Neural Networks for Sequences

Isabeau Prémont-Schwarz

‘é T McGill

School of Computer Science

(Fall 2023)

Deep Neural Networks

e Neural Networks for Tabular Data
= MLP

e Neural Networks for Images
= CNN

e Neural Networks for Sequences

= inputis a sequence, the output is a sequence, or both are sequences

O e.g. machine translation, speech recognition, text classification, image captioning

English v < French v Automatic vV Glossary

Lets learn how to translate a sentence that is a sequence of X Apprenons a traduire une phrase qui est une séquence de
words mots.

Learning objectives

e Recurrent neural networks (RNNSs)

m 3 different models for different input/output
= training with back propagation through time

e understand the attention mechanisms
e The architecture of transformer

Recurrent neural networks (RNNs)

Mmaps sequences to sequences in a stateful way

i.e. prediction g; depends on z; and hidden state of the network h;, which is updated over time
e \Vec25eq (sequence generation)
e Seg2Vec (sequence classification)

e Seg2Seq (sequence translation)

Recurrent neural networks (RNNs)

e \ec25eq (sequence generation)

W output, y1.r is generated one token at a time
B at each step we sample y; from the hidden state h;

and then feed it back to the model to get h;.;

conditional generative model:

p(yur|z) = Y p(yrr, har|z) = ﬁ p(yt|he)p(he|he-1, Y11, T)

hy.r hyp t=1

arbitrary-length
sequence of vectors

fg . RD — RNOOC

D: input vector size

No: arbitrary-length sequence of
vectors of length C

C: each output vector size

Y3 O

Recurrent neural networks (RNNs)

e \Vec25eq (sequence generation) fo : RP — RT¢
conditional generative model:
T
p(yrr|z) = hZ p(yrr, hirlz) = > Hl p(helhi—1,Y1-1,)
1T hy.r t=

hidden-to-output weights
e real-valued output: ¢, — Wy hy

= N (y¢]§¢,T)

° categorical output: f&t — softmaX(Whyht)

= Categorical(y:|9:)

Recurrent neural networks (RNNs)

e \Vec25eq (sequence generation) fo : RP — RTC
conditional generative model:
T
p(yrr|T) = hZ p(yrr, hir|z) = hZ tl:llp(yt‘ht)p(ht\htl, Yi—1,T)

hidden state; 2

p(ht‘ht—lyyt—la 93) = H(ht — f(ht—l,yt—hfl?))

input-to-hidden weights hidden-to-hidden weights

ht = o(Wan|x; yt—1] + Whrhe—1)

hl

Recurrent neural networks (RNNs)

e Vec2Seq (sequence generation) fo : RP — RT¢

hidden-to-output weights

model gt _ Q(Whyht)

input-to-hidden weights hidden-to-hidden weights

he = o(Wap|z; yr—1] + Whnhi—1)

RNNs are powerful

* |n theory can have unbounded memory and are as
powerful as a Turing machine

® |n practice, memory size is determined by the size of
the latent space and strength of the parameters

https://en.wikipedia.org/wiki/Turing_machine

Recurrent neural networks (RNNs)

e \Vec25eq (sequence generation)

conditional generative model:
T
p(ylzT‘m) — Z p(ylzT7 hl:T’x) - Z H p(yt ’ht)p(hz‘ ‘ht—b Yt—1, :C)
hi.r hir t=1
language modelling: generating sequences unconditionally (by setting z = 0) which
is learning joint probability distributions over sequences of discrete tokens,
e, p(y1,--- ,yr)

Example: Output when given prefix
character level RNN trained "the":
on th e b OOk Th e Time the githa some thong the time traveller held in his hand was a glitteringmetallic framework scarcely larger than a

i small clock and verydelicately made there was ivory in it and the latter than s bettyre tat howhong s ie time thave
Machlne by H. G. Wells (32,000 ler simk you a dimensions le ghat dionthat shall travel indifferently in any direction of space and timeas the driver
words and 170k character) determinesfilby contented himself with laughterbut i have experimental verification said the time travellerit would

be remarkably convenient for the histo

See the code here, read more here

https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/15/rnn_torch.ipynb
http://karpathy.github.io/2015/05/21/rnn-effectiveness/

