\[(X^\top X)^\top = X^\top \quad \quad \quad a^\top \Sigma a = \frac{1}{N} a^\top X^\top X a = \frac{1}{N} ||Xa||_2^2 \geq 0 \quad \forall a \]

any symmetric matrix has the following decomposition

\[\Sigma = Q \Lambda Q^\top \] (as we see shortly using Q here is not a co-incidence)

\[QQ^\top = Q^\top Q = I \quad \text{dxd orthogonal matrix} \]

each column is an eigenvector

diagonal and sorted \((\lambda_1 > \lambda_2 > \lambda_3 > \ldots)\)

corresponding eigenvalues are on the diagonal

positive semi-definiteness means these are non-negative
PCA: Principal Component Analysis

PCA is a method to find a change of coordinate using an orthogonal matrix. The first new coordinate has maximum variance. We have:

\[q_1^* = \arg \max_{q_1} q_1^\top \Sigma q_1 \quad \text{s.t.} \quad ||q_1|| = 1 \]

Maximizing direction is the eigenvector with the largest eigenvalue (first column of Q):

\[\max_{q_1} q_1^\top Q \Lambda Q^\top q_1 = \lambda_1 \quad \text{using eigenvalue decomposition} \]

Second eigenvector gives the second principal direction:

\[q_2 = Q_{:,2} \]

So for PCA we need to find the eigenvectors of the covariance matrix using eigenvalue decomposition.
Reducing dimensionality

projection into the principal direction q_i is given by Xq_i

think of the projection XQ as a change of coordinates

we can use the first D' coordinates $Z = XQ_{:,D'}$

to reduce the dimensionality while capturing a lot of the variance in the data

we can project back into original coordinates using $\hat{X} = ZQ^{\top}_{:,D'}$

[Image: principle direction number 1 and 2]
Example: digits dataset

let's only work with digit 2! \(x^{(n)} \in \mathbb{R}^{784} \)

center the data and form the covariance matrix \(\Sigma_{784 \times 784} \)

find the eigenvectors of the covariance matrix, the principal directions

use the first 20 directions to reduce dimensionality from 784 to 20!

PC coefficient \(x^\top q_i \) (the new coordinates)

using 20 numbers we can represent each image with a good accuracy
example: digits dataset

3D embedding of MNIST digits

(https://projector.tensorflow.org/)

the embedding 3D coordinates are

\[x^{(n)} \in \mathbb{R}^{784} \]

\[X_{q_1}, X_{q_2}, X_{q_3} \]
3D embedding of Word2Vec embeddings (https://projector.tensorflow.org/)

it is common to use dimensionality reduction to visualize and inspect results of other representation learning methods
example: face dataset

eigenfaces for face recognition
read more here

\[x^{(n)} \in \mathbb{R}^{64 \times 64} \]

\[z^{(n)} = x^{(n)\top} Q :_{250} \]

mean face used for centring the data
there is another way to do PCA

without using the covariance matrix
Singular Value Decomposition (SVD)

any $N \times D$ real matrix has the following decomposition

$$X = U S V^\top$$

- X: $N \times D$
- U: $N \times N$
- S: $N \times D$
- V: $D \times D$

Left singular vectors:
- $\{u_i\}$
- $u_i^\top u_j = 0 \forall i \neq j$

Right singular vectors:
- v_i
- $v_i^\top v_j = 0 \forall i \neq j$

Singular values:
- s_i
- $s_i \geq 0$

Compressed SVD:
- Assuming $N > D$ we can ignore:
 - the last (N-D) columns of U
 - last (N-D) rows of S

- Similarly if $D > N$ we can compress V, S

$$X = USV^\top$$

$N \times D$ $N \times D$ $D \times D$ $D \times D$
Singular value & eigenvalue decomposition

recall that for PCA we used the eigenvalue decomposition of

\[\Sigma = \frac{1}{N} X^\top X \]

how does it relate to SVD?

\[X^\top X = (USV^\top)^\top (USV^\top) = VS^\top U^\top USV^\top = VS^2V^\top \]

compare to

\[\frac{1}{N} X^\top X = Q\Lambda Q^\top \]

\[(X^\top X)^{-1} = VS^{-2}V^\top \]

eigenvectors of \(\Sigma \) are right singular vectors of \(X \)

for PCA we could use SVD

- this is the standard computation which works directly with data matrix instead of the covariance matrix
Picking the number of PCs

number of PCs in PCA is a hyper-parameter, how should we choose this?

