Applied Machine Learning

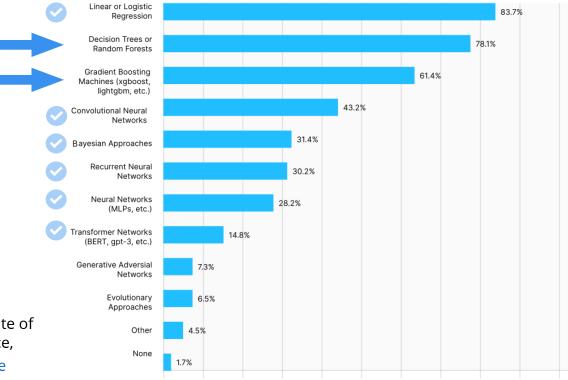
Bagging & Boosting

Isabeau Prémont-Schwarz

Motivation

METHODS AND ALGORITHMS USAGE

Today's topic is highly practical



40%

20%

30%

50%

60%

70%

80%

90%

from 2020 Kaggle's survey on the state of Machine Learning and Data Science, you can read the full version here

100%

Learning objectives

bootstrap for uncertainty estimation bagging (bootstrap aggregation) for variance reduction

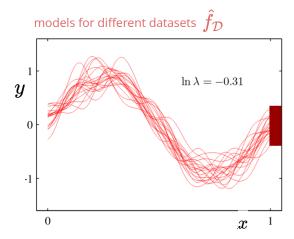
random forests

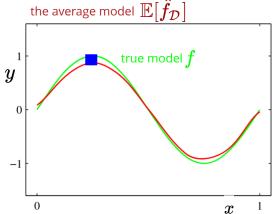
boosting

- AdaBoost
- gradient boosting
- relationship to L1 regularization

Reminder: bias vs. variance

variance is the average difference (in squared L2 norm) between these curves and their average

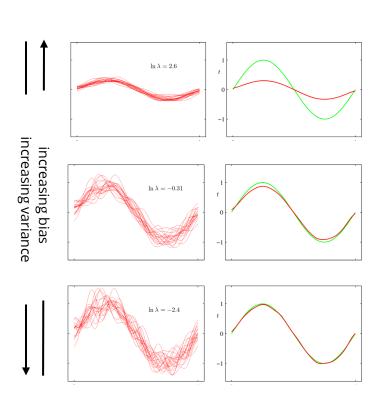




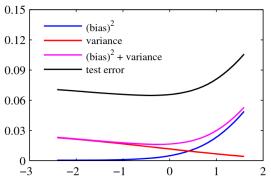
bias is the difference (in L2 norm) between two curves

- **variance:** $\mathbb{E}[(\hat{f}_{\mathcal{D}}(x) \mathbb{E}_{\mathcal{D}}[\hat{f}_{\mathcal{D}}(x)])^2]$ how change of dataset affects the prediction
- **bias:** $\mathbb{E}[(f(x) \mathbb{E}_{\mathcal{D}}[\hat{f}_{\mathcal{D}}(x)])^2]$ how average over all datasets differs from the regression function

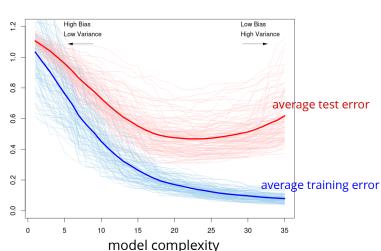
Reminder: bias vs. variance



the expected loss (test error) increases with both bias and variance



simple or weak models seem to do good on average and have lower variance



Reducing Bias & variance

we saw a trade-off between bias (simplicity) and variance (complexity)

reduce the variance of a model w/o increasing its bias?

Bagging

average multiple models trained on subsets of the data

reduce the bias of a model w/o increasing its variance?

Boosting

reduce the bias of (simple models) by adding them in steps

Bagging (Bootstrap aggregation)

given the dataset $\mathcal{D} = \{(x^{(n)}, y^{(n)})\}_{n=1}^N$

subsample with replacement B datasets of size N

(non-parametric) bootstrapping

$$\mathcal{D}_b = \{(x^{(n,b)},y^{(n,b)})\}_{n=1}^N \;,\; b=1,\dots,B$$

train a model \hat{f}_b on each of these bootstrap datasets (called *bootstrap samples*) aggregate the predictions of these models (Bootstrap aggregation)

$$\hat{f}(x) = rac{1}{B} \sum_b \hat{f_b}(x)$$

bootstrapping can also use to produce a **measure of uncertainty** in predictions

