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Abstract. Complex real-time system design needs to address depétydedsi
quirements, such as safety, reliability, and security. Weoduce a modelling
and simulation based approach which allows for the anabysisprediction of
dependability constraints. Dependability can be imprdwedhaking use of fault
tolerance techniques. The de-facto example in the rea-siystem literature of a
pump control system in a mining environment is used to demnatesour model-
based approach. In particular, the system is modelled ubmdiscrete EVent
system Specification (DEVS) formalism, and then extendeddorporate fault
tolerance mechanisms. The modularity of the DEVS formalianilitates this
extension. The simulation demonstrates that the emplogeld tolerance tech-
nigues are effective. That is, the system performs satmfific despite the pres-
ence of faults. This approach also makes it possible to makefarmed choice
between different fault tolerance techniques. Perforreametrics are used to
measure the reliability and safety of the system, and tauetalthe dependabil-
ity achieved by the design. In our model-based developmemtegs, modelling,
simulation and eventual deployment of the system are saalyilmtegrated.

1 Introduction

Model-based approaches are used to represent the stracidifgehaviour of systems,
which are becoming increasingly complex and involve a largeber of components
and domain-specific requirements [1, 2]. Dependable systenparticular, must sat-
isfy a set of functional requirements, and in addition, nadtere to constraints which
ensure correct behaviour of the system. Safety, securityreliability are a few such
dependability requirements. The necessity to satisfyetlhesstraints has spawned new
fields of research. The most prominent area is that of faldtaot systems, and the in-
troduction of fault tolerance design in the software depeient process is an emerging
topic.

Research has been carried out formal modellingand analysis of fault toler-
ance properties [3, 4], using either natural language d#gmm of models, probabilistic
models, figures of fault-trees or Markov models. Also, soowd have been designed,
which use model-based techniques for analysis and prediofidependability. There
are presented here briefly:

DEPEND. DEPEND [5] is a design environment for system level depeiitiabanal-
ysis of fault-tolerant systems. It considers both hardveareé software faults and
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Fig. 1. Modelling and Simulation Based Design

provides support for automatic fault injection to enablalesation of system per-
formance and reliability. The simulation tool uses stoticasniodelling but also
allows behavioural modelling. The models built are basedhenobject-oriented
paradigm. The control program is written in C++ using thedily objects provided
by DEPEND. This is followed by compiling the control prograimking the DE-
PEND objects, and then executing in a simulated paralleftime environment.
Fault injection and repairs are carried out according touther’s specification. Fi-
nally, the tool generates statistics of the simulation.

SAVE. System Availability Estimator (SAVE) [6] is a package usedbtild and an-
alyze models to enable prediction of dependability coimrsisaA SAVE model is
constructed as a collection of components, each of whictbessubject to failure
and repair. The high-level model is then automatically sfarmed to a Markov
chain model.

HARP. Hybrid Automated Reliability Predictor (HARP) [7] is a toosed for analysis
of fault-tolerant architectures. It is a Markov model-bédspproach that allows for
prediction of reliability and availability of systems. Itqwides support for coverage
modelling and automatic conversion of fault trees to Markedels.

Othertools available for dependability evaluation in@uddgaro [8] and HIMAP [9].
In addition to these, some processes have been proposesidodevelopers in produc-
ing dependable software. A few such approaches are distbssaw, but the interested
reader is encouraged to consult a more detailed review givEl0].



HRT-HOOD. Hard Real-Time HOOD (HRT-HOOD) [11] was developed as anrexte
sion of the HOOD object framework, to address issues of timresk in embedded
real-time systems during the early stages of the developpreness. The method
provides explicit support for common hard real-time albtoms by introducing
cyclic and sporadic type objects that take into accountithmgy properties. These
objects are annotated with information about the periodxefcation, minimum
arrival time, offset times, deadlines, budget times, woeste execution time, and
importance. The coding language is expected to have suagaitable to program
recovery handling. HRT-HOOD allows addition of extra oligar@quired for repli-
cation in the physical architecture design phase. The ndethes not provide fault-
tolerance support but it can be extended to consider depditgaequirements at
an early stage.

OOHARTS. Object-Oriented Hard Real Time System (OOHARTS) [12] is @cpss
for developing dependable hard real-time systems. It isdbas UML and the hard
real-time constructs of HRT-HOOD. Various extensions tolUdle proposed, e.g.
stereotypes such dsyclic), (aperiodio, (protected, (passive, and{environmenit
to describe different real-time objects. A special form dfiUstate diagram called
Object Behaviour Chart is used to define object behavioynrdvides means for
representing timing constraints like deadline and peridte UML concurrency
attribute, which can be sequential, guarded, or concuriemxtended to include
(mutex (mutual exclusion){wer) (write execution request), anger) (read ex-
ecution request). It introduces an additional phase in tRF-HOOD software
development life cycle, hard-real time analysis, whichvides a framework for
defining the structure and behaviour of hard real-time systasing UML and the
new extensions defined [12].

TARDIS. The Timely and Reliable Distributed Information System&RDIS) project
[13] is targeted towards avionics, process control, mijitand safety critical ap-
plications. The framework addresses non-functional negoénts (dependability,
timeliness, and adaptability), and implementation casts from the early stages
of software development. In the architectural design phizsees of choices are
addressed, for example, between replication and dynaroanfiguration for im-
proving reliability. The framework is generic, and does imopose any software
design methods or languages on the developer. The initigdgsal, however, was
not completed. The project continued with focus on develepiof real-time sys-
tems. The architectural design of non-functional requiata related to real-time
issues using the specification language Z and RTL (Real-Tioggc) is discussed
in [14]. Detailed design using TARDIS is considered in [18dg14]. Accord-
ing to [14], the TARDIS framework can also be applied to theige of systems
where non-functional requirements like reliability, sety safety, fault tolerance,
and system reconfiguration need to be satisfied.

