Applied Machine Learning

Decision Trees

Isabeau Prémont-Schwarz

Motivation

What we have left to cover for this course:

Classification and regression trees
Linear support vector machines
Bagging \& boosting
Unsupervised learning
Dimensionality reduction

Learning objectives

Decision trees:

- how does it model the data?
- how to specify the best model using a cost function
- how the cost function is optimized

Decision trees: motivation

pros.

- decision trees are interpretable
- they are not very sensitive to outliers
- do not need data normalization

cons.

- they could easily overfit and are unstable to small changes in input data

Notation overview

Our datasets consists of N pairs of input vector and corresponding target or label $\mathcal{D}=\left\{\left(x^{(1)}, y^{(1)}\right), \ldots,\left(x^{(N)}, y^{(N)}\right)\right\}$
we use N to denote the size of the dataset and n for indexing a pair of input, label x, y denote an input and label pair where
x is a D-dimensional vector: $x=\left[x_{1}, x_{2}, \ldots, x_{D}\right]$
we use D to denote the number of features (dimensionality of the input space)
$y \in\{1, \ldots, C\}$ for classification problems, we use C for number of classes
$\begin{array}{ll}(n) & \begin{array}{l}n \in[1 \ldots N] \text { indexes an instance, row index, e.g. which patient } \\ d \in[1 \ldots D] \text { indexes a feature, column index, e.g. which measurement }\end{array}\end{array}$
e.g. $x_{2}^{(3)}$

Decision trees: idea

- divide the input space into regions $\mathbb{R}_{1}, \ldots, \mathbb{R}_{K}$ using a tree structure
- assign a prediction label to each region
for classification this is the class label
for regression, this is a real scalar or vector

$$
f(x)=\sum_{k} w_{k} \mathbb{I}\left(x \in \mathbb{R}_{k}\right)
$$

how to build the regions and the tree?

split regions successively based on the value of a single variable called test

$$
\text { each region is a set of conditions } \mathbb{R}_{2}=\left\{x_{1} \geq t_{1}, x_{2} \leq t_{4}\right\}
$$

Prediction per region

What constant w_{k} should we use for prediction in each region \mathbb{R}_{k} ?

Classification

count the frequency of classes per region, predict the most frequent label or return probability $\quad w_{k}=\operatorname{mode}\left(y^{(n)} \mid x^{(n)} \in \mathbb{R}_{k}\right)$

Regression

use the mean value of training data-points in that region

$$
w_{k}=\operatorname{mean}\left(y^{(n)} \mid x^{(n)} \in \mathbb{R}_{k}\right)
$$

example: predicting survival in titanic

Possible tests

next questions: what are all the possible tests? which test do we choose next?

Continuous features

all the values that appear in the dataset can be used to split

\% Categorical features

if a feature can take C values $x_{i} \in\{1, \ldots, C\}$
convert that feature into C binary features (one-hot coding) $x_{i, 1}, \ldots, x_{i, C} \in\{0,1\}$
split based on the value of a binary feature

alternatives:

- multi-way split: can lead to regions with few datapoints
- binary splits that produce balanced subsets

Food Name			
Categorical \#			Calories
Apple	1		95
Chicken	2		231
Broccoli	3	50	
Apple	Chicken	Broccoli	Calories
1	0	0	95
0	1	0	231
0	0	1	50

Cost function

find a decision tree minimizing the following cost function, this cost function specifies "what is a good decision or regression tree?"

regression cost first calculate cost per region \mathbb{R}_{k}

$$
\text { we predict } w_{k}=\operatorname{mean}\left(y^{(n)} \mid x^{(n)} \in \mathbb{R}_{k}\right) \text { for region } \mathbb{R}_{k}
$$

mean squared error (MSE)

$$
\operatorname{cost}\left(\mathbb{R}_{k}, \mathbb{D}\right)=\frac{1}{N_{k}} \sum_{\substack{\text { number of instances in region k }}} x^{(n)} \mathbb{R}_{k}\left(\boldsymbol{y}^{(n)}-w k_{k}\right)^{2}
$$

total cost is the normalized sum over all regions

$$
\operatorname{cost}(\mathbb{D})=\sum_{k} \frac{N_{k}}{N} \operatorname{cost}\left(\mathbb{R}_{k}, \mathcal{D}\right)
$$