Bootstrap for uncertainty estimation

a simple approach to estimate the uncertainty in prediction

non-parametric bootstrap

given the dataset $\mathcal{D} = \{(x^{(n)}, y^{(n)})\}_{n=1}^N$

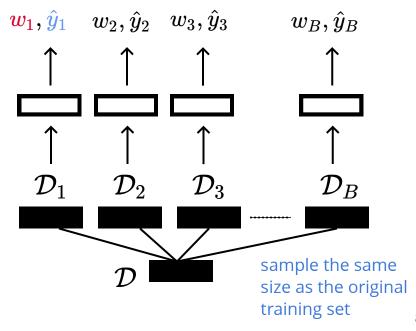
subsample with replacement B datasets of size N

$$\mathcal{D}_b = \{(x^{(n,b)},y^{(n,b)})\}_{n=1}^N, b=1,\dots,B$$

train a model on each of these bootstrap datasets (called *bootstrap samples*)

measure of uncertainty from these models

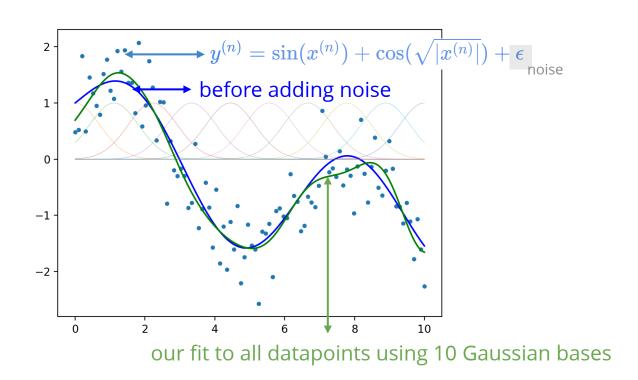
- for model parameters
- for predictions



Bootstrap for uncertainty estimation

example

recall our running example with nonlinear Gaussian bases (N=100 training data points)



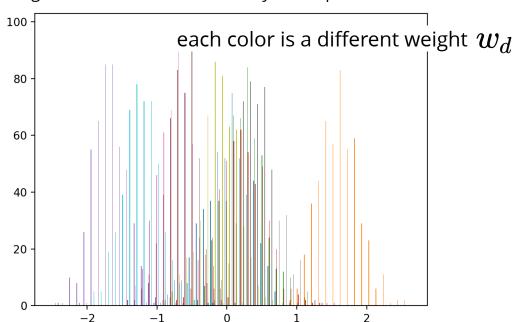
Bootstrap for uncertainty estimation

example

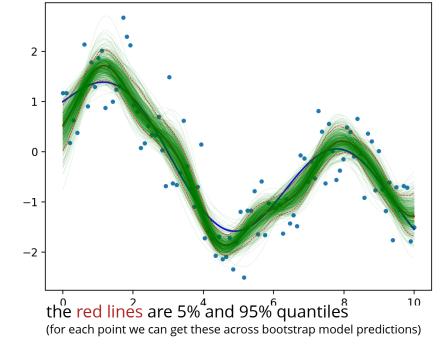
recall our running example with nonlinear Gaussian bases (N=100 training data points)

using B=500 bootstrap samples

gives a measure of uncertainty of the parameters



also gives a measure of uncertainty of the predictions



Bagging (Bootstrap aggregation) Bagging

why using average predictions reduces variance?

variance of the sum of random variables

variance of the **sum** of $z_1 \dots z_B$ **uncorrelated** random variables

$$\operatorname{Var}(\sum_b z_b) = \sum_b \operatorname{Var}(z_b)$$

variance of the **average** of $z_1 \dots z_B$ **uncorrelated** random variables, all with variance of σ^2

$$\operatorname{Var}(rac{1}{B}\sum_b z_b) = rac{1}{B^2}\operatorname{Var}(\sum_b z_b) = rac{1}{B^2}B\sigma^2 = rac{1}{B}\sigma^2$$

Bagging (Bootstrap aggregation) Bagging

averaging uncorrelated variables reduces the variance of our model by a factor of B (number of bootstraps)

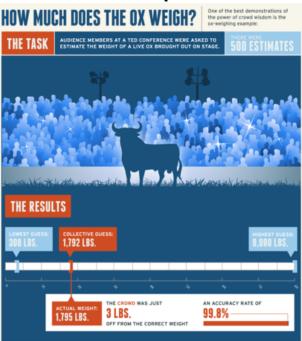
so the Bagging reduces variance

(in reality, predictions are not uncorrelated)

for regression

$$\hat{f}(x) = rac{1}{B} \sum_b \hat{f_b}(x)$$
 prediction using bootstrap sample b

Example



Bagging (Bootstrap aggregation)

for classification we cannot use mean of classifiers, use voting (i.e., mode)

 $z_1,\ldots,z_B\in\{0,1\}$ are IID Bernoulli random variables with mean $\mu=.5+\epsilon$ ($\epsilon>0$), then $P(\frac{1}{B}\sum_b z_b>.5)\to 1$ as B grows

i.e., even if individual predictions are very noisy, average prediction can be accurate

infographics from: domo.com

e.g. with 10K classifiers that are each only slightly better than chance (0.51percent accurate), we get an overall accuracy of 0.97