Although these frameworks aid in the production of depetalapstems, to our
knowledge, current approaches do not offer a modelling émdlation based process
such as the one proposed in [15], of which this paper is ameidn.

In a model-based design process (Fig. 1), the system unady & modelled in
the most suitable formalism in each step: A domain-specibblem is represented in



an appropriate way, and described in the domain formalisnceQhe domain-specific
model is available, an analysis model may be constructedannaalism amenable to
formal analysis and verification (i.e. covering all possibehaviours). As full analysis
may not be feasible (due to the size of the state-space) dagion approach to analysis
may be used. A simulation model is constructed in a formaligrich offers powerful
simulation capabilities. Subsequently, simulation ofrtiedel is performed. The output
of this simulation is processed by a checker, which checagainst a set of rules (de-
rived from the requirements). An error found during this ckiag indicates an error in
the design. Note that as even a large number of simulatiosmay not cover all pos-
sible behaviours of the system, no positive statementstatmytectness of the model
may be madeBut confidence may be increased in the next phase where pefme
analysis is done to tune the model structure and parametsetisfy performance re-
quirementsFinally, an execution model is synthesized from the modeaidcessary),
thus providing a continuous, traceable path from analysisehto deployed system.
With appropriate model compilers, the simulation expertesquired of the designer is
limited to knowledge of formalisms used (such as DED&crete EVent System spec-
ification).

We are interested in developing the modelling and simuldbiased process illus-
trated in Fig. 2 for designing a dependable system. All sirefiee evolution, from initial
requirements and constraints to final system, are expliciddelled. Models at various
stages of the process are each expressed in the most appedprimalism. Transfor-
mations themselves are also modelled explicitly, so no kedge is left implicit. The
process allows us to predict the behaviour of a specific sByst&d compare it to the
behaviour of a fault-tolerant implementation of the samsteayi. This is done through
a sequence of manual activities. First, from functionaliresements, a model is derived
which represents the structure of a chosen system. A fgelttion mechanism is also
modelled as a means to generate faulty behaviour of thersy&tenulation results in-
dicate how the system performs in the presence of faultsydrather it conforms to
the specified requirements. Secondly, from dependabititystraints, a fault-tolerant
model is created which includes techniques designed toawepon the initial system.
A fault-tolerant simulation model is derived and simulatedjather performance data.
This data reflects the dependability constraints that meisiabisfied by the system. In
this paper, system models are constructed in the DEVS faismahnd simulation mod-
els are developed using PythonDEVS [16]. Finally, oncegrerince metrics indicate
that dependability constraints are satisfied, the faultdtipn mechanism is separated
from the fault-tolerant model, and the final application taen be synthesized using
Real-time PythonDEVS [17].

The paper is structured as follows. Section 2 presents gakbackground con-
cepts relating to the DEVS formalism and to fault tolerarfdection 3 describes the
real-timePump Control SysterfPCS) chosen to demonstrate our process. We intro-
duce its functional requirements and dependability cairss and briefly discuss why
modelling and simulation is an appropriate approach, angMVS is a suitable mod-
elling formalism. Section 4 introduces the model of the P&8&] the means by which
fault injection is introduced in the system. A PCS failureuation is described in Sec-
tion 5, and a fault-tolerant model is presented that coawtsithis failure. Furthermore,



Functional System Dependability
Requirements Constraints
Model Design Fault—ToIer.ant
Model Design

Fault-Tolerant Model

. TMR + Voter Model |

A

Applicatian
Synthesis

Simulation Model
including Fault-Tolerance

Application

Performance
Metrics

Performance
Metrics

Fig. 2. The Model-based Process

safety and reliability are defined as the dependability tairds that are threatened by
failure of the PCSSection 6 gives implementation-specific details and theexpental
simulation framework is outlinedMathematical equations are presented to quantify the
safety and reliability of the PCS, and results of the simafet are analyzed to com-
pare the performance of the PCS in the two models. The sifonlatodel is validated

by means of a probabilistic model. Finally, Section 7 draamie general conclusions
about our model-based process.

2 Background

This section introduces the tliEscrete EVent system Specificat{@EVS) formalism
used in the case study. It also gives a brief overview of faldrance and the technique
we apply in our work.

2.1 The DEVS Formalism

The DEVS formalism was introduced in the late seventies bysn&el Zeigler to de-
velop a rigorous basis for the compositional modelling a@ntugation of discrete event
systems [18,19]. The DEVS formalism has been successfpijied to the design
and implementation of a plethora of different complex systesuch as peer-to-peer



networks [20], transportation systems [21], and complexira systems [22]. In this
section we briefly present the DEVS formalism.

A DEVS model is eithemtomicor coupled An atomic model describes the be-
haviour of a reactive system. A coupled model is the comjmusdf several submodels
which can be atomic or coupled. Submodels hawes, which are connected by chan-
nels. Ports have a type: they are eithmgut or outputports. Ports and channels allow a
model to receive and send signals (events) from and to otbhdefs. A channel must go
from an output port of some model to an input port of a diffémodel, from an input
port in a coupled model to an input port of one of its submagd®lfrom an output port
of a submodel to an output port of its parent model.

