Applied Machine Learning

Decision Trees

Isabeau Prémont-Schwarz

Motivation

METHODS AND ALGORITHMS USAGE

What we have left to cover for this course:

Classification and regression trees
Linear support vector machines
Bagging & boosting
Unsupervised learning
Dimensionality reduction

from 2020 Kaggle's survey on the state of Machine Learning and Data Science, you can read the full version here

Learning objectives

Decision trees:

- how does it model the data?
- how to specify the best model using a cost function
- how the cost function is optimized

Decision trees: motivation

pros.

- decision trees are interpretable
- they are not very sensitive to outliers
- do not need data normalization

cons.

 they could easily overfit and are unstable to small changes in input data

Notation overview

Our datasets consists of N pairs of input vector and corresponding target or label

$$\mathcal{D} = \{(x^{(1)}, y^{(1)}), \dots, (x^{(N)}, y^{(N)})\}$$

we use N to denote the size of the dataset and $\frac{n}{n}$ for indexing a pair of input, label x, y denote an input and label pair where

x is a *D*-dimensional vector: $x = [x_1, x_2, \dots, x_D]$

we use D to denote the number of *features* (dimensionality of the input space)

 $y \in \{1, \dots, C\}$ for classification problems, we use C for number of classes

$$m{x}_d^{(n)}$$
 $n\in[1\dots N]$ indexes an instance, row index, e.g. which patient $d\in[1\dots D]$ indexes a feature, column index, e.g. which measurement

e.g. $x_2^{(3)}$

Decision trees: idea

- divide the input space into regions $\mathbb{R}_1, \dots, \mathbb{R}_K$ using a tree structure
- assign a prediction label to each region

for classification this is the class label for regression, this is a real scalar or vector

$$f(x) = \sum_k \overline{w_k} \mathbb{I}(x \in \mathbb{R}_k)$$

how to build the regions and the tree?

split regions successively based on the value of a single variable called test

each region is a set of conditions $\mathbb{R}_2 = \{x_1 \geq t_1, x_2 \leq t_4\}$

Prediction per region

What constant w_k should we use for prediction in each region \mathbb{R}_k ?

Classification

count the frequency of classes per region, predict the most frequent label or return probability $w_k = \operatorname{mode}(y^{(n)}|x^{(n)} \in \mathbb{R}_k)$

Regression

use the mean value of training data-points in that region $w_k = ext{mean}(y^{(n)}|x^{(n)} \in \mathbb{R}_k)$

example: predicting survival in titanic

figure from wiki

Possible tests

next questions: what are all the possible tests? which test do we choose next?

Continuous features

all the values that appear in the dataset can be used to split

Categorical features

if a feature can take C values $\ x_i \in \{1,\ldots,C\}$ convert that feature into C binary features (one-hot coding) $x_{i,1},\ldots,x_{i,C}\in\{0,1\}$ split based on the value of a binary feature

alternatives:

- **multi-way** split: can lead to regions with few datapoints
- binary splits that produce balanced subsets

Food Name		Categorical #		Calories	
Apple		1		95	
Chicken		2		231	
Broccoli		3		50	
Apple	le Chicken		Broccoli		Calories
1	0		0		95
0	1		0		231
0	0		1		50

Cost function

find a **decision tree** minimizing the following cost function, this cost function specifies "what is a good decision or regression tree?"

regression cost

first calculate cost per region $\,\mathbb{R}_{k}$

Similar to other ML algorithms minimize a cost function or maximize an objective function

we predict $w_k = \operatorname{mean}(y^{(n)}|x^{(n)} \in \mathbb{R}_k)$ for region \mathbb{R}_k

 $ext{cost}(\mathbb{R}_k,\mathcal{D}) = rac{1}{N_k} \sum_{x^{(n)} \in \mathbb{R}_k} (y^{(n)} - w_k)^2$ number of instances in region k truth prediction

total cost is the normalized sum over all regions $ext{cost}(\mathcal{D}) = \sum_k rac{N_k}{N} ext{cost}(\mathbb{R}_k, \mathcal{D})$

