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geometry of linear classification

margin maximization and support vectors

hinge loss and relation to logistic regression

Learning objectives
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Perceptron: objective
  

x2

x1

so perceptron tries to minimize the distance of
misclassified points from the decision boundary
and push them to the right side

x(n)

(w x +∣∣w∣∣
1 ⊤ (n) w )0

label and prediction have different signs

if                        try to make it positivey <(n) ŷ(n) 0

−y (w x +(n) ⊤ (n) w )0equivalent to minimizing

this is positive for points that are
on the wrong side
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=ŷ(n) sign(w x +⊤ (n) w )0

Reminder

distance to the boundary

note that  is -1 or 1
instead of 0 or 1

y



Perceptron: example
  

Iris dataset
(NOT linearly
separable case)

the algorithm does
not converge
there is always a wrong
prediction and the weights
will be updated

Iris dataset
(linearly separable case)

converged at iteration 10

Reminder
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Perceptron is not expressive enough
  

Perceptron: issues

cyclic updates if the data is not perfectly linearly separable

data may be inherently noisy

even if linearly separable
convergence could take many iterations

the decision boundary may be suboptimal
let's fix this
problem first
assume linear
separability

increase the model's expressiveness by adaptive
nonlinear bases, discussed in previously in MLP previously
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separating hyperplanegeometry of the

z = w x+⊤ w =0 w x +2 2 w x +1 1 w =0 0

x2

x1

z > 0

z < 0 b

a

A linear decision boundary is a hyperplane with one dimension lower than D (number of features)

for any two points a and b on this line, we have:

w a+⊤ w =0 w b+⊤ w =0 0
⇒ w (a−⊤ b) + w −0 w =0 0

is the unit vector normal to the line⇒ ∣∣w∣∣
w

   is orthogonal to the line⇒ w

∣∣w∣∣
w
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z = w x+⊤ w =0 w x +2 2 w x +1 1 w =0 0

x2

x1

b

so             is the unit normal vector to the line∣∣w∣∣
w

the orthogonal component of any point on the line

b =∣∣w∣∣
w⊤ b+∣∣w∣∣

w⊤ −∣∣w∣∣
w0 =∣∣w∣∣

w0 − ∣∣w∣∣
w0

separating hyperplanegeometry of the

A linear decision boundary is a hyperplane with one dimension lower than D (number of features)

z > 0

z < 0
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w b+⊤ w =0 0



x2

x1

the orthogonal component of any point on the line b =∣∣w∣∣
w⊤ − :∣∣w∣∣

w0 (∗∗)

c−∣∣w∣∣
w⊤ c∣∣w∣∣

w⊤

⊥

= (w c+∣∣w∣∣
1 ⊤ w )0

c∣∣w∣∣
w⊤

⊥ = − ∣∣w∣∣
w0 (∗∗)

∣∣w∣∣
w
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c∣∣w∣∣
w⊤

c∣∣w∣∣
w⊤

c signed distance of any
point (c) from the line

c⊥

c⊥

  
separating hyperplanegeometry of the

= c+∣∣w∣∣
w⊤

∣∣w∣∣
w0



 Margin
  

the margin of a classifier (assuming correct classification)

is the distance of the closest point to the decision boundary

(w x +∣∣w∣∣
1 ⊤ (n) w )0signed distance is

adjust so that correctly classified points
have positive margin

(w x +∣∣w∣∣
1 ⊤ (n) w )y0 (n)

=distance to the boundaryŷ(n)
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this is positive for points that are on the right side



Max margin classification
  

find the decision boundary with maximum margin

margin is not maximal
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maximum margin



  
Max margin classification

find the decision boundary with maximum margin

max Mw,w0

M ≤ y (w x +∣∣w∣∣2
1 (n) ⊤ (n) w ) ∀n0{

M

M
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these are called support vectors

only the points (n) with

M = y (w x +∣∣w∣∣2
1 (n) ⊤ (n) w )0 matter in finding the boundary

max-margin classifier is called support vector machine (SVM)