Cost function

find a decision tree minimizing the following cost function, this cost function specifies "what is a good decision or regression tree?"
classification cost again, calculate the cost per region \mathbb{R}_{k}

for each region we predict the most frequent label $w_{k}=\operatorname{mode}\left(y^{(n)} \mid x^{(n)} \in \mathbb{R}_{k}\right)$

$$
\operatorname{cost}\left(\mathbb{R}_{k}, \mathbb{D}\right)=\frac{1}{N_{k}} \sum_{\substack{\text { misclassification rate } \\ x^{(n)} \in \mathbb{R}_{k}}}^{\mathbb{T}\left(\boldsymbol{y}^{(n)} \neq w_{k}\right)}
$$

total cost is the normalized sum $\operatorname{cost}(\mathcal{D})=\sum_{k} \frac{N_{k}}{N} \operatorname{cost}\left(\mathbb{R}_{k}, \mathcal{D}\right)$

Cost function

find a decision tree minimizing the following cost function, this cost function specifies "what is a good decision or regression tree?"
total cost is the normalized sum $\operatorname{cost}(\mathcal{D})=\sum_{k} \frac{N_{k}}{N} \operatorname{cost}\left(\mathbb{R}_{k}, \mathcal{D}\right)$

problem

it is sometimes possible to build a tree with zero cost:
build a large tree with each instance having its own region (overfitting!)

example use features such as height, eye color etc, to make perfect prediction on training data
solution find a decision tree with at most K tests minimizing the cost function K tests $=K$ internal node in our binary tree $=K+1$ leaves (regions)

Search space

K+1 regions
objective: find a decision tree with K tests minimizing the cost function the number of full binary trees with $\mathrm{K}+1$ leaves $\left(\right.$ regions \mathbb{R}_{k}) is the Catalan number $\frac{1}{K+1}\binom{2 K}{K}$
$1,1,2, \mathbf{5}, 14,42,132,429,1430,4862,16796,58786,208012,742900,2674440,9694845,35357670,129644790,477638700,1767263190$, exponential in K 6564120420, 24466267020, $91482563640,343059613650,1289904147324,4861946401452$

we also have a choice of feature x_{d} for each of K internal node D^{K} moreover, for each feature different choices of splitting
bottom line: finding optimal decision tree is an NP-hard combinatorial optimization problem

Greedy heuristic

finding the optimal tree is too difficult, instead use a greedy heuristic to find a good tree recursively split the regions based on a greedy choice of the next test end the recursion if not worth-splitting

```
function fit-tree( }\mp@subsup{\mathbb{R}}{\mathrm{ node }}{},\mathcal{D}\mathrm{ ,depth)
    \mathbb{R}
```



```
        return }\mp@subsup{\mathbb{R}}{\mathrm{ node}}{
    else
        left-set = fit-tree( }\mp@subsup{\mathbb{R}}{\mathrm{ left }}{},\mathcal{D},\mathrm{ depth+1)
        right-set = fit-tree( }\mp@subsup{\mathbb{R}}{\mathrm{ right , D D, depth+1)}}{\mathrm{ ( }
        return {left-set, right-set}
```


$\left\{\left\{\mathbb{R}_{1}, \mathbb{R}_{2}\right\},\left\{\mathbb{R}_{3},\left\{\mathbb{R}_{4}, \mathbb{R}_{5}\right\}\right\}\right.$
final decision tree in the form of nested list of regions