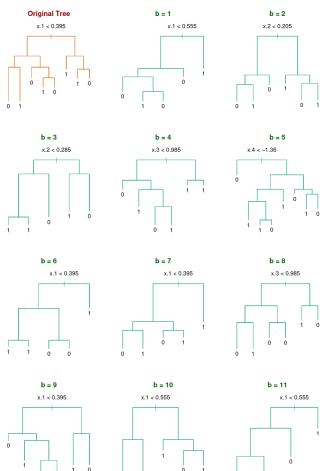
wisdom of crowds

bagging produces a better classifier! crowds are wise when

- individuals are better than random
- votes are uncorrelated

example

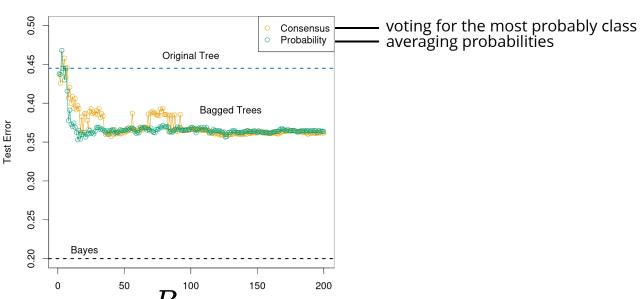
Bagging decision trees



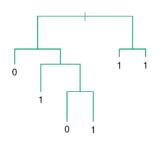
setup

- synthetic dataset
- 5 correlated features
- 1st feature is a noisy predictor of the label

Bootstrap samples create different decision trees (due to high variance of decision trees) compared to decision trees, no longer **interpretable**!



Random forests



further reduce the correlation between decision trees

feature sub-sampling

only a random subset of features are available for split at each step further reduce the dependence between decision trees magic number? \sqrt{D} for classification tasks, $max(5,\frac{D}{3})$ for regression tasks, this is a hyper-parameter, can be optimized using Cross-Validation

Out Of Bag (OOB) samples:

- the instances not included in a bootsrap dataset can be used for validation
- simultaneous validation of decision trees in a forest
- no need to set aside data for cross validation

Example Spam detection

Dataset

N=4601 emails

binary classification task: *spam - not spam*

D=57 features:

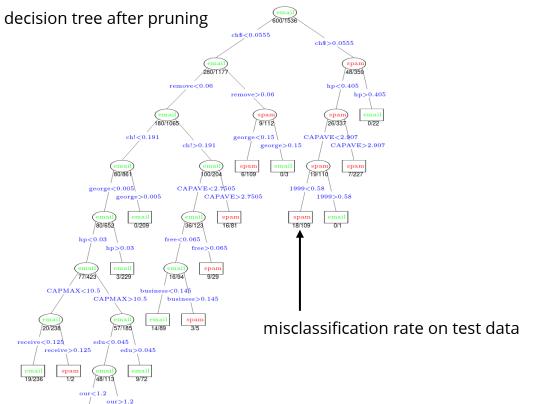
- 48 words: percentage of words in the email that match these words
 - e.g., business, address, internet, free, George (customized per user)
- **6** characters: again percentage of characters that match these
 - ch; , ch(,ch[,ch! ,ch\$, ch#
- average, max, sum of length of uninterrupted sequences of capital letters:
 - CAPAVE, CAPMAX, CAPTOT

an example of feature engineering

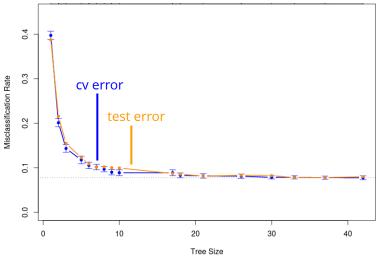
average value of these features in the spam and non-spam emails

	george	you	your	hp	free	hpl	!	our	re	edu	remove
spam	0.00	2.26	1.38	0.02	0.52	0.01	0.51	0.51	0.13	0.01	0.28
email	1.27	1.27	0.44	0.90	0.07	0.43	0.11	0.18	0.42	0.29	0.01

Example Spam detection

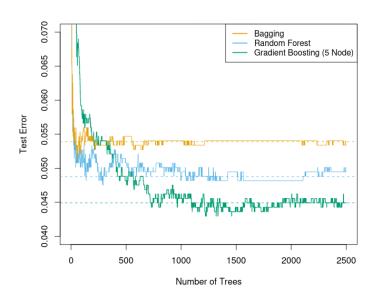


number of leaves (17) in optimal pruning decided based on cross-validation error

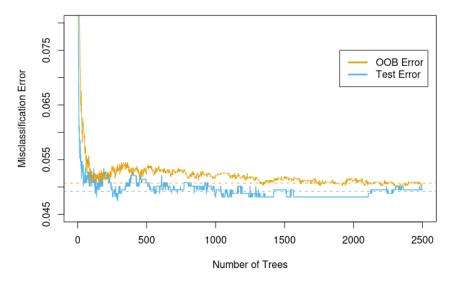


Example Spam detection

Bagging and Random Forests do much better than a single decision tree!



Out Of Bag (OOB) error can be used for parameter tuning (e.g., size of the forest)



Summary so far...