An atomic model has, in addition to ports, a sestates one of which is thenitial
state, and two types of transitions between statéscnalandexternal Associated with
each state is aime-advancand anoutput

Atomic DEVS 1!
An atomic DEVS is a tuple(S,X,Y,8" 8 \,1) whereS is a set ofstates X
is a set ofinput events, Y is a set ofoutput events 3™ : S— Sis theinternal
transition function , 3 Q x X — Sis theexternal transition function, A : S—Y
is theoutput function andt : S— R{ is thetime-advancefunction.
In this definition,Q = {(s,e) € Sx R" | 0 < e < 1(s)} is called thetotal-state
space for each(s,e) € Q, eis called theslapsed-time?

Informally, the operational semantics of an atomic modelas follows: the atomic
model starts in its initial state, and it will remain in anyen state for as long as its
corresponding time-advance specifies or until input isiveckon some port. If no input
is received, when the time of the state expires, the modelsseatput as specified by
(before changing the state), and subsequently jumps teethstate as specified By,
On the other hand, if input is received before the time forrikgt internal transition
expires, then it i9¥ which is applied. The external transition depends on thecodir
state, the time elapsed since the last transition and thesrippm the input ports.

The following definition formalises the concept of coupleB\S model$

Coupled DEVS
A coupled DEVSnamedD is a tuple(X,Y,N,M,|,Z, selec) whereX is a set of
input events Y is a set obutput events N is a set otomponent namesuch that
D ¢N, M ={Mp|neN,M,is a DEVS model (atomic or coupled) with input set
Xn and output sety } is a set of DEVSubmodels| = {In|ne N,I, CNU{D}} is
a set ofinfluencer sets for each componentnamed = {Z , |Vne N,i € [n.Zin:
Yi = XnorZpn: X —XqorZp:Y, — Y} is aset otransfer functions from each
component to some componemt, andselect: 2N — N is theselectfunction.

Connectivity of submodels is expressed by the influenceosetich component.
Note that for a given model, this set includes not only the external models that provide

1 For simplicity, we do not present a formalisation of the agicof “ports”.

2 [RO+ denotes the positive reals with zero included.

3 For simplicity, this “formalisation” does not deal with sy and it leaves out the proof of
well-definedness for coupled models.



inputs ton, but also its own internal submodels that produce its ouiputis a coupled
model.) Transfer functions represent output-to-inputstations between components,
and can be thought of as channels that make the appropiet&gnslations. Theelect
function takes care of conflicts as explained below.

The semantics for a coupled model is, informally, the patalbmposition of all
the submodels. This is, each submodel in a coupled modesisraed to be an inde-
pendent process, concurrent to the rest. There is no exmlathod of synchronization
between processes. Blocking does not occur except if itpdiatty modelled by the
output function of a sender, and the external transitiorcfiom of a receiver. There is
however aserializationof events whenever there are two submodels that have a-transi
tion scheduled to be performed at the same time. Logicalytriansitions are assumed
to be done in that time instant, but its implementation oncueatial computer is seri-
alized. The coupled model hasalecttie-breaking function which chooses one of the
models to undergo the transition first.

2.2 Fault Tolerance

Complex computer systems are increasingly built for higitical tasks, from mili-
tary and aerospace domains to industrial anchmerciakreas. They are critical in the
sense that their failures may have severe consequencaagdmm loss of business
opportunities, physical damage, to more catastrophic fassh as human lives. Systems
with such responsibilities should be highdgpendableA number of varied means of
achieving this goal have been established and should bé&eoed jointly during hard-
ware as well as software developmédatilt preventionfault remova] fault forecasting
andfault tolerance[23]. In particular, we will discuss fault tolerance in matetail in
this section.

The idea of incorporating means for fault tolerance in otdesichieve system de-
pendability has developed considerably since the origimek by von Neumann in the
mid-1950s [24], and many techniques have been establibatiscuss fault tolerance
more meaningfully, a definition aforrect system behavious needed: the specifica-
tion. As long as the system satisfies the specification, ibisidered to be behaving
correctly. A failure can then be defined as an observableatieni from the system
specification. An error is that part of the system state thatl$ to a failure. The error
itself is caused by some defect in the system; those defeatsause observable er-
rors are calledaults[25]. Fault tolerance aims at preventing failures in thesprece of
hardware or software faults within the system. Therefoses@on as an error has been
detected, it must be corrected to ensure that a system cestiio deliver its services
and to avoid a potential failure later on in the execution.

These corrective measures need to be taken to keep the mmopfopagating to
other parts of the system, thus preventing further damagee@he error is under con-
trol, error recovery is applied and a correct error-freedeysstate is restored. There are
two basic recovery techniques [2®jackwardandforward error recovery.

Backward error recovery involves periodically checkpwigtthe application state
and then, in case of a failure, restoring the state to a pusvimrrect state. This can
be very time consuming. Therefore, real-time systems déeour fault tolerance tech-
niques based on forward error recovery. Forward error regpattempts to construct a



coherent, error-free system state by applying correctitieas to the current, erroneous
state.

In stateless, cyclic systems, where one iteration of exacudioes not depend on the
previous run, a popular way of masking faults efficientlyoisise redundancy. N-version
programming [27, 28], for instance, is a technique that gsésvare redundancy to tol-
erate algorithm design faults. Multiple components (chllersion$, sometimes imple-
mented in different programming languages following diiet design methodologies,
perform the same, highly critical functionality in pardll&he results of all versions
are gathered, and passed to a decision mechanism (somelsoesalled voter), that
determines which of the results can be considered correct.

A similar technique used to increase hardware reliabiliyftiple Modular Re-
dundancy(TMR). TMR uses three identical copies of a unit instead of,cemd an
intelligent, application-specific voting scheme which gpbed to their output. This
technique, described in more detail later, is used in thigept improve reliability and
safety of our case study system by tolerating faults of hardwgensors.

