Applied Machine Learning

Support Vector Machines

Isabeau Prémont-Schwarz

COMP 551 (Fall 2023) ¹

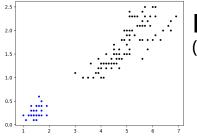
Learning objectives

geometry of linear classification margin maximization and support vectors hinge loss and relation to logistic regression

Perceptron: objective

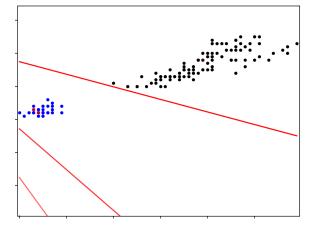
note that y is -1 or 1 if $y^{(n)}\hat{y}^{(n)} < 0$ try to make it positive instead of 0 or 1 label and prediction have different signs $\hat{y}^{(n)} = ext{sign}(w^{ op}x^{(n)} + w_0)$ $y^{(n)}(w^ op x^{(n)}+w_0)$ equivalent to minimizing x_2 distance to the boundary $ullet x^{(n)}$ this is positive for points that are on the wrong side so perceptron tries to minimize the distance of $(w^+x^{(n)})$ misclassified points from the decision boundary and push them to the right side x_1

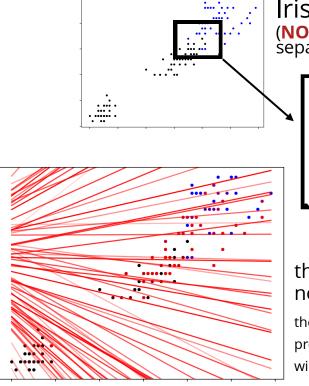
Perceptron: example



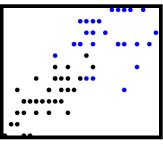
Iris dataset (linearly separable case)

converged at iteration 10





Iris dataset (NOT linearly separable case)



the algorithm does not converge

there is always a wrong prediction and the weights will be updated

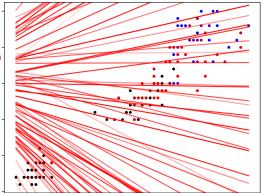
Perceptron: issues

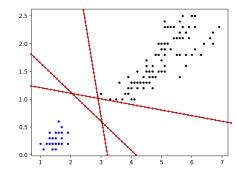
even if linearly separable convergence could take many iterations

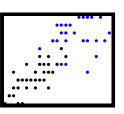
the decision boundary may be suboptimal \leftarrow

cyclic updates if the data is not perfectly linearly separable

• data may be inherently noisy





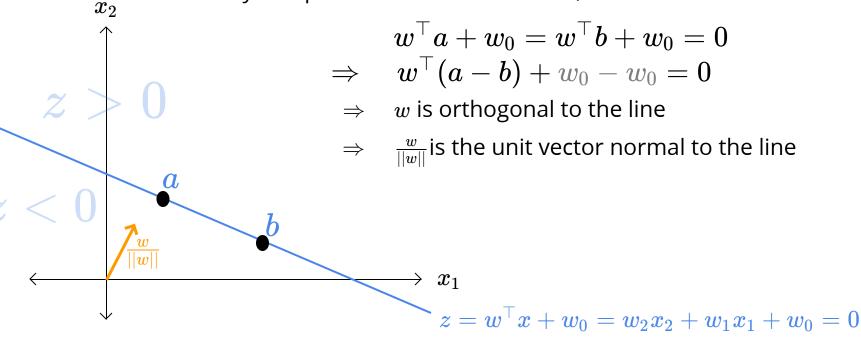


geometry of the

separating hyperplane

A linear decision boundary is a hyperplane with one dimension lower than D (number of features)

for any two points **a** and **b** on this line, we have:



geometry of the

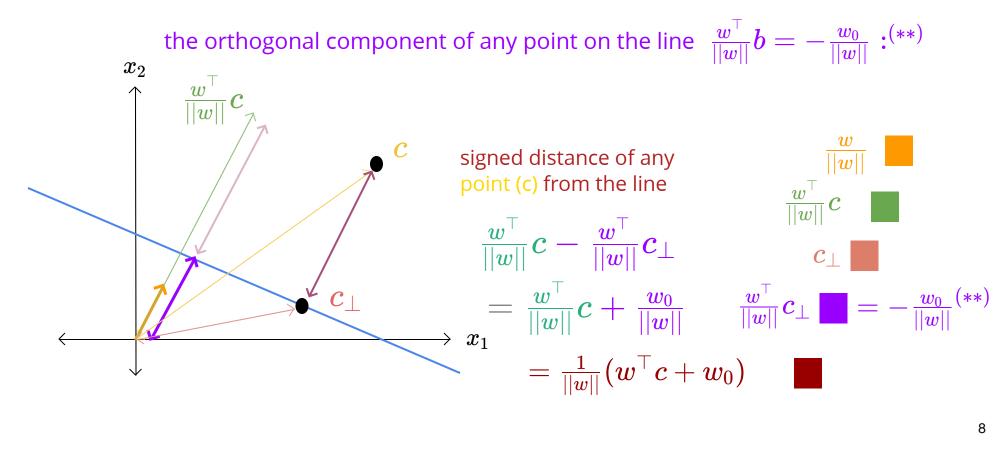
separating hyperplane

7

A linear decision boundary is a hyperplane with one dimension lower than D (number of features)

so $\frac{w}{||w||}$ is the unit normal vector to the line x_2 the orthogonal component of any point on the line $rac{w^+}{||w||}b=rac{w^+}{||w||}b+rac{w_0}{||w||}-rac{w_0}{||w||}=-rac{w_0}{||w||}$ $\overline{w^\top b + w_0 = 0}$ $\rightarrow x_1$ $z = w^ op x + w_0 = w_2 x_2 + w_1 x_1 + w_0 = 0$

geometry of the separating hyperplane



Margin

the margin of a classifier (assuming correct classification) is the distance of the closest point to the decision boundary

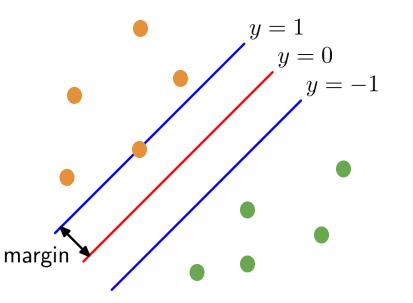
signed distance is $\ \ rac{1}{||w||}(w^ op x^{(n)}+w_0)$

adjust so that correctly classified points have positive margin

$$rac{1}{||w||}(w^ op x^{(n)}+w_0)y^{(n)}$$

 $\hat{y}^{(n)}$ =distance to the boundary

this is positive for points that are on the right side

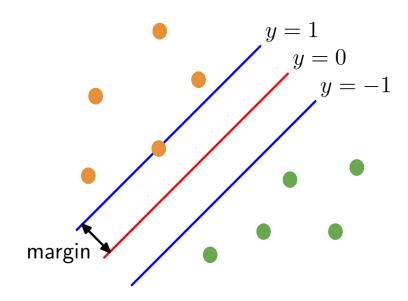


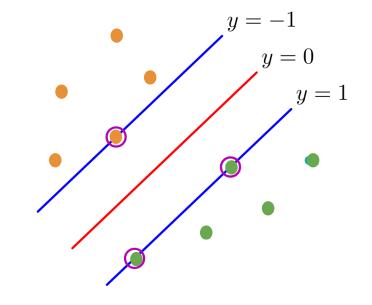
Max margin classification

find the decision boundary with maximum margin

margin is not maximal

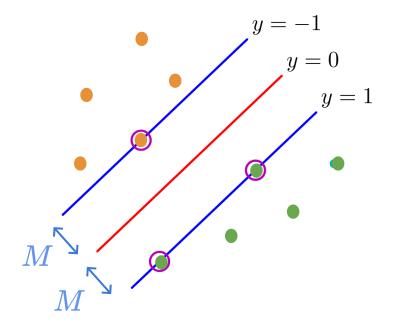
maximum margin





Max margin classification

find the decision boundary with maximum margin



$$egin{array}{l} \max_{w,w_0} M \ M \leq rac{1}{||w||_2}y^{(n)}(w^ op x^{(n)}+w_0) \quad orall n \end{array}$$

only the points (n) with

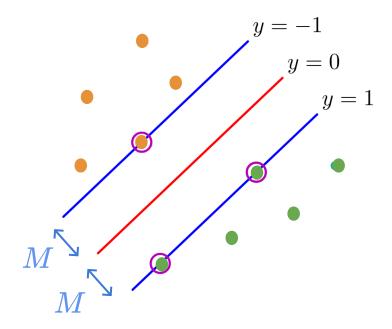
 $M = rac{1}{||w||_2} y^{(n)} (w^ op x^{(n)} + w_0) \;\;$ matter in finding the boundary

these are called support vectors

max-margin classifier is called support vector machine (SVM)