- Bootstrap is a powerful technique to get uncertainty estimates
- Bootstrap aggregation (Bagging) can reduce the variance of unstable models
- Random forests:
 - Bagging + further de-corelation of features at each split
 - OOB validation instead of CV
 - no more interpretability of decision trees
 - perform well in practice
 - can fail if only few relevant features exist (due to feature-sampling)

Next:

Boosting

reduce the bias of a model w/o increasing its variance? reduce the bias of (simple models) by adding them in steps

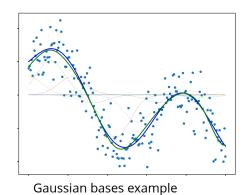
Adaptive bases

fixed set of bases in $f(x) = \sum_d {\color{red} w_d \phi_d(x)}$

several methods can be classified as *learning these bases adaptively*

$$f(x) = \sum_d w_d \phi_d(x; extbf{v}_d)$$

- generalized additive models
- neural networks
- boosting



·

in boosting each basis is a classifier or regression function (**weak learner**, **or base learner**) create a *strong learner* by sequentially combining *weak learners*

Forward stagewise additive modelling

$$f(x) = \sum_{t=1}^T w^{\{t\}} \phi(x; v^{\{t\}})$$
 a simple model, such as decision stump (decision tree with one node)

cost
$$J(\{w^{\{t\}},v^{\{t\}}\}_t) = \sum_{n=1}^N \underbrace{L(y^{(n)},f(x^{(n)}))}_{ ext{e.g. L2 loss or hinge loss}}$$

optimizing this cost is difficult given the form of f

optimization idea add one weak-learner in each stage t, to reduce the error of previous stage

1. find the best weak learner

$$m{v}^{\{t\}}, m{w}^{\{t\}} = rg\min_{m{v},m{w}} \sum_{n=1}^{N} m{L}\left(y^{(n)}, f^{\{t-1\}}(x^{(n)}) + m{w}\phi(x^{(n)};m{v})
ight)$$

2. add it to the current model

$$f^{\{t\}}(x) = f^{\{t-1\}}(x^{(n)}) + {\color{red} w^{\{t\}}}\phi(x^{(n)};{\color{red} v^{\{t\}}})$$

L_2 –loss & linear modelling

model consider **weak learners** that are individual features $\phi^{\{t\}}(x) = w^{\{t\}}x_{d^{\{t\}}}$

cost using L2 loss for regression $\frac{1}{2}(y - f(x))^2$

at stage t
$$rg \min_{m{d},m{w_d}} rac{1}{2} \sum_{n=1}^N \left(m{y^{(n)} - (f^{\{t-1\}}(x^{(n)})} + m{w_d} x_d^{(n)})
ight)^2$$

optimization optimal weight for each d is $w_d = rac{\sum_n x_d^{(n)} r_d^{(n)}}{\sum_n x_d^{(n)^2}}$

pick the feature that most significantly reduces the residual

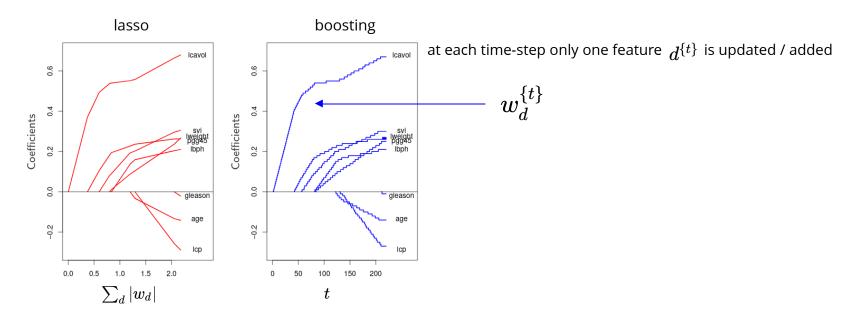
the model at time-step t:
$$f^{\{t\}}(x) = \sum_t lpha w_{d^{\{t\}}}^{\{t\}} x_{d^{\{t\}}}$$

using a small $\,lpha$ helps with test error

is this related to L1-regularized linear regression?

L_2 –loss & linear modelling

using small learning rate $\alpha = .01$ L2 Boosting has a similar regularization path to lasso



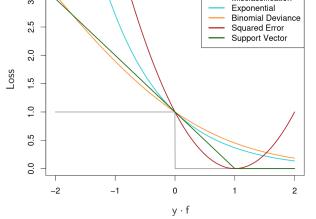
we can view boosting as doing feature (base learner) selection in exponentially large spaces (e.g., all trees of size K) the number of steps **t** plays a similar role to (the inverse of) regularization hyper-parameter

(Adaptive Boosting)