Recurrent neural networks (RNNs)

e \Vec25eq (sequence generation)

conditional generative model:

p(ylzT |CE) — Z p(yl:T) hl:le)

[12'1!21*:“3! [Ix |xmg:|

hl:T <ELAri> Giraffes standing <and=
rt 1)
S, EEEEES

| / Tt 1 1
CNN-RNN model for - AP
i {ANi Fam's . Y z T z 2 ifi
Image captioning i a1 +|:|+ g El-|E|+|E|- - »|E aksiggc;#c
when z is embedding i R RNN
by a CNN input Image Fosture voctor + 4 3

I Wemﬂ Wemb

tot

=srart®> Giraffes cithe

=1
=
v
K

See more here

https://github.com/sgrvinod/a-PyTorch-Tutorial-to-Image-Captioning

Recurrent neural networks (RNNs)

e Seq2Vec (sequence classification) fo : RTP — RC

B predict a single fixed-length output vector given a variable length sequence as
input ye{l,...,C}

use the final state: Bi-directional RNN:
Y= SOftmaX(WhT) the hidden states of the
p(y|z1.r) = Categorical(y|9) RNN depend on the

past and future context

gives better results

I) I3

Recurrent neural networks (RNNs)

e Seq2Vec (sequence classification) fo : R™P — R
B predict a single fixed-length output vector given a variable length sequence as
input
hy = @ (Waae + Wiihi'y) Bi-directional RNN:
hy = (Wﬁzxt + Wi hﬁl) the hidden states of the
R— RNN depend on the
he = [hy", by] past and future context > oy
o T Zt 1 gives better results e
g = softmaX(Wf_L) q

p(y|z1.r) = Categorical(y|§)

Recurrent neural networks (RNNs)

e Seq2Vec (sequence classification) fo : RTP — RC

B predict a single fixed-length output vector given a variable length sequence as

input

Sentiment classification with

word Ievgl bidirectional Prediction examples for two inputs:
LSTM trained on a subset of
the Internet Movie Database
(IMDB) reviews. (20k positive and

20k negative examples)

'this movie is so great' = 'positive'
'this movie is so bad' = 'negative'

|M|lb see the code here, and read more here

https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/15/rnn_sentiment_torch.ipynb
http://d2l.ai/chapter_natural-language-processing-applications/sentiment-analysis-rnn.html

Recurrent neural networks (RNNs)

e Seq2Seq (sequence translation) fo : RTD _ RTC
m aligned: T =1T"
® unaligned: T # T

Recurrent neural networks (RNNs)

e Seq2Seq (sequence translation) f, : RTD _y RTC
m aligned: T =1T"

modify the RNN as: T
p(ylzT | 331:T) = Z Hp(yt ’ ht)ﬂ(ht =f (ht—laxt))

hir t=1 initial state: hy = f (ho, 1) = fo (z1)

dense sequence labeling:
predict one label per location

Bi-directional

Recurrent neural networks (RNNs)

e Seq2Seq (sequence translation) f, : RTD _y RTC
m aligned: T =1T"

modify the RNN as: T
p(yrr | 2r) = 20 11 (v [he) T(he = f(

hi_1, ﬂft))
hir t=1
more depth to be more - R e
expressive I
input-to-hidden weights hidden-to-hidden weights ”H" — - AT

hi = ¢ (W;hhi_l T W;thgb—l)

ki

Yyt = Why hf

X AT ET O E] S
= & E
k—rx—-x—-—-x—a
X E e HEa e

Recurrent neural networks (RNNs)

e Seq2Seq (sequence translation) fo : RTD _ RTC
m unaligned: T # T

Example: translating English to French

target output words

-

e encode the input sequence to get the Jo suis étudiant _ Jloss layer
context vector, the last state of an RNN, ¢ = it (ero) ﬂ]smw
fe(z1.1) I B R

 generate the output sequence using an RNN [‘ H—{E (it ayer 1
decoder, y1.v = fa(c) Jmbodng ey

| am a student _ Je suis étudiant

source input words target input words

see code here

https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/15/nmt_torch.ipynb#scrollTo=aExsxPtwcY8v

Training: Backpropagation through time (BPTT)

unroll the computation graph, then apply the backpropagation

2 b = Whams + Winhey . .
o An RNN unrolled (vertically) for 3 time
El 5 — steps

9t = Whyhy M a2

X hy Q3

w0 T A~
§I L=7>_1¢(y9:)