Cost function

find a **decision tree** minimizing the following cost function, this cost function specifies "what is a good decision or regression tree?"

classification cost

again, calculate the cost per region \mathbb{R}_k

for each region we predict the most frequent label $w_k = \operatorname{mode}(y^{(n)}|x^{(n)} \in \mathbb{R}_k)$

$$ext{cost}(\mathbb{R}_k,\mathcal{D}) = rac{1}{N_k} \sum_{x^{(n)} \in \mathbb{R}_k} \mathbb{I}(y^{(n)}
eq w_k)$$
number of instances in region k truth prediction

total cost is the normalized sum $ext{cost}(\mathcal{D}) = \sum_k rac{N_k}{N} ext{cost}(\mathbb{R}_k, \mathcal{D})$

Cost function

find a **decision tree** minimizing the following cost function, this cost function specifies "what is a good decision or regression tree?"

total cost is the normalized sum $\, \cot(\mathcal{D}) = \sum_k rac{N_k}{N} \cot(\mathbb{R}_k, \mathcal{D}) \,$

problem

it is sometimes possible to build a tree with **zero cost**: build a large tree with each instance having its own region (*overfitting*!)

example

use features such as height, eye color etc, to make perfect prediction on training data

solution

find a decision tree with at most **K tests** minimizing the cost function K tests = K internal node in our binary tree = K+1 leaves (regions)

is sex male?

is sibsp > 2.5?

survived 0.89 2%

Search space

K+1 regions

objective: find a decision tree with **K tests** minimizing the cost function

the number of full binary trees with K+1 leaves (regions \mathbb{R}_k) is the *Catalan number*

$$\frac{1}{K+1} \binom{2K}{K}$$

1, 1, 2, **5**, 14, 42, 132, 429, 1430, 4862, 16796, 58786, 208012, 742900, 2674440, 9694845, 35357670, 129644790, 477638700, 1767263190, 6564120420, 24466267020, 91482563640, 343059613650, 1289904147324, 4861946401452

we also have a choice of feature $\,x_d\,$ for each of K internal node $\,D^K\,$ moreover, for each feature different choices of splitting

bottom line: finding optimal decision tree is an NP-hard combinatorial optimization problem

Greedy heuristic

finding the optimal tree is too difficult, instead use a greedy heuristic to find a good tree recursively split the regions based on a greedy choice of the next test end the recursion if not worth-splitting

```
function fit-tree (\mathbb{R}_{\text{node}}, \mathcal{D}, depth)
       \mathbb{R}_{\mathsf{left}}, \mathbb{R}_{\mathsf{right}} = \mathsf{greedy-test} \ (\mathbb{R}_{\mathsf{node}}, \mathcal{D})
       if not worth-splitting(depth, \mathbb{R}_{left}, \mathbb{R}_{right})
                return \mathbb{R}_{\mathsf{node}}
       else
               left-set = fit-tree(\mathbb{R}_{left}, \mathcal{D}, depth+1)
               right-set = fit-tree(\mathbb{R}_{right}, \mathcal{D}, depth+1)
               return {left-set, right-set}
```