3 Modelling and Simulation Based Design: An Example

3.1 The Pump Control System Case Study

The system used to demonstrate our approach is a Pump C8ystam (PCS). The
PCS has often been used in the real-time systems literdtareexample, Burns and
Lister used the PCS as a case study to discuss the TARDISp[a83. We adopt the
Pump Control System problem from [29], and with some abstras, define it as our
case study for modelling and simulation based design of armtigble system.

The basic task of the system is to pump to the surface the weeaccumulates
at the bottom of a mine shaft. The pump must be switched on whewater-sensor
detects that the water has reachéedigh-leveldepth, and must be switched off when
it detects that the level has been sufficiently reduded-{eve). In addition, the pump
functionality depends on some atmospheric readingsie®thane-sensaneasures the
level of methane in the environment: high levels may causérfithe shaft if the pump
is in operation. Acarbon monoxide-sens@nd anair-flow sensoralso monitor the
environment for critical readings (high for carbon moncaahd low for air-flow) which
cause immediate evacuation of the shaft. Critical readimgduced by all atmospheric
sensors are sent to a human operator, but only critical metteadings cause the pump
to switch off. To summarize, the pump is switch@i\ if the water-level is high and
methane-level is not critical, and is switch&fF if the water-level is low and pump
is on; or if the pump is on and the methane-level is critiddle proposed architectural
system structure for the PCS is illustrated in Fig. 3.

As all complex and critical applications, the PCS involvesne important con-
straints, namely those of dependability, timing and ségufihis case study focuses
on the dependability requirements defined for the PCS in{@8th demand that the
system is reliable and safe.

Reliability of the pump system is measured by the number of shifts thaloatef
the pump does not operate when it should. The pump is supposgatrate when



the water levels become critical: that is the beginning difié,sand the shift ends
either when the methane level becomes critical or the watezl lbecomes non-
critical. If the pump does not operate in such circumstanbes it is said to miss
a work-shift. In order to be considered reliable, our PCS toag at most 1 shiftin
1000.

Safety of the system is related to the probability that an explosiocurs as a result of
the pump operating despite critical methane levels. Inmi@ée considered safe,
the probability of a possible explosion in our PCS shoulddss than 10° during
the simulated lifetime of the system.

Environment Subsystem Pump Subsystem
EEEEE R - b L e L LR L L R L L LR L LR LR e
' Environment Sensors H H Water Sensor
'
: H :
H ' '
' ' '
' ' '
' 1 Methane Request H
ON
Human Alarms; . —>]
Environment Monitor ! Methane Reply H Pump Controller Pump
Operator H +
' Methane Alarm ' OFF

Fig. 3. The Pump Control System Logical Structure.

3.2 Why Use DEVS for The PCS?

The successful development of large-scale complex reed-8ystems commonly re-
lies on system-theoretic modelling approaches, such as®)BY object-oriented ap-
proaches such as UML Real-Time. UML-RT is an extension to UMich, in addi-
tion to offering constructs to model relationships amonmponents, incorporates the
Real-Time Object-Oriented Modelling constructs and isdusemodel the structural
and behavioural aspects of systems. The behaviour of thersyis specified in State-
charts by the sequence of signal communication [30]. ContceDEVS, in Statecharts
we cannot formally specify explicit timing in the specifiat of models. Statecharts
are also based on multi-component specification and breadcenmunication, and
the lack of a complete formal definition of UML-RT Statechsetnantics hinders the
formal specification of structural information. Furthemapalthough UML-RT offers
important capabilities for modelling real-time systentsjaes not provide semantics
suitable for simulated time: it prohibits carrying out silaion studies. On the contrary,
DEVS separates models from how they may be executed; thersifmulators can be
independently developed and verified, thus increasingatality, formal analysis, and
model validation. In addition, DEVS allows the specificatmf both the structural and
behavioural aspects of a system.

The PCS is a reactive discrete-event system: the systeatts changes in reac-
tion to external events, such as critical environmentadiregs. In addition, the PCS is
composed of many different interacting subsystems. DEé81gohighly modular and



supporting hierarchical coupling of models, allows for geparation of concerns and
a clean model of such a complex system. Since the aim of oupagpp is to improve
the design of a real-time system, we can simulate DEVS maddedbserve the faulty
behaviour in the original PCS model and to predict the systémhaviour under dif-
ferent fault tolerance techniques. From the simulations can gather statistical data
on whether or not dependability requirements are met withenPCS, and evaluate
alternative system designs. The above mentioned reasdkes DEE&VS an appropriate
modelling formalism for the Pump Control System. Note thidteo types of systems
may require other modelling formalisms.

4 Modelling the PCS

The models presented in Sections 4 and 5 are created using3T{81] visual mod-
elling and simulation environment for DEVS. AToMA Tool for Multi-formalism and
Meta-Modelling is a tool for multi-paradigm modelling developed at McGdlhiver-
sity’s Modelling, Simulation and Design Lab in the SchoolGdmputer Science. The
main features are:

Meta-modelling: refersto the description or modelling of different kind§afmalisms
(such as DEVS) used to model systems. The meta-model désergi a formal-
ism is itself a model in th&ntity Relationship formalism. From this meta-model,
AToM3 generates a visual tool in which models described in theifipedormal-
ism can be created and edited [32];

Model-transformation: refers to the (automatic) process of converting, transtpdir
modifying a model in a given formalism, into another modedttmight or might
not be in the same formalism. In AToMthese transformations are performed by
graph rewriting and are expressed as graph-grammar ma&ails [

4.1 Building the DEVS Model of the PCS

Each subsystem illustrated in Fig. 3 (pump, environmemnroanication) is modelled
as an atomic DEVS whose structure and behaviour encodesribgdnal requirements
of the PCS as depicted in Fig. 4. Below is the general moderi®n of the “perfect”
Pump Control System. This system is 100% safe, and 100%leliand is “calibrated”
and “validated” in the absence of faults. Simulations basethis model give “perfect”
performance results, and provide a useful way to check tleperformance metrics
for safety and reliability have been encoded properly arcugately reflect the sys-
tem behaviour. Testing and checking of the performanceicsatnust be done against
“known” data, which in this case is that we have a “correcttsyn.