Misclassification

loss functions for **binary classification**
$$y \in \{-1, +1\}$$
 predicted label is $\hat{y} = \mathrm{sign}(f(x))$ misclassification loss $L(y, f(x)) = \mathbb{I}(yf(x) > 0)$ (0-1 loss)
$$\log - \log L(y, f(x)) = \log \left(1 + e^{-yf(x)}\right)$$
 (aka cross entropy loss or binomial deviance)
$$\mathrm{Hinge\ loss}\ L(y, f(x)) = \max(0, 1 - yf(x))$$
 support vector loss

yet another loss function is exponential loss $L(y,f(x))=e^{-yf(x)}$ note that the loss grows faster than the other surrogate losses (more sensitive to outliers) useful property when working with additive models:



$$L(y,f^{\{t-1\}}(x)+w^{\{t\}}\phi(x,v^{\{t\}}))=L(y,f^{\{t-1\}}(x))\cdot L(y,w^{\{t\}}\phi(x,v^{\{t\}}))$$

treat this as a weight **q** for an instance instances that are not properly classified before receive a higher weight

cost using exponential loss

$$J(\{w^{\{t\}},v^{\{t\}}\}_t) = \sum_{n=1}^N L(y^{(n)},f^{\{t-1\}}(x^{(n)}) + w^{\{t\}}\phi(x^{(n)},v^{\{t\}})) = \sum_n q^{(n)}L(y^{(n)},w^{\{t\}}\phi(x^{(n)},v^{\{t\}}))$$
 loss for this instance at previous stage
$$L(y^{(n)},f^{\{t-1\}}(x^{(n)}))$$

discrete AdaBoost: assume this is a simple classifier, so its output is +/- 1

optimization objective is to find the weak learner minimizing the cost above

$$\begin{split} J(\{w^{\{t\}},v^{\{t\}}\}_t) &= \sum_n q^{(n)} e^{-y^{(n)} w^{\{t\}} \phi(x^{(n)},v^{\{t\}})} \\ &= e^{w^{\{t\}}} \sum_n q^{(n)} \mathbb{I}(y^{(n)} \neq \phi(x^{(n)},v^{\{t\}})) \, + \, e^{-w^{\{t\}}} \sum_n q^{(n)} \mathbb{I}(y^{(n)} = \phi(x^{(n)},v^{\{t\}})) \\ &= e^{-w^{\{t\}}} \sum_n q^{(n)} \, + \, (e^{w^{\{t\}}} - e^{-w^{\{t\}}}) \sum_n q^{(n)} \mathbb{I}(y^{(n)} \neq \phi(x^{(n)},v^{\{t\}})) \\ &\qquad \qquad \text{assuming } w^{\{t\}} \geq 0 \text{ the weak learner should minimize this cost this is classification with weighted intances} \end{split}$$

$$J(\{w^{\{t\}},v^{\{t\}}\}_t)=\sum_n q^{(n)}L(y^{(n)},w^{\{t\}}\phi(x^{(n)},v^{\{t\}}))$$

$$=e^{-w^{\{t\}}}\sum_n q^{(n)}+\left(e^{w^{\{t\}}}-e^{-w^{\{t\}}}\right)\sum_n q^{(n)}\mathbb{I}(y^{(n)}\neq\phi(x^{(n)},v^{\{t\}}))$$
 assuming $w^{\{t\}}\geq 0$ the weak learner should minimize this cost this is classification with weighted instances

this gives $n^{\{t\}}$

still need to find the optimal $w^{\{t\}}$

setting
$$\frac{\partial J}{\partial w^{\{t\}}}=0$$
 gives $w^{\{t\}}=rac{1}{2}\lograc{1-\ell^{\{t\}}}{\ell^{\{t\}}}$ weight-normalized misclassification error $\ell^{\{t\}}=\frac{1}{2}\lograc{1-\ell^{\{t\}}}{\ell^{\{t\}}}$ weight-normalized misclassification error $\ell^{\{t\}}=\frac{1}{2}\log\frac{1-\ell^{\{t\}}}{\ell^{\{t\}}}$

since weak learner is better than chance $\,\ell^{\{t\}} < .5\,$ and so $\,w^{\{t\}} \geq 0\,$

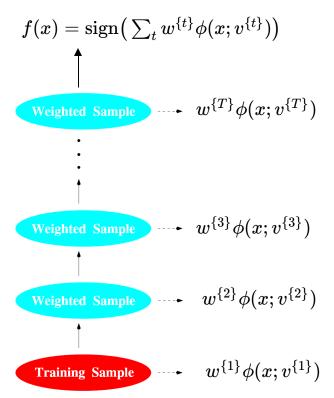
we can now update instance weights q for next iteration $q^{(n),\{t+1\}}=q^{(n),\{t\}}e^{-w^{\{t\}}y^{(n)}\phi(x^{(n)};v^{\{t\}})}$

(multiply by the new loss)