\j\/
oL) -

(Vs

g 5th % 1 Y1 Y1
‘r§ dL

T Whn h,

Sl oL

OW hy

Training: Backpropagation through time (BPTT)

unroll the computation graph, then apply the backpropagation

| Example: [l
S M

=
Y

[vec(Whe); vec(Whn)|

= Whexe + Wrnheo1 = f (24, he—1, wp)
= Whyht = g(ht,wy)

%) T ~
wil [= 1 £
o I T zt:1 (yt’ yt) 8f(mt,ht_1,wh) _|_ 8f(.’13t,ht—1,’th) Ohi—1
5L a’wh aht_l 6wh
n
&, T . T .
H B oL 13 Oy, ge) _ 1 S Oy, gt) 9g(ht,wy) Ohy
g 33;: owy, T =1 owp, T =1 07+ Ohy owp,
= hh = =
3 oL expand this recursively
8Why t—1 t
aht _ 8f(wt’ht—1 7wh) _1_ Z H 8f($j,hj_1,’wh) 8f(mi7hi—17wh)
Bwh - 8wh . L, Bh'_l 8wh
=1 \ j=1+1 ¢

see code here

https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/15/nmt_torch.ipynb#scrollTo=aExsxPtwcY8v

Gating and long term memory

Vanishing and exploding gradients
activations can decay or explode as we go forwards and backwards in time

RNN variations that circumvent this:

e Gated recurrent units (GRU)

= |earns when to update the hidden state, by using a gating unit
e Long short term memory (LSTM)

= augments the hidden state with a memory cell

The Gated Recurrent Unit (GRU):

ﬁI}
—1()
. X (W.z¢ + U ht—1 + b;)
Tt ?«Ht (W zy + Urhy_1 + br)
9] (0] [tanh (
x4l

2t (0

Tt (o)

t = ¢(Whay + Up(ry ©® hy—1) + bp)
(1—2)®hi_1 +2 O hy

~F

Attention

z=g(

Instead of linear combination of the input activations, the model dynamically decides (in an input dependent
way) Which one to use based on how similar the input query vector g € RY is to a set of m keys K € R™**,
If ¢ is most similar to key 7, then we use value v;.

Attn (Q7 (kla Ul) 9000y (kma vm)) — Attn (Q7 (klzma Ul:m)) — Z 8%) (Q7 kl:m) v; S RY

=1

o (q, kl:m) = softmaxi ([CL (q, kl) yeeey @ (Q7 km)]) — Z;’Z}ipe(;é?c;]?;)}c]))

Attention Attention @——‘:l Output
i‘lﬁn.r;?‘ weights
The attention weights are computed from an :%é.’“_.g):"]
attention score function a(q, k;) € R, which e _.®:" 1]
gives the similarity of query g to key ;. keys [T | g—-@?—J —] values
-0 —oF] -
= =0 U—0—1]

Parametric Attention

The attention weights are computed from an attention score function a(q, k;) € R, which
gives the similarity of query ¢ € R? to key k; € R*

e queries and keys both have different sizes
® map them to a common embedding space of size h, then pass these into an MLP

a(q, k) = w, tanh (W,q + Wik) € R
c thq c thk

e queries and keys both have lengthd = ¢ =k

® so we can compute g7k directly: a(q k) _ qu/\/a c R
, —
= for minibatches of n vectors this gives:

c Rmxd

Attn(Q K,V) = softmax (%) V ¢ RV

€ R™mxv
Rnxd

Seq2Seq with attention

use attention to the input sequence in order to capture contexual embeddings of each input

e query is the hidden state of the decoder at the previous step
e keys and values are the hidden states from the encoder