Methane Sensor, Carbon Monoxide Sensor, Airflow Sensor
States:Sensor may either be ‘READING’ the level of gas or flow in theieznment
or ‘IDLE’ between readings. The internal behaviour of thetiveme Sensor is illus-
trated in Fig. 5.
Output:Upon transitioning from ‘READING’ to ‘IDLE’, the sensor optits the level
of gas or flow in the environment at that time.
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Fig. 4. The Pump Control System Modelled in the DEVS Formalism ugifgM3.

Environment monitor
States:The monitor may either be processing sensor readings (‘HE&BING’), re-

sponding to a query (‘QUERYING’) or doing nothing (‘IDLE”).
Output: Upon receiving a query from the Pump Controller through tleenGunica-
tion channel, the monitor responds by sending an acknowleeégt which contains
a message stating the criticality of the methane level. Upoaiving critical read-
ings from the environment sensors, it outputs alarms. Absages to and from the
pump controller or to the human controller are sent throdgh@ommunication

DEVS.
Communication
StatesThe communication channel may either be sending alarmsN[EBLARM’),
sending a query to the environment monitor (‘SEND-QUERY$ending a query
acknowledgementto the pump controller ‘SEND-ACK’). Whietompletes either
of these tasks, its state is ‘IDLE’. The internal behaviofitte Communication

DEVS is illustrated in Fig. 6.
Output:Upon receiving a query from the Pump Controller, it forwattais query to the

environment monitor, and once it receives the reply fromeih@ronment monitor,
it propagates it to the pump controller. When it receivesaal alarms, it delivers

them to the human and pump controllers.

Pump Controller
Statesit may either be processing a water sensor reading and sgadioperation to
the pump (‘(PROCESSING-WATER’), processing a methane a{d#ROCESSING-



ALARM’), processing a query acknowledgement (‘PROCESSINGK’), or do-
ing nothing (‘IDLE").

Output:Upon receiving a low-water reading, the pump controllerdsean “off” mes-
sage to the pump to switch it off. If the controller receivdsigh-water reading, it
turns the pump to ready mode and sends a query to the envirgnmamitor: the
controller only turns the pump on if the methane level is nigtaal. If an acknowl-
edgement is received stating that the methane level is tiigh,the controller turns
the pump off, otherwise, it turns it on. Similarly, when thentroller receives a
methane alarm, it turns the pump off.

Water Sensor
Statesit randomly switches between the ‘HIGH’ and ‘LOW’ states.
Output:Upon switching, the sensor outputs the state to which itisditioning.
Human Controller

This is a passive DEVS: it does not react to any input messaggsemains

constantly ‘IDLE’. If required, aspects of the behavioutloé human controller (such
as attention span or pump control activities) can also beatiext

MethaneSensor

memms

Environmen

Carb£nMonoxideSensor

Fig. 5. The internal behaviour of the MethaneSensor DEVS.

4.2 Modelling of Fault Injection in the PCS

As dependability constraints need to be met in addition tefional requirements, a
quantitative analysis method for assessing the deperitgaifithe system must also be
modelled. For this purpose, many methods have been definell as reliability block
diagrams, analysis of non-deterministic state graph ns@eld fault simulation [23].
The latter is a universal approach combining techniqueshvassume a model of the
system, a set of external input/output sequences appligatal the possibility to inject
faults into it. Most of these techniques can be classifiechak fnjection techniques,
which consist in artificially adding faults to a system in erdo analyze the behaviour.
These faults make the system evolve towards differentsstatéch are recorded in
order to assess the dependability constraints.
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If we want to use a simulation-based technique to asses«libbility and safety
of our system, we must, in addition to modelling the PCS doaifault injection model.
A fault injector could be described as an atomic entity omit® in the coupled DEVS
model. However, modelling faults within a separate sutesystnore accurately repre-
sents real-world faulty behaviour. Our approach consisgsrovoking a sensor break-
down on a periodic basis to simulate a possible fault thalidomake the Pump Control
subsystem fail. For example, a fault in the methane sensoldigenerate faulty (noisy)
methane readings of the environment, which would be praeaga the environment
monitor, and through the communication subsystem to thegozontroller. This wrong
methane reading could possibly force the pump to shut offvitie not supposed to, or
it might fail to cause a critical alarm to be raised. The siation results should reflect
how safety and reliabilty vary in the absence and presentautit.

We concentrate here on the consequence of the methane &shseron the safety
and reliability requirements of the PCS (Section 5.1). Todeidaulty behaviour of
a methane sensar we assign to it a probabilitp of failure. We assume Byzantine
failures, i.e. upon failing, sensors produce an erroneesaslt rather than no result at
all. The output value of a faulty sensor is a random value ehasiformly from the
possible output range. In practice, a sensor has a very lilwdgrobability, however
in this case study, the simulated probabilitys chosen to be significantly higher to
induce more erroneous states and observable failure of/#tera. Such a “worst case”,
conservative choice is warranted as decisions made basstnufation results will
be overly pessimistic and hence safe. For the methane sevesa@ssume = 0.1. At
each methane-reading time, the sensor will either outuatiiual methane level in the
environment, or will generate a false reading and outputtt ywrobability p.



