
Applied Machine Learning
Neural Networks for Sequences

Isabeau Prémont-Schwarz

COMP 551 (Fall 2023)

Neural Networks for Tabular Data
MLP

Neural Networks for Images
 CNN

Neural Networks for Sequences
input is a sequence, the output is a sequence, or both are sequences

e.g. machine translation, speech recognition, text classification, image captioning

Deep Neural Networks

Recurrent neural networks (RNNs)
3 different models for different input/output
training with back propagation through time

understand the attention mechanisms
The architecture of transformer

Learning objectives

Recurrent neural networks (RNNs)

maps sequences to sequences in a stateful way
i.e. prediction depends on and hidden state of the network , which is updated over timeŷt xt ht

Vec2Seq (sequence generation)

Seq2Vec (sequence classification)

Seq2Seq (sequence translation)

Recurrent neural networks (RNNs)

f :θ R →D RN C∞Vec2Seq (sequence generation)
output, is generated one token at a timey1:T

at each step we sample from the hidden state

and then feed it back to the model to get

yt ht

ht+1

arbitrary-length
sequence of vectors

: input vector size

: arbitrary-length sequence of
vectors of length

: each output vector size

D

N∞

C

C

p(y ∣x) =1:T p(y ,h ∣x) =
h1:T

∑ 1:T 1:T p(y ∣h)p(h ∣h , y ,x)
h1:T

∑
t=1
∏
T

t t t t−1 t−1

p(h ∣h0, y0,x) =1 p(h ∣x)1

with the initial hidden
state

conditional generative model:

real-valued output:

categorical output:

Recurrent neural networks (RNNs)

f :θ R →D RTCVec2Seq (sequence generation)

p(y ∣x) =1:T p(y ,h ∣x) =
h1:T

∑ 1:T 1:T p(y ∣h)p(h ∣h , y ,x)
h1:T

∑
t=1
∏
T

t t t t−1 t−1

conditional generative model:

p(y ∣h) =t t Categorical(y ∣)t ŷt

=ŷt softmax(W h)hy t

hidden-to-output weights

p(y ∣h) =t t N (y ∣ , I)t ŷt

=ŷt W hhy t

** per usual dropping bias terms for simplicity

Recurrent neural networks (RNNs)

f :θ R →D RTCVec2Seq (sequence generation)

p(y ∣x) =1:T p(y ,h ∣x) =
h1:T

∑ 1:T 1:T p(y ∣h)p(h ∣h , y ,x)
h1:T

∑
t=1
∏
T

t t t t−1 t−1

conditional generative model:

p(h ∣h , y ,x) =t t−1 t−1 I(h =t f(h , y ,x))t−1 t−1

hidden state:

input-to-hidden weights hidden-to-hidden weights

h =t φ(W [x; y] +xh t−1 W h)hh t−1

Recurrent neural networks (RNNs)

f :θ R →D RTCVec2Seq (sequence generation)

input-to-hidden weights hidden-to-hidden weights

h =t φ(W [x; y] +xh t−1 W h)hh t−1

hidden-to-output weights

=ŷt g(W h)hy t
model

RNNs are powerful

In theory can have unbounded memory and are as
powerful as a
In practice, memory size is determined by the size of
the latent space and strength of the parameters

Turing machine

https://en.wikipedia.org/wiki/Turing_machine

Recurrent neural networks (RNNs)

Vec2Seq (sequence generation)

p(y ∣x) =1:T p(y ,h ∣x) =
h1:T

∑ 1:T 1:T p(y ∣h)p(h ∣h , y ,x)
h1:T

∑
t=1
∏
T

t t t t−1 t−1

conditional generative model:

language modelling: generating sequences unconditionally (by setting) which
is learning joint probability distributions over sequences of discrete tokens,
i.e.,

x = ∅

p(y ,… , y)1 T

Example:
character level RNN trained
on the book The Time
Machine by H. G. Wells (32,000

words and 170k character)

the githa some thong the time traveller held in his hand was a glitteringmetallic framework scarcely larger than a
small clock and verydelicately made there was ivory in it and the latter than s bettyre tat howhong s ie time thave
ler simk you a dimensions le ghat dionthat shall travel indifferently in any direction of space and timeas the driver
determinesfilby contented himself with laughterbut i have experimental verification said the time travellerit would

be remarkably convenient for the histo

Output when given prefix
"the":

See the code , read more here here

https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/15/rnn_torch.ipynb
http://karpathy.github.io/2015/05/21/rnn-effectiveness/

Recurrent neural networks (RNNs)

Vec2Seq (sequence generation)

Example:

CNN-RNN model for
image captioning
when is embedding
by a CNN

x

See more here

p(y ∣x) =1:T p(y ,h ∣x)
h1:T

∑ 1:T 1:T

conditional generative model:

a specific
kind of

RNN

https://github.com/sgrvinod/a-PyTorch-Tutorial-to-Image-Captioning

Recurrent neural networks (RNNs)

