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Motivation

from 2020 Kaggle's survey on the state of
Machine Learning and Data Science, 

you can read the full version here

What we have left to cover for
this course:
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https://www.kaggle.com/kaggle-survey-2020


variations of k-nearest neighbors for
classification
regression

computational complexity
some pros and cons of K-NN
what is a hyper-parameter?

Objectives
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Classifying by Similarity 

We guess type of unseen instances based on their similarity to our past experience
Let's give this a try:

is this a kind of
(a) stork
(b) pigeon
(c) penguin

is this calligraphy from
(a) east Asia
(b) Africa
(c) middle east

Accretropin: is it
(a) an east European actor
(b) drug
(c) gum brand

example of nearest neighbor regression
pricing based on similar items
(e.g., used in the housing market)
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Nearest neighbour classifier

D = {(x , y )}(n) (n)
n=1
N

: number of training instancesN

: training setD
x : D-dimensional vector
y : a categorical or nominal variable
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indexes can be placed up or down based on the notation in use, or droped all together.
When up, not to be confused with a power

n : index of training instance (                   )n ∈ {1…N}

<tumorsize, texture, perimeter>   ,   <cancer>

<18.2,             27.6,             117.5>   ,      < No >

<17.9,             10.3,             122.8>   ,      < No >

<20.2,             14.3,             111.2>   ,      < Yes >

 
 
<15.5,             15.2,             135.5>   ,      < No >

⋮

x(1)

x(2)

⋮

x(N)

x(3)

y(1)

y(2)

⋮

y(N)

y(3)

training: do nothing and only record the data  (a lazy learner, also a non-parametric model)

inference: predict the label by finding the most similar example in training set

pairs of input vector
and corresponding

target or label



Nearest neighbour classifier

we need a measure of distance/similarity 

training: do nothing and only record the data  (a lazy learner, also a non-parametric model)

inference: predict the label by finding the most similar example in training set

e.g., Euclidean distance 

∣∣x− x ∣∣ =′
2 (x − x )∑

d=1
D

d d
′ 2

indexes the features in an instance

x1 x1
′

x2

x2
′ {∣∣x− x ∣∣ =′

2 (x − x ) + (x − x )1 1
′ 2

2 2
′ 2

assume each instance (represented by a
vector) is a point in a D-dimensional space,
the Euclidean distance is the length of a line
segment between any two points
e.g. in 2D we have:

x

x′

d = 1

d
=
2
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<tumorsize, texture, perimeter>   ,   
 <cancer>

<18.2,             27.6,             117.5>   ,      < No >

<17.9,             10.3,             122.8>   ,      < No >

<20.2,             14.3,             111.2>   ,      < Yes >

<15.5,             15.2,             135.5>   ,      < No >

<16.5,             10.1,             121.2>

x(1)

x(2)

x(3)

x(4)

 x =∗ distance(x ,x)
x ∈train.set(i)

argmin (i)

=ŷ y∗



Euclidean distance D (x,x ) =Euclidean
′ (x − x )∑d=1

D
d d

′ 2

for real-valued feature-vectors

Nearest neighbour classifier

need a measure of distance/similarity (e.g., a metric)
examples

Manhattan distance D (x,x ) =Manhattan
′ ∣x −∑d=1

D
d x ∣d

′

Minkowski distance D (x,x ) =Minkowski
′ ∣x − x ∣(∑d=1

D
d d

′ p) p
1

Cosine similarity D (x,x ) =Cosine
′ x x /∣∣x∣∣∣∣x ∣∣⊤ ′ ′

... and there are metrics for strings, distributions etc.

∣∣x∣∣ = x
d=1

∑
D

d
2

x  denotes transpose of x⊤

x x  denotes the matrix product of x  and x⊤ ′ ⊤ ′

 which is equal to the dot product of x and x′Hamming distance

for discrete feature-vectors (e.g. smoker?)

D (x,x ) =Hamming
′ I(x =∑d=1

D
d  x )d

′

I(e) = {1
0

if e is true
if e is false

indicator function 7

training: do nothing and only record the data  (a lazy learner, also a non-parametric model)

inference: predict the label by finding the most similar example in training set

x1 x1
′

x2

x2
′

θ

x
x′



Iris dataset
one of the most famous datasets in statistics

N = 150 instances of flowers
D=4        features {the length and the width of the sepals and petals}

C=3        classes {setosa, versicolor, virginica} : 50 samples of each

 input x ∈(n) R2

label y ∈(n) {1, 2, 3} indexes the training instance
sometime we drop (n)

n ∈ {1,… ,N}

for better visualization, we use only two features

using Euclidean distance nearest neighbor
classifier gets 68% accuracy (correct/total) in
classifying the test instances
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the Voronoi diagram visualizes the
decision boundary of nearest neighbor
classifier: each color shows all points
closer to the corresponding training
instance than to any other instance
 

Decision boundary
a classifier defines a decision boundary in the input space

all points in this region will have the same class

images from wiki
Euclidean v.s. Manhattan distance
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https://en.wikipedia.org/wiki/Voronoi_diagram


Classic example of
handwritten digit
recognition MNIST 
[ 60K train, 10K test,
28x28, centered ]
see , , and a fun  wiki this watch 