Support Vector Machine

find the decision boundary with maximum margin



$$igg\{ egin{array}{l} \max_{w,w_0} M \ M \leq rac{1}{||w||_2} y^{(n)} (w^ op x^{(n)} + w_0) \quad orall n \end{array}$$

observation

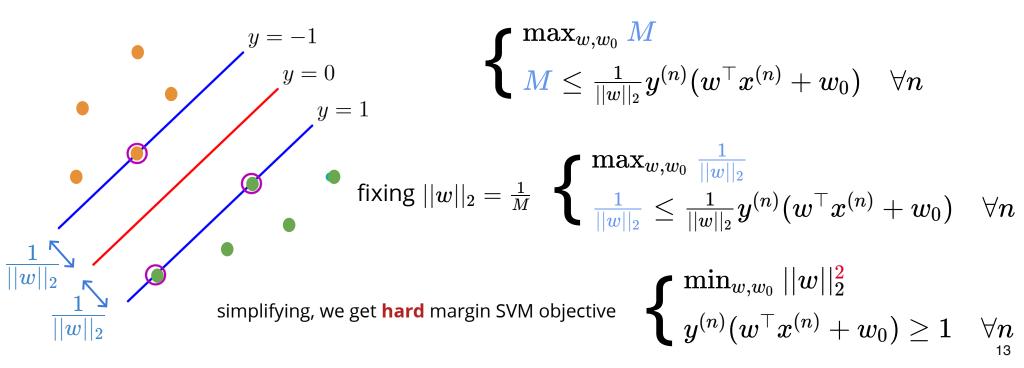
if w^*, w^*_0 is an optimal solution then

 $20w^*, 20w_0^*~$ is also optimal (same margin)

fix the norm of w to avoid this $||w||_2 = rac{1}{M}$

Support Vector Machine

find the decision boundary with maximum margin



Perceptron: issues

Perceptron is not expressive enough increase the model's expressiveness by adaptive nonlinear bases, discussed in previously in MLP ← previously

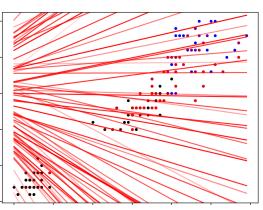
even if linearly separable convergence could take many iterations the decision boundary may be suboptimal

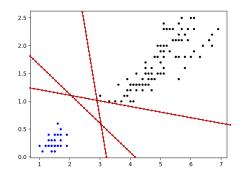
maximize the **hard** margin

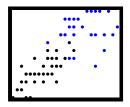
cyclic updates if the data is not perfectly linearly separable

• data may be inherently noisy

 now lets fix this problem maximize a **soft** margin

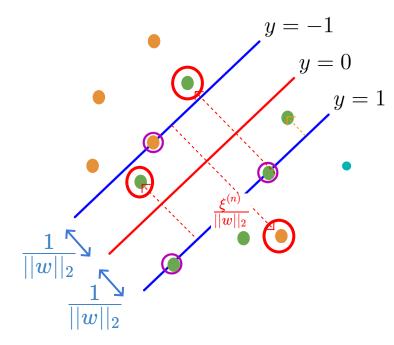






Soft margin constraints

allow points inside the margin and on the wrong side but penalize them



instead of hard constraint $y^{(n)}(w^ op x^{(n)}+w_0)\geq 1$ orall nuse $y^{(n)}(w^ op x^{(n)}+w_0)\geq 1-oldsymbol{\xi}^{(n)}$ orall n

 $\xi^{(n)} \geq 0$ slack variables (one for each n)

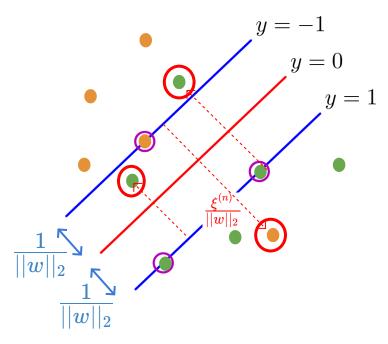
 $\xi^{(n)} = 0$ zero if the point satisfies original margin constraint