The following is a pseudo-code model of the faulty bahavafia methane sensor,
encoded in the output function of the MethaneSensor DEVS.

tot al Met haneReadi ngs = 0
total ReliabilityFailures =0
total SafetyFailures = 0
overal | _safety_index = 0
overall reliability index =0

met hod out put Fnc:
t ot al Met haneReadi ngs = total Met haneReadi ngs + 1
i f(sensor_state is IDLE):
act ual Met haneReadi ng = randint(0, 10)
f al seMet haneReadi ng = randint (0, 10)
deci sion = uniforn(0, 99)

i f(decision < methaneFail ureProbability):

i f(fal seMet haneReading is CRTL* and actual Met haneReadi ng not CRITL):
# Methane reading was falsely critical.
total ReliabilityFailures = total ReliabilityFailures + 1

i f(fal seMethaneReadi ng not CRTL and actual Met haneReading is CRTL):
# Methane reading was fal sely not critical.
total SafetyFailures = total SafetyFailures + 1

el se:
overal | _safety_index = overall _safety index + 1
overall reliability index = overall reliability index + 1

out put (fal seMet haneReadi ng)

el se:
# Methane sensor sent the actual reading.
overal | _reliability_index = overall _reliability index + 1
overal | _safety index = overall _safety index + 1
out put (act ual Met haneReadi ng)

5 Modelling the Fault-Tolerant System

5.1 Failure Scenario in the PCS

Burns and Lister [29] describe four failure situations & #mvironment, communica-
tion and pump subsystems level for the PCS that affect therdigbility. To illustrate
our approach, we consider the situation in which the enwvirent subsystem provides
an incorrect methane reading (when asked by the pump selnsysthe case study
focuses on the role of the environment subsystem on safetyediability, thus upper-
bounding the measure of dependability of the system by tphemtability of the envi-
ronment subsystem. We assume that no mechanical failucesiodthe communication
and pump subsystems and that they do not introduce erroséates

4 CRTL stands for CRITICAL.



The environment subsystem fails in a noisy manner, i.e riegegtes incorrect/noisy
output. Since we only investigate hardware faults, we assiaitures originate in the
methane sensor: the subsystem provides incorrect metbadegs if it receives such
incorrect values from the sensor itself. Therefore, we camegalize the failure scenario
to that of the methane sensor providing an incorrect metheaming.

Safety of the System.The safety requirement is compromised if the sensor outputs
falsely low methane reading which causes the pump to opéeaigite critical con-
centrations in the environment. This introduces a threagxpiosion in the mine
shaft. However, if the sensor outputs a false reading whogeatity is in accor-
dance with the accurate reading, i.e. it is critical whenabeurate reading is criti-
cal, and not critical when the accurate reading is not @itithen the system is still
considered to be safe.

Reliability of the System. The reliability requirement is threatened if the sensor out
puts a falsely high methane reading which causes the pummputadewn despite
non-critical concentrations in the environment. This esua loss of shift for the

pump.

Safety and reliability can be improved by replication of thethane sensors and apply-
ing the TMR technique [29]. This method can also be used fercdrbon monoxide
and airflow sensors.

5.2 Modelling Fault Tolerance for the PCS

We change the PCS model, in AT6Mo integrate fault tolerance based on TMR. A cou-
pled DEVS containing three sets of methane sensors and arepilace the methane
sensor modelled in Fig. 4. In this case, even if one metharsoséails, the correct read-
ing can still be determined using the output of the othersenand a response from the
voter is passed on to the environment monitor. This approanhalso be applied to the
carbon monoxide and airflow sensors. A partial view of thdtfealerant environment
subsystem is shown in Fig. 7. In the initial experiments dbed in [15], we used two
different types of voters, maximumvoter and amajority voter. The maximum voter
is a PCS-specific voter in which the highest value receivenhfthe replicated sensors
is considered as accurate. The interest in the highest vafides in the fact that the
system must be safe: if the pump is switched on while mettreuedd are critical, safety
is threatened. Thus, the maximum voter is an appropriateeHor this problem. The
majority voter is a well-studied voter that giverresults, selects the value of the ma-
jority. In our case, if majority cannot be decided, the vd#dis back to the maximum
value. This paper extends [15] by also experimenting witlesragevoter. This voter
is also very popular in literature, and givamesults, calculates the average reading.
The fault injection in the sensors is modelled similarlyhe PCS model (Section
4.2); This allows us to compare the behaviour of the two systand observe how the
performance changes. At each methane-reading time, tis@isetil either output the
actual methane level in the environment, or will generatalsef reading and output
it with probability p. This leads to a roadblock in the design. Previously, thé fau
jection was introduced into the methane sensor itself sine@s also responsible for



generating the methane reading. Thus, if three methanersease grouped together,
each one will be generating its own reading value, and thase tvalues might not
coincide in value. For this reason, we introduce an Actua@R&ator DEVS into the
model, which takes the responsibility of generating theialcinethane reading away
from the methane sensors. Note that this does not changeltaviour of the methane
sensors: the sensor still performs readings, and couldvighl probability p by gen-
erating some random value. However, if the sensor does iipit fautputs the actual
methane reading generated by the ActualRGenerator DERIS.DEVS also produces
the actual readings for the airflow and carbon monoxide sensad may be viewed
simply as a random number generator.

MethaneCDEVS

ms3

ms2
Communication

MethaneSensor MethaneSensor

msl

voter

MethaneSensor

‘MethaneVoter

Fig. 7. Fault-tolerant Methane Sensor Subsystem of the Pump G&ystem: 3 methane sensors
send their environmental readings to a voter. The voterddsoivhich reading to propagate to the
communication subsystem.