Choosing tests

the split is greedy because it looks one step ahead this may not lead to the lowest overall cost

```
function greedy-test ( }\mp@subsup{\mathbb{R}}{\mathrm{ node }}{},\mathcal{D}\mathrm{ )
    best-cost = inf
    for each feature d\in{1,\ldots,D} and each possible test
    split }\mp@subsup{\mathbb{R}}{\mathrm{ node into }}{}\mp@subsup{\mathbb{R}}{\mathrm{ left }}{},\mp@subsup{\mathbb{R}}{\mathrm{ right }}{}\mathrm{ based on the test
    split-cost }=\frac{\mp@subsup{N}{\mathrm{ left }}{}}{\mp@subsup{N}{\mathrm{ node }}{}}\operatorname{cost}(\mp@subsup{\mathbb{R}}{\mathrm{ left }}{},\mathcal{D})+\frac{\mp@subsup{N}{\mathrm{ right }}{}}{\mp@subsup{N}{\mathrm{ node }}{}}\operatorname{cost}(\mp@subsup{\mathbb{R}}{\mathrm{ right }}{},\mathcal{D}
    if split-cost < best-cost:
            best-cost = split-cost
            \mp@subsup{\mathbb{R}}{\mathrm{ left }}{*}=\mp@subsup{\mathbb{R}}{\mathrm{ left }}{}
            \mp@subsup{\mathbb{R}}{\mathrm{ right }}{*}=\mp@subsup{\mathbb{R}}{\mathrm{ right }}{}
return }\mp@subsup{\mathbb{R}}{\mathrm{ left }}{*},\mp@subsup{\mathbb{R}}{\mathrm{ right }}{*
```


Stopping the recursion

```
worth-splitting subroutine
```

if we stop when $\mathbb{R}_{\text {node }}$ has zero cost, we may overfit heuristics for stopping the splitting:

- reached a desired depth
- number of examples in $\mathbb{R}_{\text {left }}$ or $\mathbb{R}_{\text {right }}$ is too small
- w_{k} is a good approximation, the cost is small enough
- reduction in cost by splitting is small

$$
\operatorname{cost}\left(\mathbb{R}_{\text {node }}, \mathcal{D}\right)-\left(\frac{N_{\text {left }}}{N_{\text {node }}} \operatorname{cost}\left(\mathbb{R}_{\text {left }}, \mathcal{D}\right)+\frac{N_{\text {right }}}{N_{\text {node }}} \operatorname{cost}\left(\mathbb{R}_{\text {right }}, \mathcal{D}\right)\right)
$$

image credit: https://alanjeffares.wordpress.com/tutorials/decision-tree/

revisiting the classification cost

ideally we want to optimize the misclassification rate

$$
\operatorname{cost}\left(\mathbb{R}_{k}, \mathcal{D}\right)=\frac{1}{N_{k}} \sum_{x^{(n)} \in \mathbb{R}_{k}} \mathbb{I}\left(y^{(n)} \neq w_{k}\right)
$$

this may not be the optimal cost for each step of greedy heuristic
example both splits have the same misclassification rate (2/8) $\quad \operatorname{cost}(\mathcal{D})=\frac{1}{N} \sum_{k} \sum_{\alpha^{(m)} \in \mathbb{R}_{k}} \mathbb{I}\left(y^{(n)} \neq w_{k}\right)$

however the second split may be preferable because one region does not need further splitting idea: use a measure for homogeneity of labels in regions

Entropy: a measure of the unpredictability

entropy is the expected amount of information in observing a random variable
$H(y)=-\sum_{c=1}^{C} p(y=c) \log p(y=c)$
averaged on all its possible outcomes
$-\log p(y=c)$ is the amount of information in observing value c

$$
I(y=c)=\log \left(\frac{1}{p(y=c)}\right)=-\log (p(y=c))
$$

| zero information if $p(c)=1$
less probable events are more informative $\quad p(c)<p\left(c^{\prime}\right) \Rightarrow-\log p(c)>-\log p\left(c^{\prime}\right)$
information from two independent events is additive $\quad-\log (p(c) q(d))=-\log p(c)-\log q(d)$
a uniform distribution has the highest entropy $H(y)=-\sum_{c=1}^{C} \frac{1}{C} \log \frac{1}{C}=\log C$

a deterministic random variable has the lowest entropy $H(y)=-1 \log (1)=0$

Mutual information

for two random variables t, y, their mutual information is the amount of information t conveys about y change in the entropy of y after observing the value of t
how much knowing t reduces uncertainty about y