 $0 < \xi^{(n)} < 1$ if correctly classified but inside the margin

 $\xi^{(n)} > 1$ incorrectly classified

Soft margin constraints

allow points inside the margin and on the wrong side but penalize them

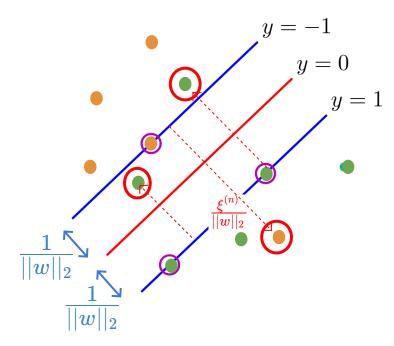


soft-margin objective $\min_{w,w_0} rac{1}{2}||w||_2^2 + \gamma \sum_n oldsymbol{\xi}^{(n)} \ y^{(n)}(w^ op x^{(n)}+w_0) \geq 1-oldsymbol{\xi}^{(n)} \ orall n \ oldsymbol{\xi}^{(n)} \geq 0 \quad orall n$

 γ is a hyper-parameter that defines the importance of constraints for very large γ this becomes similar to hard margin svm

Hinge loss

would be nice to turn this into an unconstrained optimization



$$egin{aligned} \min_{w,w_0} rac{1}{2} ||w||_2^2 + \gamma \sum_n oldsymbol{\xi}^{(n)} \ y^{(n)}(w^ op x^{(n)}+w_0) \geq 1-oldsymbol{\xi}^{(n)} \ oldsymbol{\xi}^{(n)} \geq 0 \quad orall n \end{aligned}$$

if point satisfies the margin $y^{(n)}(w^ op x^{(n)}+w_0)\geq 1$ minimum slack is $\xi^{(n)}=0$

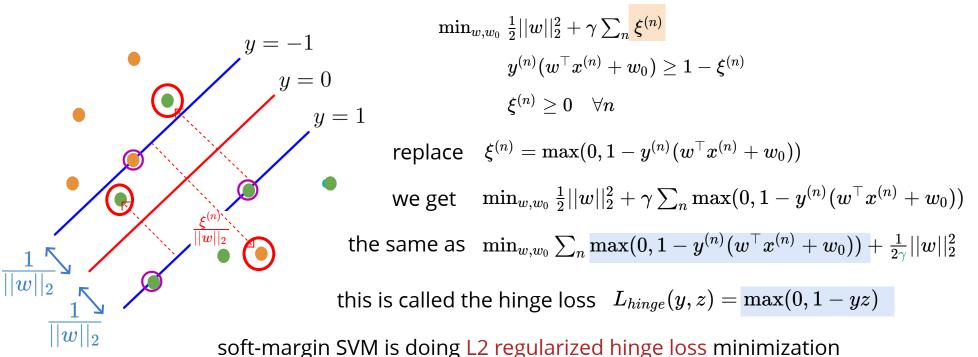
otherwise $y^{(n)}(w^ op x^{(n)}+w_0) < 1$ the smallest slack is $\xi^{(n)}=1-y^{(n)}(w^ op x^{(n)}+w_0)$

so the optimal slack satisfying both cases

$$\xi^{(n)} = \max(0, 1-y^{(n)}(w^ op x^{(n)}+w_0))$$

Hinge loss

would be nice to turn this into an unconstrained optimization



Perceptron vs. SVM

Perceptron

cost

if correctly classified evaluates to zero otherwise it is $-y^{(n)}(w^ op x^{(n)}+w_0))$ can be written as

$$\sum_n \max(0, -y^{(n)}(w^ op x^{(n)} + w_0))$$

SVM

$$\sum_n \max(0,1-y^{(n)}(w^ op x^{(n)}+w_0))+rac{\lambda}{2}||w||_2^2$$
 so this is the difference! (plus regularization)

optimization

finds some linear decision boundary if exists

stochastic gradient descent with fixed learning rate

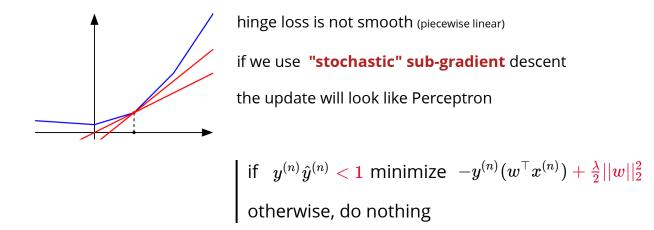
for small lambda finds the max-margin decision boundary depending on the formulation we have many choices