Higher dimensions: digits dataset
 input x ∈(n) {0,… , 255}28×28

label y ∈(n) {0,… , 9}

image from here

indexes the training instance
sometime we drop (n)

n ∈ {1,… ,N}

size of the input image in pixels
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vectorization:

x→ vec(x) ∈ R784 input dimension D

assume intensities are real numbers

…

8-bit grayscale, see wiki

https://en.wikipedia.org/wiki/MNIST_database
http://yann.lecun.com/exdb/mnist/
https://www.youtube.com/watch?v=FwFduRA_L6Q
https://medium.com/@rajatjain0807/machine-learning-6ecde3bfd2f4
https://en.wikipedia.org/wiki/Grayscale


K - Nearest Neighbor (K-NN) classifier
training: do nothing
test: find the nearest image in the training set

new test instances
closest instances

can we make the predictions more robust?

new test instances

9 closest instances in the train set per new test instance

consider K-nearest neighbors and label by the majority

we are using Euclidean distance in a 784-dimensional space to find the closest neighbour

p(y = 6∣ ) = 9
6

p(y =new c ∣ x ) =new I(y =K
1 ∑x ∈KNN(x )(k) new

(k) c)

we can even estimate the probability of each class

p(y = 0∣ ) =?
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Choice of K

K = 176% accuracy K = 15 78% accuracyK = 5 84% accuracy

K is a hyper-parameter of our model
in contrast to parameters, the hyper-parameters are not learned during the usual training procedure
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Choice of K

K = 176% accuracy K = 15 78% accuracyK = 5 84% accuracy
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K is a hyper-parameter of our model
in contrast to parameters, the hyper-parameters are not learned during the usual training procedure

small k overfits                                                                                                            large k underfits

 
The goal is to generalize to unseen data
We can approximate generalization error based on the test set
We tune the hyperparameters on a validation set instead of test set, test set is only
used at the end for final evaluation

 



Computational complexity

the computational complexity for a single test query:  O(ND +NK)

for each point in the training set calculate the distance in   for a total of O(D) O(ND)

find the K points with smallest of distances in  O(NK)

in practice efficient implementations using KD-tree (and ball-tree) exist

partition the space based on a tree structure
for a query point only search the relevant part of the space

bonus

from wiki

(x − x )∑d=1
D

d d
′ 2

[ see  for more information ]here
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https://en.wikipedia.org/wiki/K-d_tree
https://www.cs.cmu.edu/~ckingsf/bioinfo-lectures/kdtrees.pdf


Scaling and importance of features
scaling of features affects distances and nearest neighbours

example feature sepal width is scaled x100
closeness in this dimension becomes more important in finding the nearest neighbor

(x − x )∑d=1
D

d d
′ 2

misclassified since the sepal
width is almost the same
and the sepal length
difference is ignored due to
much mower scale, i.e. it
becomes negligible in the
overall distance, and width
becomes the main factor
contributing to distance
between any two points
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Scaling and importance of features

we want important features to maximally affect the classification:
they should have larger scale

noisy and irrelevant features should have a small scale

K-NN is not adaptive to feature scaling and it is sensitive to noisy features

example

add a feature that is random noise to previous example

plot the effect of the scale of noise feature on accuracy
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K-NN regression
so far our task was classification

use majority vote of neighbors for prediction at test time

the change for regression is minimal
use the mean (or median) of K nearest neighbors' targets

example D=1, K=5

example from scikit-learn.org, see here
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https://scikit-learn.org/stable/auto_examples/neighbors/plot_regression.html#sphx-glr-auto-examples-neighbors-plot-regression-py


Some variations
in weighted K-NN the neighbors are weighted inversely proportional to their distance

for classification the votes are weighted
for regression calculate the weighted average

in fixed radius nearest neighbors  all neighbors in a fixed radius are considered
in dense neighbourhoods we get more neighbors

example from scikit-learn.org
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K-NN for unsuprevised and semi-supervised learning

see the learning from labeled and unlabeled data with label propagation

Semi-supervided setting:
Propagate labels to nearby points

Unsupervised setting:
Partition the k-NN graphs to cluster the data
connects each point to its k-nearest neighbor in the [training] data

read more on KNN , and on clustering with Knn here here
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https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.14.3864&rep=rep1&type=pdf
https://scikit-learn.org/stable/modules/neighbors.html#unsupervised-neighbors
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.165.9323


Summary

K-NN performs classification/regression by finding similar instances in training set

need a notion of distance, performance improves a lot with a better similarity measure e.g. see 

how many neighbors to consider (fixed K, or fixed radius)
how to weight the neighbors

here

K-NN is a non-parametric method and a lazy learner

non-parametric: our model has no parameters (in fact the training data points are model parameters)

Lazy, because we don't do anything during the training
test-time complexity grows with the size of the data, as well as space complexity (store all data)
good performance when we have lots of data, see here

K-NN is sensitive to feature scaling and noise
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https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=993558
https://ieeexplore.ieee.org/abstract/document/4531741?casa_token=xtJKvk2SYSoAAAAA:LkeAbXQGSQdpoNdQWw1Zguphxx5JDUwaYBSFk2Ii0wM0k9j8GuK4bDrzW-5z5Yt4FjDUINui7w

