Applied Machine Learning

Dimensionality reduction

Isabeau Prémont-Schwarz

Learning objectives

What is dimensionality reduction?
What is it good for?
Linear dimensionality reduction:

- Principal Component Analysis
- Relation to Singular Value Decomposition

Motivation

Scenario: we are given high dimensional data and asked to make sense of it!
Real-world data is high-dimensional

- Visualization: we can't visualize beyond 3D
- Compression: processing and storage is costly
- Downstrean analysis, e.g. clustering or classification
- features may not have any semantics (value of the pixel vs happy/sad)
- many features may not vary much in our dataset (e.g., background pixels in face images)

Dimensionality reduction: faithfully represent the data in low dimensions

- We can often do this with real-world data (manifold hypothesis)
- finding meaningful low-dimensional structures in high-dimensional observations

Dimensionality reduction

Dimensionality reduction: faithfully represent the data in low dimensions

- learn a mapping between (coordinates) at low-dimension and high-dimensional data

some methods give this mapping in both directions and some only in one direction.

Dimensionality reduction

Dimensionality reduction: faithfully represent the data in low dimensions

- learn a mapping between (coordinates at) low-dimension and high-dimensional data

Principal Component Analysis (PCA)

PCA is a linear dimensionality reduction method

$$
x^{(n)} \in \mathbb{R}^{3}
$$

$$
z^{(n)} \in \mathbb{R}^{2}
$$

where Q has orthonormal columns $Q^{\top} Q=I$ it follows that the pseudo-inverse of Q is $Q^{\dagger}=\left(Q^{\top} Q\right)^{-1} Q^{\top}=Q^{\top}$

PCA: optimization objective

PCA is a linear dimensionality reduction method

$$
x^{(n)} \in \mathbb{R}^{784}
$$

each image has $28 \times 28=784$ pixels

$$
z^{(n)} \in \mathbb{R}^{2}
$$

faithfulness is measured by the reconstruction error
$\min _{Q} \quad \sum_{n} \| x^{(n)}$
$-x^{z^{(n)}{ }^{\top}} Q Q^{\top} \|_{2}^{2} \quad$ s.t.
$Q^{\top} Q=I$

PCA: optimization objective

PCA is a linear dimensionality reduction method faithfulness is measured by the reconstruction error

$$
\min _{Q} \quad \sum_{n}\left\|x^{(n)}-x_{z^{(n)}}^{(n)^{\top}} Q Q^{\top}\right\|_{2}^{2} \quad \text { s.t. } \quad Q^{\top} Q=I
$$

strategy: find $D \times D$ matrix Q , and only use D^{\prime} columns Since Q is orthogonal we can think of it as a change of coordinates

PCA: a change of coordinates

strategy: find $D \times D$ matrix Q , and only use D^{\prime} columns
Since Q is orthonormal we can think of it as a change of coordinates

we want to change coordinates such that coordinates 1,2,..., D^{\prime} best explain the data for any given D^{\prime}

example $D=2$

PCA preserves variance
 first new coordinate has maximum variance (lowest reconstruction error) $Q=\left[\begin{array}{c}Q_{1,1}, \cdots, Q_{1, D} \\ \vdots, \cdot, \vdots \\ Q_{D, 1}, \ldots, Q_{D, D}\end{array}\right]$

Find a change of coordinate using orthonormal matrix second coordinate has the next largest variance

q_{1}

along which one of these directions the data has a higher variance? more spread out?

this direction is the vector q_{1}
projection is given by $\frac{x^{(n)} q_{1}}{\left\|q_{1}\right\|_{2}}=x^{(n)^{\top}} q_{1}$
projection of the whole dataset is $X q_{1}=z_{1}$

$$
z_{1}^{\top}=\left[z_{1}^{(1)}, z_{1}^{(2)}, \ldots, z_{1}^{(N)}\right\rceil_{C}
$$