  
Support Vector Machine

find the decision boundary with maximum margin

max Mw,w0

M ≤ y (w x +∣∣w∣∣2
1 (n) ⊤ (n) w ) ∀n0{

M

M
12

20w , 20w∗
0
∗ is also optimal (same margin)

fix the norm of w to avoid this ∣∣w∣∣ =2 M
1

if                  is an optimal solution thenw ,w∗
0
∗

observation



  
Support Vector Machine

find the decision boundary with maximum margin

max Mw,w0

M ≤ y (w x +∣∣w∣∣2
1 (n) ⊤ (n) w ) ∀n0{

fixing ∣∣w∣∣ =2 M
1

≤∣∣w∣∣2
1 y (w x +∣∣w∣∣2

1 (n) ⊤ (n) w ) ∀n0

maxw,w0 ∣∣w∣∣2
1

{
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simplifying, we get hard margin SVM objective
min ∣∣w∣∣w,w0 2

2

y (w x +(n) ⊤ (n) w ) ≥0 1 ∀n{∣∣w∣∣2
1

∣∣w∣∣2
1



now lets fix this problem
maximize a soft margin

maximize the hard margin

Perceptron is not expressive enough
  

Perceptron: issues

cyclic updates if the data is not perfectly linearly separable

data may be inherently noisy

even if linearly separable
convergence could take many iterations
the decision boundary may be suboptimal
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increase the model's expressiveness by adaptive
nonlinear bases, discussed in previously in MLP previously



  
Soft margin constraints

allow points inside the margin and on the wrong side but penalize them

∣∣w∣∣2
1

∣∣w∣∣2
1

y (w x +(n) ⊤ (n) w ) ≥0 1 ∀ninstead of hard constraint

use y (w x +(n) ⊤ (n) w ) ≥0 1 − ξ ∀n(n)
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slack variables (one for each n)ξ ≥(n) 0

if correctly classified but inside the margin0 < ξ <(n) 1

zero if the point satisfies original margin constraintξ =(n) 0

ξ >(n) 1 incorrectly classified
∣∣w∣∣2
ξ
(n)



  
Soft margin constraints

allow points inside the margin and on the wrong side but penalize them

∣∣w∣∣2
1

∣∣w∣∣2
1
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y (w x +(n) ⊤ (n) w ) ≥0 1 − ξ ∀n(n)

∣∣w∣∣2
ξ
(n)

min ∣∣w∣∣ +w,w0 2
1

2
2 γ ξ∑n

(n)

ξ ≥(n) 0 ∀n

soft-margin objective

      is a hyper-parameter that defines the importance of constraints
for very large          this becomes similar to hard margin svmγ
γ



  
Hinge loss

would be nice to turn this into an unconstrained optimization

∣∣w∣∣2
1

∣∣w∣∣2
1
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y (w x +(n) ⊤ (n) w ) ≥0 1 − ξ(n)

∣∣w∣∣2
ξ
(n)

min ∣∣w∣∣ +w,w0 2
1

2
2 γ ξ∑n

(n)

ξ ≥(n) 0 ∀n

so the optimal slack satisfying both cases

ξ =(n) max(0, 1 − y (w x +(n) ⊤ (n) w ))0

if point satisfies the margin

ξ =(n) 0

y (w x +(n) ⊤ (n) w ) ≥0 1

minimum slack is

otherwise
the smallest slack is ξ =(n) 1 − y (w x +(n) ⊤ (n) w )0

y (w x +(n) ⊤ (n) w ) <0 1



  
Hinge loss

would be nice to turn this into an unconstrained optimization

∣∣w∣∣2
1

∣∣w∣∣2
1
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∣∣w∣∣2
ξ
(n)