 $\{\{\mathbb{R}_1,\mathbb{R}_2\},\{\mathbb{R}_3,\{\mathbb{R}_4,\mathbb{R}_5\}\}$

final decision tree in the form of nested list of regions

Choosing tests

the split is greedy because it looks one step ahead this may not lead to the lowest overall cost

```
function greedy-test (\mathbb{R}_{node}, \mathcal{D})
           best-cost = inf
          for each feature d \in \{1, \dots, D\} and each possible test
                   split \mathbb{R}_{\mathsf{node}} into \mathbb{R}_{\mathsf{left}}, \mathbb{R}_{\mathsf{right}} based on the test
                   	exttt{split-cost} = rac{N_{	ext{left}}}{N_{	ext{pode}}} 	ext{cost}(\mathbb{R}_{	ext{left}}, \mathcal{D}) + rac{N_{	ext{right}}}{N_{	ext{right}}} 	ext{cost}(\mathbb{R}_{	ext{right}}, \mathcal{D})
                    if split-cost < best-cost:</pre>
                             best-cost = split-cost
                             \mathbb{R}^*_{\mathsf{left}} = \mathbb{R}_{\mathsf{left}}
                             \mathbb{R}^*_{\mathsf{right}} = \mathbb{R}_{\mathsf{right}}
return \mathbb{R}^*_{left}, \mathbb{R}^*_{right}
```

Stopping the recursion

worth-splitting subroutine

if we stop when \mathbb{R}_{node} has zero cost, we may overfit heuristics for stopping the splitting:

- reached a desired depth
- number of examples in $\mathbb{R}_{\mathsf{left}}$ or $\mathbb{R}_{\mathsf{right}}$ is too small
- w_k is a good approximation, the cost is small enough
- reduction in cost by splitting is small

$$ext{cost}(\mathbb{R}_{\mathsf{node}}, \mathcal{D}) - ig(rac{N_{\mathsf{left}}}{N_{\mathsf{node}}} ext{cost}(\mathbb{R}_{\mathsf{left}}, \mathcal{D}) + rac{N_{\mathsf{right}}}{N_{\mathsf{node}}} ext{cost}(\mathbb{R}_{\mathsf{right}}, \mathcal{D}) ig)$$

image credit: https://alanjeffares.wordpress.com/tutorials/decision-tree/

revisiting the classification cost

ideally we want to optimize the misclassification rate

$$\mathrm{cost}(\mathbb{R}_k,\mathcal{D}) = rac{1}{N_k} \sum_{x^{(n)} \in \mathbb{R}_k} \mathbb{I}(y^{(n)}
eq w_k)$$

this may not be the optimal cost for each step of greedy heuristic

both splits have the same misclassification rate (2/8) $\cot(\mathcal{D}) = \frac{1}{N} \sum_k \sum_{x^{(n)} \in \mathbb{R}_k} \mathbb{I}(y^{(n)} \neq w_k)$

$$\mathrm{cost}(\mathcal{D}) = rac{1}{N} \sum_k \sum_{x^{(n)} \in \mathbb{R}_k} \mathbb{I}(y^{(n)}
eq w_k)$$

however the second split may be preferable because one region does not need further splitting idea: use a measure for homogeneity of labels in regions

Entropy: a measure of the *unpredictability*

The most basic concept in the field of Information Theory

entropy is the **expected amount of information** in observing a random variable

note that it is common to use capital letters for random variables (here for consistency we use lower-case)

$$H(y) = -\sum_{c=1}^C p(y=c) \log p(y=c)$$
 averaged on all its possible outcomes

 $-\log p(y=c)$ is the amount of **information** in observing value c

$$I(y = c) = \log(\frac{1}{p(y = c)}) = -\log(p(y = c))$$

zero information if p(c)=1

less probable events are more informative $p(c) < p(c') \Rightarrow -\log p(c) > -\log p(c')$ information from two independent events is additive $-\log(p(c)q(d)) = -\log p(c) - \log q(d)$

a uniform distribution has the highest entropy $H(y) = -\sum_{c=1}^C rac{1}{C} \log rac{1}{C} = \log C$

a deterministic random variable has the lowest entropy $H(y) = -1\log(1) = 0$

Mutual information

for two random variables t, y, their **mutual information** is

the amount of information t conveys about y change in the entropy of y after observing the value of t