Perceptron vs. SVM

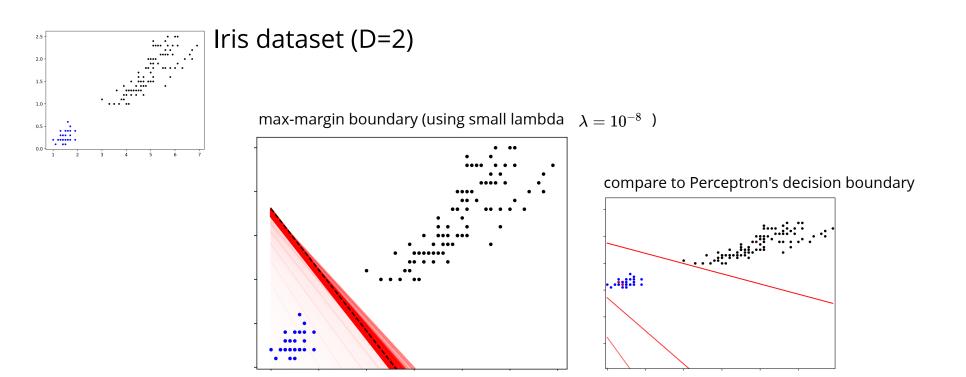
cost $J(w) = \sum_n \max(0, 1 - y^{(n)} w^ op x^{(n)}) + rac{\lambda}{2} ||w||_2^2$

now we included bias in w

check that the cost function is convex in w(?)



Example: linearly separable



Example: not linearly separable

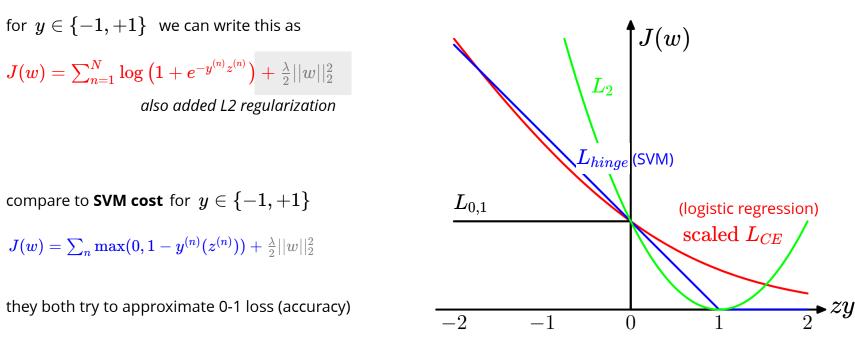


22

SVM vs. logistic regression

recall**: logistic regression** simplified cost for $y \in \{0,1\}$

 $J(w) = \sum_{n=1}^N y^{(n)} \log \left(1 + e^{-z^{(n)}}
ight) + (1 - y^{(n)}) \log \left(1 + e^{z^{(n)}}
ight) \hspace{0.5cm}$ where $z^{(n)} = w^ op x^{(n)}$ includes the bias



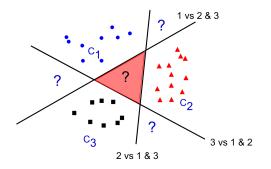
Multiclass classification

can we use multiple binary classifiders?

one versus the rest

training:

train C different 1-vs-(C-1) classifiers $z_c(x) = w_c^ op x$



test time:

choose the class with the highest score

 $z^* = rg\max_c z_c(x)$

problems:

class imbalance

not clear what it means to compare $\, z_c(x) \,$ values, trained on different tasks

Multiclass classification

can we use multiple binary classifiders?

one versus one

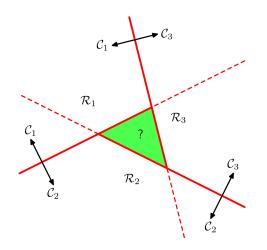
training: train $\frac{C(C-1)}{2}$ classifiers for each class pair

test time:

choose the class with the highest vote

problems:

computationally more demanding for large C ambiguities in the final classification



Summary

- geometry of linear classification
- distance to the decision boundary (margin)
- max-margin classification
- support vectors
- hard vs soft SVM
- relation to perceptron
- hinge loss and its relation to logistic regression
- some ideas for max-margin multi-class classification