since w > 0, the weight q of misclassified points increase and the rest decrease

overall algorithm for discrete AdaBoost

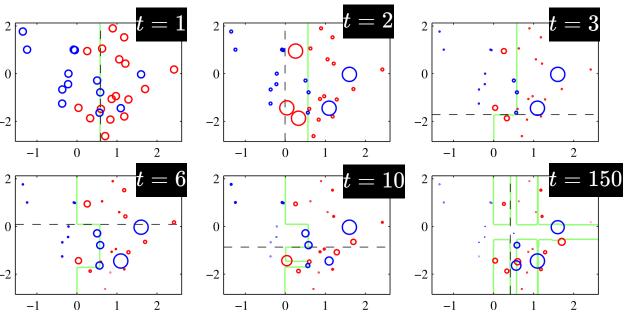
```
initialize q^{(n)} := rac{1}{N} \quad orall n
for t=1:T
          fit the simple classifier \phi(x,v^{\{t\}}) to the weighted dataset
          \ell^{\{t\}} := rac{\sum_n q^{(n)} \mathbb{I}(\phi(x^{(n)}; v^{\{t\}}) 
eq y^{(n)})}{\sum_n q^{(n)}}
          w^{\{t\}} := rac{1}{2} \log rac{1 - \ell^{\{t\}}}{
ho_{\{t\}}}
          q^{(n)} := q^{(n)} e^{-w^{\{t\}} y^{(n)} \phi(x^{(n)}; v^{\{t\}})}
return f(x) = sign(\sum_t w^{\{t\}}\phi(x; v^{\{t\}}))
```

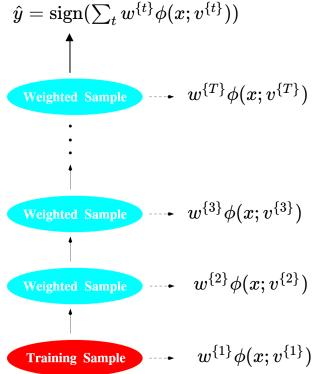


example

AdaBoost

each weak learner is a decision stump (dashed line) green is the decision boundary of $f^{\{t\}}$





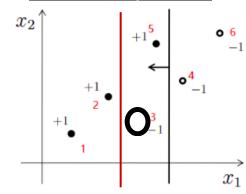
Discrete AdaBoost Algorithm

initialize
$$q^{(n)} := \frac{1}{N} \quad \forall n$$
 for t=1:T fit the simple classifier $\phi(x,v^{\{t\}})$ to the weighted dataset
$$\ell^{\{t\}} := \frac{\sum_{n} q^{(n)} \mathbb{I}(\phi(x^{(n)};v^{\{t\}}) \neq y^{(n)})}{\sum_{n} q^{(n)}}$$
 $q:= [\frac{1}{6},\frac{1}{6},\frac{1}{6},\frac{1}{6},\frac{1}{6},\frac{1}{6}]$ $q^{(n)} := q^{(n)}e^{-w^{\{t\}}}y^{(n)}\phi(x^{(n)};v^{\{t\}}) \quad \forall n$
$$q:= [\frac{1}{6},\frac{1}{6},\frac{1}{6},\frac{1}{6},\frac{1}{6},\frac{1}{6}]$$
 $\ell = \frac{1}{6}$ $\ell = \frac{1}{$

return
$$f(x) = signig(\sum_t w^{\{t\}}\phi(x;v^{\{t\}}))ig)$$

$$_{4}\{2\}$$
 _ [1 1 1 1 1 1]

Example



$$q := [\frac{1}{6}, \frac{1}{6}, \frac{1}{6}, \frac{1}{6}, \frac{1}{6}, \frac{1}{6}]$$

$$\ell = \frac{\frac{1}{6}}{\sum q} = \frac{1}{6}$$

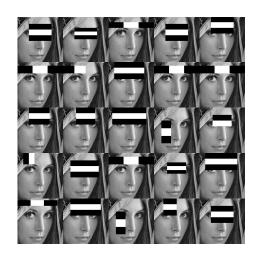
$$w=rac{1}{2}\log(rac{1-rac{1}{6}}{rac{1}{6}})=.5\log(5)pprox0.$$

$$q := \left[\frac{1}{6\sqrt{5}}, \frac{1}{6\sqrt{5}}, \frac{\sqrt{5}}{6}, \frac{1}{6\sqrt{5}}, \frac{1}{6\sqrt{5}}, \frac{1}{6\sqrt{5}}\right]$$

$$\phi^{\{2\}} = [1,1,-1,-1,-1,-1] egin{array}{c} \ell = rac{rac{1}{6\sqrt{5}}}{\sum q} = rac{1}{10} \ w = rac{1}{2}\log(rac{1-rac{1}{10}}{rac{1}{10}}) = .5\log(9) pprox 1.1 \end{array}$$

$$f = [sign(.8+1.1), sign(.8+1.1), sign(.8-1.1), sign(.8-1.1), sign(.8-1.1), sign(.8-1.1)]$$

application: Viola-Jones face detection

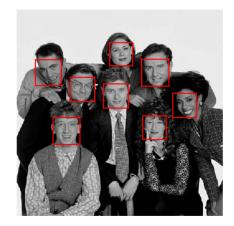


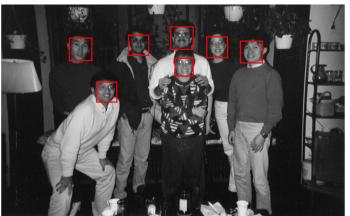
The first face detector each feature is a weak learner, Haar features

 only compares the total intensity in rectangular pieces of the image, computationally efficient

fast enough for real-time (object) detection

AdaBoost picks one feature at a time (label: face/no-face)