Example: translating English to French

Gives better results for machine translations Je suis &tudiant </s>

attention
vector

context

self attention: vector
we can also modify the model so the “;,‘:fgg';:.:_aﬁi_" n;
encoder attends to itself : €0z M I

am a student =s5= |e suis étudiant

Transformers

a seg2seq model which uses attention in the encoder as well as the decoder,
thus eliminating the need for RNNs

e Self-attention
e Multi-headed attention
e Positional encoding

2018 2019 2020 2021
5 GPT-3
GPT GPT-2
- ALBERT ELECTRA I
- ROBERTa DeBERTa —__
KLNet DistilBERT LEL T

read more here

https://huggingface.co/course/chapter1/4?fw=pt

Transformers: self-attention

given a sequence of input tokens z,...,z,, generate a

. . uer
sequence of outputs of the same size with: y
c R? (key, value)s
for decoderwesetz; =y,_;andn=14¢—1
this gives improved representations of context
ET 3 © 3 9 ET Q3 & & o
coreference resolution: E £ 2 g2 % E - § 8 £ g c 2 e 2 % § - § 8 2
encoder self-attention for '
the word “it" differs
depending on the input
context which is importantin
translation, e.g. what
pronoun to use in French & ° B o
— w —)]
[0] - 3 m© - I
= B QO © * - = = [T " ©
égégéﬁﬁzgﬁg égégggétggé

Transformers: multi-headed attention .

use multiple attention matrices, to capture different notions of similarity
with projection matrices: W,EQ) € Rraxdq Wz(.k) e RP>9% | and W,Ev) € RPvxd

h; = Attn (Wg‘”q, {W§’“>kj, W(’”)v,,-}) c R¥

1
€ R% c R% € R%

We then stack the h heads together, and project with W, € Rr-xhpv
hq
h = MHA (q, {kj,’l)j}) =W, € IRPe
b

Transformers: positional encoding

attention is permutation invariant, and hence ignores the input word ordering.
To overcome this, we can concatenate the word embeddings with a positional
embedding so that the model knows what order the words occur in

. {
Pi2j = sm (—1000021'/'1)

Di2j+1 = COS (W) POS(Embed(X)) = X -+ P

c Rnxd c Rnxd

0

10 1.0
@ in binary is 000 1.0
1 in binary is @01 lower columns have 05 g% 05
2 in binary is 010 hjgher frequencies ’ 2. .
3 in binary is 011 0.04 _ g
4 in binary is 100 — Col6 £ w0 05
5 in binary is 101 _os54 === Col7
6 in binary is 110 == Col81 3 % 50 e
7 in binary is 111 o4l Col9| N /Nl . -

0 10 20 30 40 50 60

n =60, d =32 0 20
read more here Column {encoding dimension)

http://d2l.ai/chapter_attention-mechanisms-and-transformers/self-attention-and-positional-encoding.html

Transformers: putting it all together

A transformer is a seq2seq model that uses self-attention for the encoder and decoder rather
than an RNN. The encoder uses a series of encoder blocks, each of which uses multi-headed
attention, residual connections, and layer normalization

Output
Probabilities

Add & Norm

Feed
Forward
f—(_\ ([Add & Norm h
Add & Norm MultHead] |
Feed Attention
Forward Nx

Add & Norm

Nx
Add & Norm R
Multi-Head Multi-Head
Attention Attention
A 4 A P
_ J \ J
Positional @_(Positional
Encoding 5 Encoding
Input Output
Embedding Embedding
Inputs Outputs
(shifted right)

Multi-head attention

]

Scaled Dot-Product h
Attention

| | |
Vv K Q

I

Scaled dot-product attention

read more here, see the code here

https://huggingface.co/course/chapter1/4?fw=pt
https://colab.research.google.com/github/probml/pyprobml/blob/master/notebooks/book1/15/transformers_torch.ipynb

Language models

e ELMo (Embeddings from Language Model)

® RNN based, trained unsupervised to minimize the negative log likelihood of the input sentence,
Le. Yp = Ty—1
e BERT (Bidirectional Encoder Representations from Transformers)

® Transformer-based: map a modified version of a sequence back to the unmodified form and

compute the loss at the masked locations: fill-in-the-blank .

Let’s make [MASK] chicken! [SEP] It [MASK] great with orange sauce

o GPT (Generative Pre-training Transformer)

B uses a masked transformer as the decoder, see an open-source model here obiton parameters)

https://huggingface.co/EleutherAI/gpt-neox-20b

Summary

e Recurrent neural networks (RNNSs)

= Vec2Seq (sequence generation)
= Seqg2Vec (sequence classification)
= Seq2Seq (sequence translation)

= training with back propagation through time

e attention mechanisms, self-attention and multi-headed attention
e The architecture of transformer

* l[anguage models with transformer