Seq2Vec (sequence classification)
predict a single fixed-length output vector given a variable length sequence as

input

f :θ R →TD RC

p(y∣x) =1:T Categorical(y∣)ŷ

=ŷ softmax(Wh)T

use the final state:

y ∈ {1,… ,C}

Bi-directional RNN:

the hidden states of the
RNN depend on the
past and future context

gives better results

optional

Recurrent neural networks (RNNs)

Seq2Vec (sequence classification)
predict a single fixed-length output vector given a variable length sequence as

input

f :θ R →TD RC

Bi-directional RNN:

the hidden states of the
RNN depend on the
past and future context

gives better results

h =t φ W x +W h(xh t hh
→

t−1)

h =t h ,h[t
→

t
←]

h =t
← φ W x +W h(xh

←
t hh

←
t+1
←)

=h h
T
1 ∑t=1

T
t

p(y∣x) =1:T Categorical(y∣)ŷ

=ŷ softmax(W)h̄

optional

Recurrent neural networks (RNNs)

Seq2Vec (sequence classification)
predict a single fixed-length output vector given a variable length sequence as

input

f :θ R →TD RC

Example:

Sentiment classification with
word level bidirectional
LSTM trained on a subset of
the Internet Movie Database
(IMDB) reviews. (20k positive and

20k negative examples)

see the code , and read more here here

Prediction examples for two inputs:
 'this movie is so great' 'positive'
 'this movie is so bad' 'negative'

⇒

⇒

optional

https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/15/rnn_sentiment_torch.ipynb
http://d2l.ai/chapter_natural-language-processing-applications/sentiment-analysis-rnn.html

Recurrent neural networks (RNNs)

Seq2Seq (sequence translation)
aligned:
unaligned:

T = T ′

T = T ′

f :θ R →TD RT C′

optional

Recurrent neural networks (RNNs)

Seq2Seq (sequence translation)
aligned: T = T ′

f :θ R →TD RTC

p y ∣ x =(1:T 1:T) p y ∣ h I h = f h ,x
h1:T

∑
t=1
∏
T

(t t) (t (t−1 t))
h =1 f h ,x =(0 1) f x0 (1)initial state:

modify the RNN as:

Bi
-d

ire
ct

io
na

l

dense sequence labeling:
predict one label per location

optional

Recurrent neural networks (RNNs)

Seq2Seq (sequence translation)
aligned: T = T ′

f :θ R →TD RTC

modify the RNN as:

more depth to be more
expressive
input-to-hidden weights hidden-to-hidden weights

h =t
l φ W h +W hl (xh

l
t
l−1

hh
l

t−1
l)

y =t W hhy t
L

p y ∣ x =(1:T 1:T) p y ∣ h I h = f h ,x
h1:T

∑
t=1
∏
T

(t t) (t (t−1 t))

optional

Recurrent neural networks (RNNs)

Seq2Seq (sequence translation)
unaligned: T = T ′

f :θ R →TD RT C′

Example: translating English to French

encode the input sequence to get the
context vector, the last state of an RNN,

generate the output sequence using an RNN
decoder,

c =

f (x)e 1:T

y =1:T ′ f (c)d

see code here

optional

https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/15/nmt_torch.ipynb#scrollTo=aExsxPtwcY8v

Training: Backpropagation through time (BPTT)

unroll the computation graph, then apply the backpropagation

h =t W x +hx t W hhh t−1

=ŷt W hhy t

m
od

el

L = ℓ y ,
T
1 ∑t=1

T (t ŷt)lo
ss

Example:

de
ri

va
tiv

es ∂W hx

∂L

∂W hh

∂L

∂W hy

∂L

An RNN unrolled (vertically) for 3 time
steps

Example:

ŷ1

ŷ2

ŷ3

+∂wh

∂f x ,h ,w(t t−1 h)
∂ht−1

∂f x ,h ,w(t t−1 h)
∂wh

∂ht−1

unroll the computation graph, then apply the backpropagation

h =t W x +hx t W h =hh t−1 f x ,h ,w(t t−1 h)

=ŷt W h =hy t g(h ,w)t y

L = ℓ y ,
T
1 ∑t=1

T (t ŷt)

m
od

el
lo

ss
de

ri
va

tiv
es

Example:

∂W hx

∂L

∂W hh

∂L

∂W hy

∂L

[vec(W); vec(W)]hx hh

∂wh

∂L} = =
T
1

t=1
∑
T

∂wh

∂ℓ y ,(t ŷt)
T
1

t=1
∑
T

∂ ŷt

∂ℓ y ,(t ŷt)
∂ht

∂g h ,w(t y)
∂wh

∂ht

=∂wh

∂ht +∂wh

∂f x ,h ,w(t t−1 h)

i=1
∑
t−1(

j=i+1
∏
t

∂hj−1

∂f x ,h ,w(j j−1 h)) ∂wh

∂f x ,h ,w(i i−1 h)

expand this recursively

see code here

Training: Backpropagation through time (BPTT)

https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/15/nmt_torch.ipynb#scrollTo=aExsxPtwcY8v

Gating and long term memory

Vanishing and exploding gradients
activations can decay or explode as we go forwards and backwards in time

Gated recurrent units (GRU)
learns when to update the hidden state, by using a gating unit