$$
\begin{aligned}
I(t, y)= & H(y)-H(y \mid t) \\
& \quad \text { conditional entropy } \sum_{l=1}^{L} p(t=l) H(x \mid t=l) \quad \text { uncertainty we have in } y \text { after seeing } t \\
= & \sum_{l} \sum_{c} p(y=c, t=l) \log \frac{p(y=c, t=l)}{p(y=c) p(t=l)} \quad \text { this is symmetric wrty } y \text { and } t \\
= & H(t)-H(t \mid y)=I(y, t)
\end{aligned}
$$

mutual information is always positive and zero only if y and t are independent

Classification cost: example

we care about the empirical distribution of labels in each region

$$
p_{k}(y=c)=\frac{\sum_{x^{(n)} \in \mathbb{R}_{k}} \mathbb{I}\left(y^{(n)}=c\right)}{N_{k}}
$$

misclassification cost $\operatorname{cost}\left(\mathbb{R}_{k}, \mathcal{D}\right)=\frac{1}{N_{k}} \sum_{x^{(n)} \in \mathbb{R}_{k}} \mathbb{I}\left(y^{(n)} \neq w_{k}\right)=1-p_{k}\left(w_{k}\right)$
the most probable class $w_{k}=\arg \max _{c} p_{k}(c)$

$$
\begin{aligned}
& p(y=+)=\frac{1}{4}, p(y=-)=\frac{3}{4} \quad p(y=+)=\frac{3}{4}, p(y=-)=\frac{1}{4} \\
& w_{k}=-\quad w_{k}=+
\end{aligned}
$$

misclassification cost $=\frac{4}{8} \cdot \frac{1}{4}+\frac{4}{8} \cdot \frac{1}{4}=\frac{1}{4}$

Entropy for classification cost: example

we care about the empirical distribution of labels in each region $p_{k}(y=c)=\frac{\sum_{x(n) \in \mathbb{R}_{k}} \mathbb{I}\left(y^{(n)}=c\right)}{N_{k}}$
misclassification cost $\operatorname{cost}\left(\mathbb{R}_{k}, \mathcal{D}\right)=\frac{1}{N_{k}} \sum_{x^{(n)} \in \mathbb{R}_{k}} \mathbb{I}\left(y^{(n)} \neq w_{k}\right)=1-p_{k}\left(w_{k}\right)$
the most probable class $w_{k}=\arg \max _{c} p_{k}(c)$
entropy cost $\operatorname{cost}\left(\mathbb{R}_{k}, \mathcal{D}\right)=H(y)=-\sum_{c=1}^{C} p(y=c) \log p(y=c) \quad$ choose the split with the lowest entropy

Entropy for classification cost: example

example

misclassification cost

$$
\frac{4}{8} \cdot \frac{1}{4}+\frac{4}{8} \cdot \frac{1}{4}=\frac{1}{4} \quad \text { the same costs } \quad \frac{6}{8} \cdot \frac{1}{3}+\frac{2}{8} \cdot \frac{0}{2}=\frac{1}{4}
$$

entropy cost (using base logarithm)
$\frac{4}{8}\left(-\frac{1}{4} \log \left(\frac{1}{4}\right)-\frac{3}{4} \log \left(\frac{3}{4}\right)\right)+\frac{4}{8}\left(-\frac{1}{4} \log \left(\frac{1}{4}\right)-\frac{3}{4} \log \left(\frac{3}{4}\right)\right) \approx .81$
$\frac{6}{8}\left(-\frac{1}{3} \log \left(\frac{1}{3}\right)-\frac{2}{3} \log \left(\frac{2}{3}\right)\right)+\frac{2}{8} \cdot 0 \approx .68$