6 Simulation and Results

6.1 Performance Metrics Modelling

In the previous sections we showed how the PCS and the faalant PCS are mod-
elled using DEVS. In order to perform dependability anaysie model the safety and
reliability as dependabilitperformancemetrics to be evaluated while the simulation
runs. Each simulation keeps track of the total number of arettreadings performed
(TotalMethaneReadings A readingm is associated with a safety conformance index
s and a reliability conformance index. These indices are equal to O if the reading
causes a safety-threatening (&) or reliability-threatening (for;) fault, and 1 other-
wise. Safety of the system can then be determined by s/TotalMethaneReadings,



and reliability by 31 ; ri/TotalMethaneReadings (wheneis equal toTotalMethane
Readings

6.2 Implementation and Experimentation

Once the system and the constraints are modelled, they aermanted using the
PythonDEVS package [16]. This package provides a clas@#tectire that allows hier-
archical DEVS models to be easily defined and a simulatiomengysing this frame-
work, each atomic and coupled DEVS described in the modet@fRCS, the fault-
tolerant PCS usinghaximumvoting, and the fault-tolerant PCS using majority voting,
can be encoded into a Python class. Python is an interpréfjedteoriented program-
ming language, which offers high-level data types and a Esyntax. Its main advan-
tage for the PCS case study is that it is an ideal languageuick @nd simple appli-
cation development. Actually, the DEVS modelling envirammin AToM® synthezises
PythonDEVS code.

Each Python class representation of a DEVS has four furstifined in it: an
internal transition function, an external transition ftion, an output function and a
time-advance function. Next, simulation experiments atagto gather statistical data
which is representative of the system’s behaviour undesfieeified constraints. The
following summarizes the experimental framework:

Time advances: A methane reading is generated every 2s, carbon monoxidg eve
6s, airflow every 5s, and water level is checked every 10s.

Reading Interval: All environmental readings are integers in the interfi@allL0].

We chose integers to avoid the errors common in voters whepadng float-
ing point numbers.

Critical Readings: The critical concentrations are defined in the reading vater
to be 7 for methane, 5 for carbon monoxide and 3 for airflow.

Simulation Time: Two sets of experiments are conducted. In the first set, each
model is run for a duration of 2000 simulation time units (seds). This pro-
cess is repeated 5 times, starting from the same initiad dbat using a different
random number stream. In the second set, each model is randoration of
75000 simulation time units to satisfy the law of large numsbés with the
first set, this process is also repeated 5 times. For eackeséthuns, safety and
reliability results are logged and analyzed.

A third set of experiments is carried out, using the time ades, reading inter-
val and critical readings defined above, but uses a modifiediehaf the PCS and of
the fault-tolerant systems. Firstly, the methane sensturéaprobability is decreased
tenfold (p = 0.01 instead ofp = 0.1), and the simulations run for a longer duration
(500000 simulation units) and are repeated 5 times. Segoindhddition to the fault
tolerant systems using maximum and majority voting, a fealérant system using an
average voter is also encoded.
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Fig. 8. Safety Results for the Second Set of Simulations.

6.3 Results of Second Set of Experiments

Since the results of the first two sets of simulations are aaige, only results of the
second set are analyzed here. These results are an indi€atbich voter is best suited
for the PCS with regard to system safety and reliability.

reliability failure
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Fig. 9. Reliability Results for the Second Set of Simulations.

Safety. In the initial model, the average failure to satisfy the safeequirement is
2.32% (average safety of %8%) which is high for a system in which failures
are catastrophic in nature. In the fault-tolerant modetgshe maximum voter, the



average safety rises to 3% (Fig. 8). It can be concluded that TMR with maxi-
mum voting reduces the occurrence of safety-threateniihgés. However, there
is a notable trade-off between safety and reliability h&@itgs is not surprising as
the choice of maximum voter was made to emphasize the saqtyirement in
such a critical system.

Reliability. In the initial model, the average failure to satisfy the abllity require-
ment is 1009% (average reliability of 891%), which is proportional to the prob-
ability that was associated with the methane sensor DEV)% failure. In the
implementation with the maximum voter, the reliability pentage falls even lower
(Fig. 9). This is explained by the fact that the maximum vatlvays picks the
highest value to output, be it accurate or false. For exapaptase where the actual
reading is 2, but the false reading received is 8, then 8 sd/ut be the correct read-
ing. This approach advocates safety of the system at thetostiuced reliability
of the sensors. In order to attain a fair balance betweenafetysand reliability
requirements, the use of a majority voter is advised. Theritgjvoter implemen-
tation results in an average reliability of 386, but a slight decrease in the safety
can be seen in Fig. 8. However, this is clearly a solid impnoset on the original
model and on the maximum voter, while still preserving safet

6.4 Results of Third Set of Experiments

The general result of the third set of experiments strenggliee conclusion made in the
previous section: the fault tolerant system using a magjonter performs better overall
than the system implementing the maximum voter. A quick labkig. 10 shows that
the average safety of the initial PCS is.B8%, improved by the maximum voter to an
average safety of 100%, at the expense of reliability of ffetesn as seen in Fig. 11.
The PCS system using the majority voter scheme performs at@guately in terms of
safety and reliability, improving on the original systemlmsth occasions.

On the other hand, some surprising conclusions can be dnasmthe safety and
reliability results obtained from experiments on the faalerant system using average
voter. Indeed, the average voter lowers the overall peréoee of the system: the aver-
age safety decreases from. 88% to 996%, and reliability from 988% to 9776%.