PCA preserves variance

Find a change of coordinate using orthonormal matrix
first new coordinate has maximum variance projection of the whole dataset is $\quad z_{1}=X q_{1} \quad \operatorname{Var}\left(z_{1}\right)=\frac{1}{N} \sum_{n}\left(z_{1}^{(n)}-0\right)^{2}$ assuming features have zero mean, maximize the variance of the projection: $\frac{1}{N} z_{1}^{\top} z_{1}$

$$
\max _{q_{1}} \frac{1}{N} z_{1}^{\top} z_{1}=\max _{q_{1}} \frac{1}{N} q_{1}^{\top} X^{\top} X q_{1}=\max _{q_{1}} q_{1} \Sigma q_{1}^{\top}
$$

dxd covariance matrix

$$
\Sigma=\frac{1}{N} X^{\top} X=\frac{1}{N} \sum_{n}\left(x^{(n)}-0\right)\left(x^{(n)}-0\right)^{\top}
$$

because the mean is zero
$\Sigma_{i, j}$ is the sample covariance of feature i and j

$$
\Sigma_{i, j}=\operatorname{Cov}\left[X_{:, i}, X_{:, j}\right]=\frac{1}{N} \sum_{n} x_{i}^{(n)} x_{j}^{(n)}
$$

Covariance matrix

variance of a random variable $\operatorname{Var}(x)=\mathbb{E}\left[(x-\mathbb{E}[x])^{2}\right]=\mathbb{E}\left[x^{2}\right]-\mathbb{E}[x]^{2}$
covariance of two random variable $\operatorname{Cov}(x, y)=\mathbb{E}[(x-\mathbb{E}[x])(y-\mathbb{E}[y])]=\mathbb{E}[x y]-\mathbb{E}[x] \mathbb{E}[y]$ for $x \in \mathbb{R}^{D}$ we have covariance matrix

$$
\Sigma=\left[\begin{array}{ccc}
\Sigma_{1,1} & \cdots & \Sigma_{1, D}\left(x_{1}, x_{1}\right)=\operatorname{Var}\left(x_{1}, x_{D}\right) \\
\vdots & \ddots & \vdots \\
\Sigma_{D, 1} & \cdots & \Sigma_{D, D}
\end{array}\right]=\mathbb{E}\left[(x-\mathbb{E}[x])(x-\mathbb{E}[x])^{\top}\right]=\mathbb{E}\left[x x^{\top}\right]-\mathbb{E}[x] \mathbb{E}[x]^{\top}
$$

given a dataset $\mathcal{D}=\left\{x^{(1)}, \ldots, x^{(N)}\right\}$ sample covariance matrix

$$
\begin{aligned}
& { }^{\Sigma^{M L E}} \hat{\Sigma}=\mathbb{E}_{\mathcal{D}}\left[\left(x-\mathbb{E}_{\mathcal{D}}[x]\right)\left(x-\mathbb{E}_{\mathcal{D}}[x]\right)^{\top}\right] \\
& \text { the empirical estimate } \\
& x-\left(\frac{1}{N} \sum_{x \in \mathcal{D}} x\right)
\end{aligned}
$$

Correlation and dependence

correlation is normalized covariance

$$
\operatorname{Corr}\left(x_{i}, x_{j}\right)=\frac{\operatorname{Cov}\left(x_{i}, x_{j}\right)}{\sqrt{\operatorname{Var}\left(x_{i}\right) \operatorname{Var}\left(x_{j}\right)}} \in[-1,+1]
$$

two variables that are independent are uncorrelated as well

$$
p\left(x_{i}, x_{j}\right)=p\left(x_{i}\right) p\left(x_{j}\right) \longrightarrow \mathbb{E}\left[x_{i} x_{j}\right]=\mathbb{E}\left[x_{i}\right] \mathbb{E}\left[x_{j}\right] \rightarrow \operatorname{Cov}\left(x_{i} x_{j}\right)=0
$$

the inverse is generally not true (zero correlation doesn't mean independence)

in each example above correlation between two coordinates is zero, but they are not independent