how much knowing t reduces uncertainty about y

$$I(t,y)=H(y)-H(y|t)$$
 conditional entropy $\sum_{l=1}^L p(t=l)H(x|t=l)$ uncertainty we have in y after seeing t $=\sum_l\sum_c p(y=c,t=l)\lograc{p(y=c,t=l)}{p(y=c)p(t=l)}$ this is symmetric wrt y and t $=H(t)-H(t|y)=I(y,t)$

mutual information is always positive and zero only if y and t are independent

Classification cost: example

we care about the empirical distribution of labels in each region

$$p_k(y=c) = rac{\sum_{x^{(n)} \in \mathbb{R}_k} \mathbb{I}(y^{(n)}=c)}{N_k}$$

misclassification cost $\cot(\mathbb{R}_k,\mathcal{D})=rac{1}{N_k}\sum_{x^{(n)}\in\mathbb{R}_k}\mathbb{I}(y^{(n)}
eq w_k)=1-p_k(extbf{w}_k)$

the most probable class $w_k = rg \max_c p_k(c)$

misclassification cost = $\frac{4}{8} \cdot \frac{1}{4} + \frac{4}{8} \cdot \frac{1}{4} = \frac{1}{4}$

$$\mathrm{cost}(\mathcal{D}) = \sum_k rac{N_k}{N} \mathrm{cost}(\mathbb{R}_k, \stackrel{\textbf{19}}{\mathcal{D}})$$

Entropy for classification cost: example

we care about the empirical distribution of labels in each region $p_k(y=c)=rac{\sum_{x^{(n)}\in\mathbb{R}_k}\mathbb{I}(y^{(n)}=c)}{N_k}$

misclassification cost $\cot(\mathbb{R}_k,\mathcal{D}) = rac{1}{N_k} \sum_{x^{(n)} \in \mathbb{R}_k} \mathbb{I}(y^{(n)}
eq w_k) = 1 - p_k(w_k)$

the most probable class $\,w_k = rg \max_c p_k(c)\,$

entropy cost

$$ext{cost}(\mathbb{R}_k,\mathcal{D}) = H(y) = -\sum_{c=1}^C p(y=c) \log p(y=c)$$
 choose the split with the lowest entropy

misclassification cost

$$\frac{4}{8} \cdot \frac{1}{4} + \frac{4}{8} \cdot \frac{1}{4} = \frac{1}{4}$$

entropy cost

$$\frac{4}{8} \left(-\frac{1}{4} \log(\frac{1}{4}) - \frac{3}{4} \log(\frac{3}{4}) \right) + \frac{4}{8} \left(-\frac{1}{4} \log(\frac{1}{4}) - \frac{3}{4} \log(\frac{3}{4}) \right)$$

$$\mathrm{cost}(\mathcal{D}) = \sum_k rac{N_k}{N} \mathrm{cost}(\mathbb{R}_k, \mathcal{D})$$

Entropy for classification cost: example

misclassification cost

$$\frac{4}{8} \cdot \frac{1}{4} + \frac{4}{8} \cdot \frac{1}{4} = \frac{1}{4}$$

the same costs

$$\frac{6}{8} \cdot \frac{1}{3} + \frac{2}{8} \cdot \frac{0}{2} = \frac{1}{4}$$

entropy cost (using base 2 logarithm)

$$\frac{4}{8} \left(-\frac{1}{4} \log(\frac{1}{4}) - \frac{3}{4} \log(\frac{3}{4}) \right) + \frac{4}{8} \left(-\frac{1}{4} \log(\frac{1}{4}) - \frac{3}{4} \log(\frac{3}{4}) \right) \approx .81$$