Entropy for classification cost

we care about the empirical distribution of labels in each region

$$
p_{k}(y=c)=\frac{\sum_{x^{(n)} \in \mathbb{R}_{k}} \mathbb{I}\left(y^{(n)}=c\right)}{N_{k}}
$$

entropy cost $\operatorname{cost}\left(\mathbb{R}_{k}, \mathcal{D}\right)=H(y) \quad$ choose the split with the lowest entropy
change in the cost becomes the mutual information between the test and labels
$\operatorname{cost}\left(\mathbb{R}_{\text {node }}, \mathcal{D}\right)-\left(\frac{N_{\text {left }}}{N_{\text {node }}} \operatorname{cost}\left(\mathbb{R}_{\text {left }}, \mathcal{D}\right)+\frac{N_{\text {left }}}{N_{\text {node }}} \operatorname{cost}\left(\mathbb{R}_{\text {right }}, \mathcal{D}\right)\right)$
$I(t, y)=H(y)-H(y \mid t)$
$\sum_{l=1}^{L} p(t=l) H(y \mid t=l)$
$=H(y)-\left(p\left(x_{d} \geq t\right) H\left(y \mid x_{d} \geq t\right)+p\left(x_{d}<t\right) H\left(y \mid x_{d}<t\right)\right)=I(y, x>t)$
this means by using entropy as our cost, we are choosing the test which is maximally informative about labels

Gini index

another cost for selecting the test in classification
misclassification (error) rate

$$
\operatorname{cost}\left(\mathbb{R}_{k}, \mathcal{D}\right)=\frac{1}{N_{k}} \sum_{x^{(n)} \in \mathbb{R}_{k}} \mathbb{I}\left(y^{(n)} \neq w_{k}\right)=1-p\left(w_{k}\right)
$$

entropy $\operatorname{cost}\left(\mathbb{R}_{k}, \mathcal{D}\right)=H(y)$

Gini index
it is the expected error rate
$\operatorname{cost}\left(\mathbb{R}_{k}, \mathcal{D}\right)=\sum_{c=1}^{C} p(c)(1-p(c))$

$$
\begin{aligned}
& \text { probability of class } \mathrm{c} \text { probability of error } \\
& =\sum_{c=1}^{C} p(c)-\sum_{c=1}^{C} p(c)^{2}=1-\sum_{c=1}^{C} p(c)^{2}
\end{aligned}
$$

comparison of costs of a node when we have 2 classes

Building the Tree
Naive Algorithm: Just do a for loop over all possible questions (exhaustive search).

```
def find_root_question(features, values):
    best_tree = None
    best_loss = np.infty
    for f in features:
        prev_v = None
        for v in sort(values[f]):
            if prev_v is None:
                continue
            split = (v + prev)/2
            tree = Tree(f, split)
            tree_loss = loss(Tree)
            if tree_loss < best_loss:
                        best_tree = tree
                        best_loss = tree_loss
            prev_v = v
def add_question(tree, features, values):
    best_tree = None
    best_loss = np.infty
    for leaf in tree.leaves():
        for f in features:
            prev_v = None
            for v in sort(values[f]):
                if prev_v is None:
                continue
            split = (v + prev)/2
            test_tree = tree.add_question(leaf, feature, split)
            tree_loss = loss(Tree)
            if tree_loss < best_loss:
                best_tree = tree
                best_loss = tree_loss
```


example

Decision tree

decision tree for Iris dataset

decision boundaries suggest overfitting
confirmed using a validation set

$$
\begin{array}{ll}
\text { training accuracy } & \sim 85 \% \\
\text { validation accuracy } & \sim 70 \%
\end{array}
$$

Decision tree: overfitting

a decision tree can fit any Boolean function (binary classification with binary features)
example: of decision tree representation of a boolean function ($D=3$)

there are $2^{2^{D}}$ such functions, why?
decision tree can perfectly fit our training data

Decision tree: overfitting \& pruning

idea 2. grow a large tree and then prune it greedily turn an internal node into a leaf node choice is based on the lowest increase in the cost repeat this until left with the root node
pick the best among the above models using a validation set

after pruning

cross-validation is used to pick the best size

Summary

- model: divide the input into axis-aligned regions
- cost: for regression and classification
- optimization:
- NP-hard
- use greedy heuristic
- adjust the cost for the heuristic
- using entropy (relation to mutual information maximization)
- using Gini index
- there are variations on decision tree heuristics
- what we discussed in called Classification and Regression Trees (CART)
- Compared to KNN, robust to scaling and noise, fast predictions, more interpretable