ξ =(n) max(0, 1 − y (w x +(n) ⊤ (n) w ))0replace

min ∣∣w∣∣ +w,w0 2
1

2
2 γ max(0, 1 −∑n y (w x +(n) ⊤ (n) w ))0we get

the same as min max(0, 1 −w,w0 ∑n y (w x +(n) ⊤ (n) w )) +0 ∣∣w∣∣2γ
1

2
2

L (y, z) =hinge max(0, 1 − yz)this is called the hinge loss

soft-margin SVM is doing L2 regularized hinge loss minimization

y (w x +(n) ⊤ (n) w ) ≥0 1 − ξ(n)

min ∣∣w∣∣ +w,w0 2
1

2
2 γ ξ∑n

(n)

ξ ≥(n) 0 ∀n



Perceptron vs. SVM
  

max(0, 1 −∑n y (w x +(n) ⊤ (n) w )) +0 ∣∣w∣∣2
λ

2
2

SVMPerceptron

if correctly classified evaluates to zero
otherwise it is −y (w x +(n) ⊤ (n) w ))0

max(0,−y (w x +∑n
(n) ⊤ (n) w ))0

can be written as
so this is the difference!
(plus regularization)

stochastic gradient descent with fixed learning rate depending on the formulation we have many choices

finds some linear decision boundary if exists for small lambda finds the max-margin decision boundary

co
st

co
st

op
tim

iz
at

io
n

op
tim
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at
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n
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Perceptron vs. SVM
  

J(w) = max(0, 1 −∑n y w x ) +(n) ⊤ (n) ∣∣w∣∣2
λ

2
2

check that the cost function is convex in w(?)

hinge loss is not smooth (piecewise linear)

if we use  "stochastic" sub-gradient descent

now we included bias in w

cost

if                        minimizey <(n) ŷ(n) 1 −y (w x ) +(n) ⊤ (n) ∣∣w∣∣2
λ

2
2

otherwise, do nothing

the update will look like Perceptron
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Example: linearly separable
  

Iris dataset (D=2)

compare to Perceptron's decision boundary

max-margin boundary (using small lambda                      )λ = 10−8
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Example: not linearly separable
  

Iris dataset (D=2)

soft margins using small lambda                  λ = 10−8 Perceptron does not converge
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SVM vs. logistic regression
  

includes the bias

recall: logistic regression simplified cost for y ∈ {0, 1}

J(w) = y log (1 +∑n=1
N (n) e )+−z(n) (1 − y ) log (1 +(n) e )z(n) where z =(n) w x⊤ (n)

we can write this asy ∈ {−1,+1}for

J(w) = log (1 +∑n=1
N

e )+−y z(n) (n)
∣∣w∣∣2

λ
2
2

also added L2 regularization

J(w) = max(0, 1 −∑n y (z )) +(n) (n) ∣∣w∣∣2
λ

2
2

compare to SVM cost y ∈ {−1,+1}for

J(w)

L2

L0,1

scaled LCEscaled LCE

Lhinge (SVM)

(logistic regression)

they both try to approximate 0-1 loss (accuracy)
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Multiclass classification

can we use multiple binary classifiders?

image credit: Andrew Zisserman

one versus the rest

test time:
choose the class with the highest score

z =∗ argmax z (x)c c

training:
train C different 1-vs-(C-1) classifiers z (x) =c w xc

⊤

problems:
class imbalance
not clear what it means to compare               values, trained on different tasksz (x)c
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Multiclass classification
  

can we use multiple binary classifiders?

one versus one

problems:
computationally more demanding for large C
ambiguities in the final classification

test time:
choose the class with the highest vote

training:
train                    classifiers for each class pair

2
C(C−1)
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Summary
  

geometry of linear classification
distance to the decision boundary (margin)
max-margin classification
support vectors
hard vs soft SVM
relation to perceptron
hinge loss and its relation to logistic regression
some ideas for max-margin multi-class classification
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