Entropy for classification cost

we care about the empirical distribution of labels in each region

$$p_k(y=c) = rac{\sum_{x^{(n)} \in \mathbb{R}_k} \mathbb{I}(y^{(n)}=c)}{N_k}$$

entropy cost $\cos t(\mathbb{R}_k, \mathcal{D}) = H(y)$ choose the split with the lowest entropy

change in the cost becomes the mutual information between the test and labels

$$egin{aligned} & \operatorname{cost}(\mathbb{R}_{\mathsf{node}}, \mathcal{D}) - \left(rac{N_{\mathsf{left}}}{N_{\mathsf{node}}} \operatorname{cost}(\mathbb{R}_{\mathsf{left}}, \mathcal{D}) + rac{N_{\mathsf{left}}}{N_{\mathsf{node}}} \operatorname{cost}(\mathbb{R}_{\mathsf{right}}, \mathcal{D})
ight) & I(t, y) = H(y) - H(y|t) \ & \sum_{l=1}^{L} p(t=l) H(y|t=l) \ & = H(y) - \left(p(x_d \geq t) H(y|x_d \geq t) + p(x_d < t) H(y|x_d < t)
ight) = I(y, x > t) \end{aligned}$$

this means by using entropy as our cost, we are choosing the test which is maximally informative about labels

Gini index

another cost for selecting the test in classification

misclassification (error) rate

$$\mathrm{cost}(\mathbb{R}_k,\mathcal{D}) = rac{1}{N_k} \sum_{x^{(n)} \in \mathbb{R}_k} \mathbb{I}(y^{(n)}
eq w_k) = 1 - p(w_k)$$

entropy $\operatorname{cost}(\mathbb{R}_k,\mathcal{D}) = H(y)$

Gini index it is the expected error rate

$$egin{aligned} ext{cost}(\mathbb{R}_k,\mathcal{D}) &= \sum_{c=1}^C p(c)(1-p(c)) \ ext{probability of class c} & ext{probability of error} \end{aligned}$$
 $= \sum_{c=1}^C p(c) - \sum_{c=1}^C p(c)^2 = 1 - \sum_{c=1}^C p(c)^2$

Building the Tree

```
Naive Algorithm:
Just do a for loop over all
possible questions
(exhaustive search).
```

```
best tree = None
     best loss = np.infty
     for f in features:
         prev v = None
         for v in sort(values[f]):
             if prev v is None:
                  continue
10
11
             split = (v + prev)/2
12
             tree = Tree(f, split)
13
              tree loss = loss(Tree)
             if tree loss < best loss:
14
15
                  best tree = tree
                  best loss = tree loss
17
             prev v = v
18
   def add question(tree, features, values):
     best tree = None
     best loss = np.infty
21
     for leaf in tree.leaves():
23
       for f in features:
24
           prev v = None
25
           for v in sort(values[f]):
                if prev v is None:
26
27
                    continue
28
                split = (v + prev)/2
29
                test tree = tree.add question(leaf, feature, split)
                tree loss = loss(Tree)
                if tree loss < best loss:
32
                    best tree = tree
33
                    best loss = tree loss
                prev v = v
```

def find root question(features, values):

Decision tree

decision tree for Iris dataset

decision boundaries suggest overfitting confirmed using a validation set

training accuracy ~ 85% validation accuracy ~ 70%

Decision tree: overfitting

a decision tree can fit any **Boolean function** (binary classification with binary features)

example: of decision tree representation of a boolean function (D=3)

there are 2^{2^D} such functions, why? decision tree can perfectly fit our training data

How to solve the problem of overfitting in large decision trees?

idea 1. grow a small tree

problem: substantial reduction in cost may happen after a few steps by stopping early we cannot know this

Decision tree: overfitting & pruning

grow a large tree and then prune it
greedily turn an internal node into a leaf node
choice is based on the lowest increase in the cost
repeat this until left with the root node
pick the best among the above models using a validation set

idea 3. random forests (later!)

Summary

- model: divide the input into axis-aligned regions
- cost: for regression and classification
- optimization:
 - NP-hard
 - use greedy heuristic
- adjust the cost for the heuristic
 - using entropy (relation to mutual information maximization)
 - using Gini index
- there are variations on decision tree heuristics
 - what we discussed in called Classification and Regression Trees (CART)
- Compared to KNN, robust to scaling and noise, fast predictions, more interpretable