Decomposing the covariance matrix

covariance matrix is symmetric positive semi definite

- symmetric
- $\Sigma_{d, d^{\prime}}=\operatorname{Cov}\left(x_{d}, x_{d^{\prime}}\right)=\operatorname{Cov}\left(x_{d^{\prime}}, x_{d}\right)=\Sigma_{d^{\prime}, d}$
- positive semi definite
- for any $y \in \mathbb{R}^{D}$ we have $y^{\top} \Sigma y=\left(y^{\top} \mathbb{E}\left[(x-\mathbb{E}[x])(x-\mathbb{E}[x])^{\top}\right] y\right)=\operatorname{Var}\left(y^{\top} x\right) \geq 0$
any symmetric positive semi-definite matrix can be decomposed as

PCA with Eigenvalue decomposition

find a change of coordinate using an orthogonal matrix
first new coordinate has maximum variance

$$
\max _{q_{1}} q_{1} \Sigma q_{1}^{\top} \quad \text { s.t. } \quad\left\|q_{1}\right\|=1
$$

covariance matrix is symmetric and positive semi-definite

$$
\left(X^{\top} X\right)^{\top}=X^{\top} X \quad a^{\top} \Sigma a=\frac{1}{N} a^{\top} X^{\top} X a=\frac{1}{N}\|X a\|_{2}^{2} \geq 0 \quad \forall a
$$

any symmetric matrix has the following decomposition

$$
\begin{array}{ll}
\Sigma=Q \Lambda Q^{\top} \quad \text { (as we see shortly using } \mathrm{Q} \text { here is not a co-incidence) } \\
Q Q^{\top}=Q^{\top} Q=I \text { dxd orthogonal matrix } & \text { diagonal and sorted }\left(\lambda_{1}>\lambda_{2}>\lambda_{3}>\ldots\right) \\
\text { each column is an eigenvector } & \begin{array}{l}
\text { corresponding eigenvalues are on the diagonal } \\
\text { positive semi-definiteness means these are non-negative }
\end{array}
\end{array}
$$

PCA: Principal Component Analysis

find a change of coordinate using an orthogonal matrix
first new coordinate has maximum variance

$$
q_{1}^{*}=\arg \max _{q_{1}} q_{1}^{\top} \sum^{\top} q_{1} \quad \text { s.t. } \quad\left\|q_{1}\right\|=1
$$

Reducing dimensionality

projection into the principal direction q_{i} is given by $X q_{i}$

think of the projection XQ as a change of coordinates
we can use the first D^{\prime} coordinates $Z=X Q_{:,: D^{\prime}}$
to reduce the dimensionality while capturing a lot of the variance in the data
we can project back into original coordinates using $\underset{\text { reconstruction }}{\tilde{X}}=Z Q_{:,: D^{\prime}}^{\top}$

Example: digits dataset

let's only work with digit $2!\quad x^{(n)} \in \mathbb{R}^{784}$

center the data and form the covariance matrix $\boldsymbol{\Sigma}_{784 \times 784}$
find the eigenvectors of the covariance matrix, the principal directions

use the first 20 directions to reduce dimensionality from 784 to 20 !

example: digits dataset

3D embedding of MNIST digits
(https://projector.tensorflow.org/)

$$
x^{(n)} \in \mathbb{R}^{784}
$$

the embedding 3D coordinates are

$X q_{1}, X q_{2}, X q_{3}$

example: text dataset

3D embedding of Word2Vec
embeddings (https://projector.tensorflow.org/)

example: face dataset

$$
q_{1}, q_{2}, \ldots q_{15}
$$

eigenfaces for face recognition $x^{(n)} \in \mathbb{R}^{64 \times 64}$ read more here

eigenface 15
mean face used for centring the data

there is another way to do PCA

without using the covariance matrix

Singular Value Decomposition (SVD)

any $\mathrm{N} \times \mathrm{D}$ real matrix has the following decomposition

$u_{i}^{\top} u_{j}=0 \forall i \neq j$

$$
\left\{u_{i}\right\} \text { left singular vectors singular values }
$$

compressed SVD

assuming $N>D$ we can ignore

- the last ($\mathrm{N}-\mathrm{D}$) columns of U why?
- last (N-D) rows of S
similarly if $D>N$ we can compress V, S
$X=U S S_{D \times D D \times D} V^{\top}$