Long short term memory (LSTM)
augments the hidden state with a memory cell

RNN variations that circumvent this:

The Gated Recurrent Unit (GRU):

h
h

Attention
z = g(Wx)

Instead of linear combination of the input activations, the model dynamically decides (in an input dependent

way) which one to use based on how similar the input query vector is to a set of m keys K .
If is most similar to key , then we use value .

q ∈ Rq ∈ Rm×k

q i vi

Attn q, k , v ,… , k , v =((1 1) (m m)) Attn q, k , v =((1:m 1:m)) α q, k v ∈
i=1
∑
m

i (1:m) i Rv

α q, k =i (1:m) softmax a q, k ,… , a q, k =i ([(1) (m)]) exp a q,k∑j=1
m ((j))
exp a q,k((i))

attention weight

The attention weights are computed from an
attention score function , which

gives the similarity of query to key .
a(q, k) ∈i R

q ki

Parametric Attention
The attention weights are computed from an attention score function , which
gives the similarity of query to key

a(q, k) ∈i R
q ∈ Rq k ∈i Rk

queries and keys both have length
so we can compute directly:

d = q = k

q kT

for minibatches of vectors this gives:n

∈ Rh×k∈ Rh×q

a(q, k) = w tanh W q +W k ∈v
⊤ (q k) R

queries and keys both have different sizes
map them to a common embedding space of size h, then pass these into an MLP

a(q, k) = q k/ ∈⊤ d R

∈
Rn×d

∈ Rm×v

∈ Rm×d

Attn(Q,K,V) = softmax V ∈(
d

QK⊤) Rn×v

Seq2Seq with attention

Example: translating English to French

use attention to the input sequence in order to capture contexual embeddings of each input

query is the hidden state of the decoder at the previous step
 keys and values are the hidden states from the encoder

Gives better results for machine translations

self attention:
we can also modify the model so the
encoder attends to itself

Transformers

a seq2seq model which uses attention in the encoder as well as the decoder,
thus eliminating the need for RNNs

Self-attention
Multi-headed attention
Positional encoding

read more here

https://huggingface.co/course/chapter1/4?fw=pt

Transformers: self-attention
given a sequence of input tokens , generate a
sequence of outputs of the same size with:

x ,… ,x1 n

coreference resolution:
 encoder self-attention for
the word “it” differs
depending on the input
context which is important in
translation, e.g. what
pronoun to use in French

Example:

(key, value)s∈ Rd

y =i Attn x , x ,x ,… , x ,x(i (1 1) (n n))
query

for decoder we set and x =i yi−1 n = i− 1

this gives improved representations of context

Transformers: multi-headed attention
use multiple attention matrices, to capture different notions of similarity
with projection matrices:

∈ Rdq ∈ Rdv∈ Rdk

h =i Attn W q, W k ,W v ∈(i
(q) { i

(k)
j i

(v)
j}) Rpv

W ∈i
(q) R ,W ∈p ×dq q

i
(k) R , and W ∈p ×dk k

i
(v) Rp ×dv v

h = MHA q, k , v =({ j j}) W ∈o ⎝⎜⎜
⎛ h1

⋮
hh

⎠⎟⎟
⎞

Rpo

We then stack the h heads together, and project with :W ∈o Rp ×hpo v

optional

Transformers: positional encoding

attention is permutation invariant, and hence ignores the input word ordering.
To overcome this, we can concatenate the word embeddings with a positional
embedding so that the model knows what order the words occur in

pi,2j

pi,2j+1

= sin(
100002j/d

i)
= cos(

100002j/d
i)

∈ Rn×d ∈ Rn×d

POS(Embed(X)) = X + P

optional

n = 60, d = 32

Example:
lower columns have
higher frequencies

read more here

http://d2l.ai/chapter_attention-mechanisms-and-transformers/self-attention-and-positional-encoding.html

Transformers: putting it all together
A transformer is a seq2seq model that uses self-attention for the encoder and decoder rather
than an RNN. The encoder uses a series of encoder blocks, each of which uses multi-headed
attention, residual connections, and layer normalization

optional

read more , see the code here here

https://huggingface.co/course/chapter1/4?fw=pt
https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/15/transformers_torch.ipynb

Language models

ELMo (Embeddings from Language Model)

RNN based, trained unsupervised to minimize the negative log likelihood of the input sentence,

i.e.

BERT (Bidirectional Encoder Representations from Transformers)

Transformer-based: map a modified version of a sequence back to the unmodified form and

compute the loss at the masked locations: fill-in-the-blank :

GPT (Generative Pre-training Transformer)

uses a masked transformer as the decoder, see an open-source model (20 billion parameters)

Let’s make [MASK] chicken! [SEP] It [MASK] great with orange sauce

here

y =t xt−1

https://huggingface.co/EleutherAI/gpt-neox-20b

Summary
 Recurrent neural networks (RNNs)

Vec2Seq (sequence generation)

Seq2Vec (sequence classification)

Seq2Seq (sequence translation)

training with back propagation through time

attention mechanisms, self-attention and multi-headed attention

The architecture of transformer

language models with transformer