Boosting

$$f(x) = \sum_{t=1}^T w^{\{t\}} \phi(x; v^{\{t\}})$$
 a simple model, such as decision stump (decision tree with one node)

cost
$$J(\{w^{\{t\}},v^{\{t\}}\}_t)=\sum_{n=1}^N L(y^{(n)},f(x^{(n)}))$$
 optimizing this cost is difficult given the form of f

1. find the best weak learner

$$m{v^{\{t\}}, w^{\{t\}}} = rg \min_{m{v}, m{w}} \sum_{n=1}^{N} m{L}(y^{(n)}, f^{\{t-1\}}(x^{(n)}) + m{w}\phi(x^{(n)}; m{v}))$$

2. add it to the current model

$$f^{\{t\}}(x) = f^{\{t-1\}}(x^{(n)}) + w^{\{t\}}\phi(x^{(n)};v^{\{t\}})$$

L2Boosting
$$L(y,f(x))=rac{1}{2}(y-f(x))^2$$

AdaBoost

$$L(y,f(x))=e^{-yf(x)}$$

General algorithm for any loss?

Gradient boosting

fit the weak learner to the gradient of the cost

let
$$\mathbf{f}^{\{t\}} = \left[f^{\{t\}}(x^{(1)}),\ldots,f^{\{t\}}(x^{(N)})
ight]^ op$$
 and true labels $\mathbf{y} = \left[y^{(1)},\ldots,y^{(N)}
ight]^ op$

ignoring the structure of **f**

if we use gradient descent to minimize the loss $\hat{\mathbf{f}} = rg \min_{\mathbf{f}} L(\mathbf{f}, \mathbf{y})$

$$\hat{\mathbf{f}} = rg \min_{\mathbf{f}} L(\mathbf{f}, \mathbf{y})$$

$$\mathbf{f}^{\{t\}} = \mathbf{f}^{\{t-1\}} - w^{\{t\}} \mathbf{g}^{\{t\}}$$

$$\mid \quad \mid$$

$$w^{\{t\}} = \arg\min_{w} L(\mathbf{f}^{\{t-1\}} - w\mathbf{g}^{\{t\}}) \quad \frac{\partial}{\partial \mathbf{f}} L(\mathbf{f}^{\{t-1\}}, \mathbf{y})$$
 we can look for the optimal step size gradient vector optional its role is similar to residual

write
$$\hat{\mathbf{f}}$$
 as a sum of steps $\hat{\mathbf{f}} = \mathbf{f}^{\{0\}} - \sum_{t=1}^T w^{\{t\}} \mathbf{g}^{\{t\}}$

Gradient boosting

fit the weak learner to the gradient of the cost

Let
$$\mathbf{f}^{\{t\}} = \left[f^{\{t\}}(x^{(1)}), \dots, f^{\{t\}}(x^{(N)})
ight]^ op$$
 and true labels $\mathbf{y} = \left[y^{(1)}, \dots, y^{(N)}
ight]^ op$

ignoring the structure of **f**

if we use gradient descent to minimize the loss $\hat{\mathbf{f}} = rg \min_{\mathbf{f}} L(\mathbf{f}, \mathbf{y})$

write $\hat{\mathbf{f}}$ as a sum of steps

$$\hat{\mathbf{f}} = \mathbf{f}^{\{T\}} = \mathbf{f}^{\{0\}} - \sum_{t=1}^{T} rac{w^{\{t\}}}{|\mathbf{f}|} \mathbf{g}^{\{t\}}$$

$$w^{\{t\}} = rg \min_w L(\mathbf{f}^{\{t-1\}} - w\mathbf{g}^{\{t\}}) \, rac{\partial}{\partial \mathbf{f}} L(\mathbf{f}^{\{t-1\}}, \mathbf{y})$$

we can look for the optimal step size

its role is similar to residual

so far we treated **f** as a parameter vector of input size, **to generalize**:

fit the weak-learner to negative of the gradient $|v^{\{t\}}| = rg \min_v rac{1}{2} ||oldsymbol{\phi}_v - (-\mathbf{g})||_2^2$ we are fitting the gradient using L2 loss regardless of the original loss function $oldsymbol{\phi}_v = ig\lceil \phi(x^{(1)}; v), \ldots, \phi(x^{(N)}; v) ig
ceil^ op$ $v^{\{t\}} = \arg\min_{v} \sum_{n} ((-g) - \phi(x^{(n)}, v))^2$

Gradient boosting

```
initialize f^{\{0\}}(x) using a base learner rg \min_v \sum_n L(y^{(n)}, \phi(x^{(n)}, v))
for t=1:T decide T using a validation set (early stopping)
       calculate the gradient g^{(n),\{t\}}=rac{\partial}{\partial f^{\{t-1\}}(x^{(n)})}L(f^{\{t-1\}}(x^{(n)}),y(x^{(n)}))
       fit a weak learner to negative of gradient using v^{\{t\}} = rg \min_v \sum_{r} (g^{(n),\{t\}} + \phi(x^{(n)},v))^2
       find the optimal step size w^{\{t\}} = rg \min_w \sum_n L(f^{\{t-1\}}(x^{(n)}) - wg^{(n),\{t\}}) optional, can use fixed rate as well
       Update the function f^{\{t\}}(x) = f^{\{t-1\}}(x) + w^{\{t\}}\phi(x,v^{\{t\}})
return f^{\{T\}}(x)
```