Singular value \& eigenvalue decomposition

recall that for PCA we used the eigenvalue decomposition of $\quad \Sigma=\frac{1}{N} X^{\top} X$ how does it relate to SVD?

$$
X^{\top} X=\left(U S V^{\top}\right)^{\top}\left(U S V^{\top}\right)=V S^{\top} U^{\top} U S V^{\top}=V S^{2} V^{\top}
$$

compare to $\quad \frac{1}{N} X^{\top} X=Q \Lambda Q^{\top}$
eigenvectors of Σ are right singular vectors of $\mathrm{X} \quad Q=V$
for PCA we could use SVD

- this is the standard computation which works directly with data matrix instead of the covariance matrix

Picking the number of PCs

number of PCs in PCA is a hyper-parameter, how should we choose this?
each new principle direction explains some variance in the data $\quad a_{d}=\frac{1}{N} \sum_{n} z_{d}^{(n)^{2}}$
such that we have $a_{1} \geq a_{2} \geq \ldots \geq a_{D} \quad$ (by definition of PCA)
we can divide by total variance to get a ratio $r_{i}=\frac{a_{i}}{\sum_{d} a_{d}}$
example for our digits example we get
sum of variance ratios up to a PC

first few principal directions explain most of the variance in the data!

Picking the number of PCs

recall that for picking the principal direction we maximized the variance of the PC

$$
\left.\underset{\|q\|=1}{\max _{q} \frac{1}{N} q X^{\top} X q^{\top}=\max _{\| q} q \Sigma q^{\top}}=\underset{\|q\|=1}{\mid q q \|=1} \right\rvert\,
$$

so the variance ratios are also given by $r_{i}=\frac{\lambda_{i}}{\sum_{d} \lambda_{d}}$
so we can also use eigenvalues to pick the number of PCs

digits example:
two estimates of variance ratios do match

Matrix factorization

PCA and SVD perform matrix factorization

Z this is the matrix of low-dimensional features
$N \times D^{\prime}$ pc coefficients
factor loading matrix
this gives a row-rank approximation to our original matrix X

- we can use this to compress the matrix
- we can find give a "smooth" reconstruction of X (remove noise or fill missing values)

Matrix factorization

changing the rank D' gives different amount of compression

Matrix factorization

K-means also can be seen as matrix factorization

matrix product simply equates each row of X with one row of the factor matrix

- instead of principal components \rightarrow cluster centers
- factor loading matrix $\boldsymbol{\longrightarrow}$ one nonzero per row of Z (each node belongs to one cluster)

Autoencoders

a feed-forward neural net which predicts its input

- can be trained with reconstruction loss
- e.g. mean squared error: $\sum_{n}\left\|x^{(n)}-\hat{x}^{(n)}\right\|_{2}^{2}$
dimensionality reduction with a bottleneck layer
much smaller than input

Autoencoders

a feed-forward neural net which predicts its input

- can be trained with reconstruction loss
- e.g. reconstruction loss: $\|x-\psi(\phi(x))\|_{2}^{2}$ \hat{x}
dimensionality reduction with a bottleneck layer
much smaller than input
- optimal weights for linear autoencoder are the principal components
- nonlinear dimensionality reduction if activations are not all linear
- projecting the data on a non-linear manifold
- deep autoencoders are very powerful

Autoencoders: example

Summary

Dimensionality reduction helps us:

- visualize our data
- compress it
- simplify the computational need of further analysis (clustering, supervised learning etc.)
- also can be used for anomaly detection (not discussed)

PCA is a linear dimensionality reduction method

- projects the data to a linear space (spanned by D' principal directions)
- directions are eigenvectors of the covariance matrix
- the projection has maximum variance (minimum reconstruction error)
- eigenvalues tell us about the contribution of each new principal direction
- PCA using Singular Value Decomposition
- Model selection for PCA
- PCA as matrix factorization and its relationship to k-means
- practical note: don't forget to subtract the mean!