each new principle direction explains some variance in the data

such that we have \(a_1 \geq a_2 \geq \ldots \geq a_D \) (by definition of PCA)

we can divide by total variance to get a ratio \(r_i = \frac{a_i}{\sum_d a_d} \)

example for our digits example we get

we can explain 90% of variance in the data using 100 PCs

first few principal directions explain most of the variance in the data!
Picking the number of PCs

recall that for picking the principal direction we maximized the variance of the PC

$$\max_q \frac{1}{N} q X^\top X q = \max_q q \Sigma q^\top = \max_q q \Lambda Q^\top q = \lambda_1$$

so the variance ratios are also given by

$$r_i = \frac{\lambda_i}{\sum_d \lambda_d}$$

so we can also use eigenvalues to pick the number of PCs

digits example: two estimates of variance ratios do match
Matrix factorization

PCA and SVD perform matrix factorization

\[X \approx (XQ)Q^T \]

rows of this matrix are principal components

\[Z \]

this is the matrix of low-dimensional features

\[N \times D' \]

pc coefficients

\[D' \times D \]

factor loading matrix

this gives a row-rank approximation to our original matrix \(X \)

- we can use this to compress the matrix
- we can find give a "smooth" reconstruction of \(X \) (remove noise or fill missing values)
Matrix factorization

changing the rank D' gives different amount of compression

$427 \times 640 \approx 427 \times 50 \times 50 \times 640 \approx 20\%$ of original size

$D = 5 \quad 2\%$ of original size

$D = 20 \quad 8\%$ of original size

$D = 200 \quad 80\%$ of original size
Matrix factorization

K-means also can be seen as matrix factorization

\[
\begin{align*}
\begin{array}{c}
N \\
D
\end{array} & \approx & \begin{array}{c}
N \\
K \times D \\
K
\end{array}
\end{align*}
\]

Each row has exactly one nonzero (responsibilities), e.g., \([0,1,0,0,0]\)

Each row is a cluster center \(\mu_k\)

Matrix product simply equates each row of \(X\) with one row of the factor matrix

- instead of principal components \(\rightarrow\) cluster centers
- factor loading matrix \(\rightarrow\) one nonzero per row of \(Z\) (each node belongs to one cluster)
Autoencoders

a feed-forward neural net which predicts its input

• can be trained with reconstruction loss
 ■ e.g. mean squared error: \(\sum_n \| x^{(n)} - \hat{x}^{(n)} \|^2_2 \)

dimensionality reduction with a **bottleneck layer** much smaller than input
Autoencoders

A feed-forward neural net which predicts its input

- Can be trained with reconstruction loss
 - E.g., reconstruction loss: $\|\mathbf{x} - \psi(\phi(\mathbf{x}))\|^2$

Dimensionality reduction with a bottleneck layer much smaller than input

- Optimal weights for linear autoencoder are the principal components
- Nonlinear dimensionality reduction if activations are not all linear
 - Projecting the data on a non-linear manifold
 - Deep autoencoders are very powerful
Autoencoders: example

\[\sum_n \left\| x^{(n)} - x^{(n)^\top} Q Q^\top \right\| \frac{1}{2} \text{ s.t. } Q^\top Q = I \]

PCA v.s. Autoencoder

newswire stories

\[\sum_n \left\| x^{(n)} - \psi(\phi(x^{(n)})) \right\| \frac{1}{2} \]
Summary

Dimensionality reduction helps us:

- visualize our data
- compress it
- simplify the computational need of further analysis (clustering, supervised learning etc.)
- also can be used for anomaly detection (not discussed)

PCA is a linear dimensionality reduction method

- projects the data to a linear space (spanned by D' principal directions)
 - directions are eigenvectors of the covariance matrix
 - the projection has maximum variance (minimum reconstruction error)
 - eigenvalues tell us about the contribution of each new principal direction
- PCA using Singular Value Decomposition
- Model selection for PCA
- PCA as matrix factorization and its relationship to k-means
- practical note: don't forget to subtract the mean!