We can use different loss functions for example:

$$L(y,f(x))=rac{1}{2}(y-f(x))^2 \quad \Rightarrow \quad g=f(x)-y$$

Gradient tree boosting

apply gradient boosting to CART (classification and regression trees)

```
initialize \mathbf{f}^{\{0\}} to predict a constant for t=1:T decide T using a validation set (early stopping) calculate the negative of the gradient \mathbf{r} = -\frac{\partial}{\partial \mathbf{f}} L(\mathbf{f}^{\{t-1\}}, \mathbf{y}) fit a regression tree to \mathbf{X}, \mathbf{r} and produce regions \mathbb{R}_1, \dots, \mathbb{R}_K shallow trees of K = 4-8 leaf usually work well as weak learners re-adjust predictions per region w_k = \arg\min_w \sum_{x^{(n)} \in \mathbb{R}_k} L(y^{(n)}, f^{\{t-1\}}(x^{(n)}) + w) refinement over the generic algorithm, re-adjust the weak learner f^{\{t\}}(x) = f^{\{t-1\}}(x) + \alpha \sum_{k=1}^K w_k \mathbb{I}(x \in \mathbb{R}_k) using a small learning rate here improves test error (shrinkage)
```

stochastic gradient boosting

- combines bootstrap and boosting
- use a subsample at each iteration above
- similar to stochastic gradient descent

a.k.a MART: multiple additive regression trees

XGBoost (extreme gradient boosting) is a widely used variation, which has some additional tricks

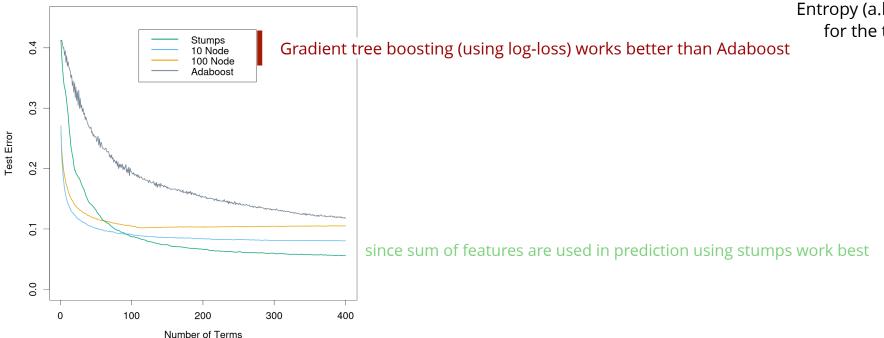
Gradient tree boosting

recall the synthetic example:

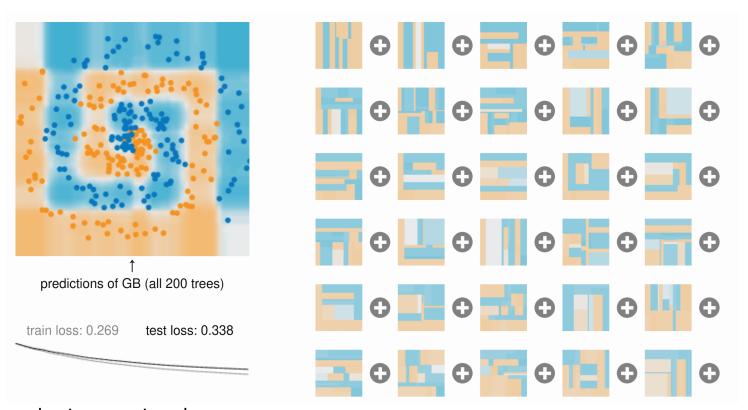
features $x_1^{(n)},\ldots,x_{10}^{(n)}$ are samples from standard Gaussian label $y^{(n)}=\mathbb{I}(\sum_d {x_d^{(n)}}^2>9.34)$ N=2000 training examples, (~1000+,~1000-)

Boosting with different sized trees

Entropy (a.k.a deviance) for the trees loss



Gradient tree boosting



see the interactive demo: https://arogozhnikov.github.io/2016/07/05/gradient_boosting_playground.html

Summary: Ensemble Methods

- bagging (reduce variance)
 - independent models
 - use their average prediction
 - OOB validation instead of CV
 - Random forests: produce models with minimal correlation
 - destroy interpretability of decision trees
 - perform well in practice
 - o can fail if only a few relevant features exist (due to feature-sampling)
- boosting (reduces the bias of the weak learner)
 - models are added in steps
 - a single cost function is minimized
 - for exponential loss: interpret as re-weighting the instance (AdaBoost)
 - gradient boosting: fit the weak learner to the negative of the gradient
 - interpretation as L1 regularization for "weak learner"-selection
- random forests and (gradient) boosting generally perform very well