This is explained by the fact that calculating the averagatefyer values may lead
to a real value rather than an integer value result. Thisiregfabsx — Xcomp) < €)

- style comparison for equality testing (in our modek= 0.25). For example, a case
where the actual reading is 6, but the readings receivedéydter are 6, 8, and 9, then
7.66 is voted to be the correct reading. This reading raisetiaatrmethane alarm. A
falsely critical reading will cause the pump to shutdowrt ifvere in operation, or will
cause it to miss a shift if a critical water level requiresdfgeration. On the other hand,
in a case where the actual reading is, for example, 8, ancetidings received by the
voter are 2, 4 and 9, then 5 is voted to be the correct readilegrig, this is safety-
threatening as a non-critical methane reading may allowptirap to operate despite
actual critical methane levels. It becomes clear that areaeevoter mechanism is not
an appropriate choice for the PCS.
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Fig. 10. Safety Results for the Third Set of Simulations.

6.5 Validation of Results

Over the years, a lot of work has been done on estimating acétveliability based on
probabilistic models. To compare our simulation- basede@ggh to an analytic one, we
performed a probabilistic assessment of the reliabilityheffault-tolerant model based
on majority voting. We used the same assumptions as in thelafion:

— if no majority can be determined, then the maximum resuktiscted as the correct
one;

— methane sensors produce an integer readind0, 10];

— sensors either work correctly, or fail with a probabiliyby outputting a random
reading uniformly distributed between 0 and 10.

As discussed previously, reliability is threatened whemladly critical reading is
sent to the environment monitor although the actual readingn-critical. There are
three cases that lead to a wrong decision by the voter. Eassh @an be considered
separately. The total probability of the voter failing toc@tee on the correct output is
then equal to the probability that the correct reading is-ogtical (which is 7/11)
multiplied by the sum of the probabilities correspondingfte cases listed below:
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Fig. 11. Reliability Results for the Third Set of Simulations.

— one sensor outputs a correct reading, two sensors outpat,exitical and false
reading: 3« (1— p) * (px4/11) * (px1/11);

— all three sensors output wrong readings, but at least tweauial, critical and false
reading:p®* ((4/11)(1/11) +2(7/11)(4/11)(1/11));

— all three sensors output wrong distinct readings, and at t&ae is criticalp® (1—
7/11x6/11%x5/11) * (10/11%9/11).

Since we assume that= 0.1 for the methane sensor, this leads to a majority voter
failure probability of 00061, or a reliability of 989%. The results of our simulation
indicated a reliability of 98%. Although similar, this clearly demonstrates that sianul
tion results do not always coincide closely with the anaBbjtresults. If the simulation
ran for a significantly longer period of time, however, theslated value should con-
verge to the analytical one.

The probabilistic assessment leads to exact and precigksidsut in cases where
the problem is non-linear, the equations may become venptmnand impossible to
solve. For instance, sensors could fail in a non-uniform,veeyadditional acceptance
tests could be used that look at results and exclude thossigimal an unrealistic vari-
ation of the methane level reading compared to the previoasModeling these cases
analytically becomes soon very tricky or even impossible.



The approach presented in this paper, however, is espeeiédictive for complex
systems for which deriving mathematical models is not fdasiOne might argue that
this approach requires extensive work in designing and@éingaghe models, and in ana-
lyzing the simulation results. However, models are eaghjwed from the requirements
and logical structure of the system. Furthermore, the @ofenodelling formalism and
programming language make for a modular implementatiod,ifitools are available
which automatically generate the applications, the proces be speedy. Lastly, sim-
ulation results are simple to analyze as they are derivet sach simple equations
as those described in Section 6.1. Mathematical models thave these advantages.
However, probabilistic models can be useful as a validatiethod for modelling and
simulation based approaches as well as provide solutiorsseeevent cases.

7 Conclusion

In most complex systems today, it is crucial to guaranteettieadependability require-
ments are successfully achieved. Methods should be prdwidéch can accurately
assess what level of dependability has been attained byensyi this paper, we have
presented a modelling and simulation-based developmenéps targeted towards de-
pendable systems, and have demonstrated it through amcaugti to the safety-critical
Pump Control System.

A continuity was maintained throughout the developmentess. We started from
requirements, mapped these to a DEVS model, extended thelrtmdonsider the
dependability constraints, defined performance metrientmde these contraints, im-
plemented the model using AToMand the PythonDEVS framework, and performed
simulations whose results reflected the safety and reliahf the system. DEVS is
deemed the most appropriate formalism for modelling bogrsystem under study and
the fault tolerance techniqueBhis is because discrete-event models are clearly at the
right abstraction level, and because of the compositignafi the DEVS formalism.
Fault tolerance, more specifically TMR, was used as a meaashieve dependability.
In this approach three types of voters were used and the afionlresults were in-
spected to decide which voter best satisfied the depeniyaieitiuirementThe results
indicated that this outlined method improved the deperiitjaltevels of the example
system.

We have shown how models can be useful for designing dep@ndgbtems: a
model can be extended to address possible failures and dopimi@te fault tolerance
techniques that overcome them. The simulation results &mthe expected behaviour
of the system. They allow us to predict behaviour, estimastesn dependability, and
enable an informed decision on which fault tolerance tempinato apply. If such a step is
taken during the analysis and design phase of any project)afgment cost is reduced
as an optimal system is built right the first time, while faalerance is addressed earlier
on in the development cycle, and simulation results emuletexpected behaviour of
the dependable system.

We plan to further investigate a genegmcessfor the analysis and design of de-
pendable systems. In addition, we will use the fault-taienaodels to synthesize appro-
priate software ports of the final application. In future wowe will further research



how different requirements on the one hand, and differeult fdistributions on the
other, can lead to drastically different design choices.
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