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Abstract. Complex real-time system design needs to address dependability re-
quirements, such as safety, reliability, and security. We introduce a modelling
and simulation based approach which allows for the analysisand prediction of
dependability constraints. Dependability can be improvedby making use of fault
tolerance techniques. The de-facto example in the real-time system literature of a
pump control system in a mining environment is used to demonstrate our model-
based approach. In particular, the system is modelled usingthe Discrete EVent
system Specification (DEVS) formalism, and then extended toincorporate fault
tolerance mechanisms. The modularity of the DEVS formalismfacilitates this
extension. The simulation demonstrates that the employed fault tolerance tech-
niques are effective. That is, the system performs satisfactorily despite the pres-
ence of faults. This approach also makes it possible to make an informed choice
between different fault tolerance techniques. Performance metrics are used to
measure the reliability and safety of the system, and to evaluate the dependabil-
ity achieved by the design. In our model-based development process, modelling,
simulation and eventual deployment of the system are seamlessly integrated.

1 Introduction

Model-based approaches are used to represent the structureand behaviour of systems,
which are becoming increasingly complex and involve a largenumber of components
and domain-specific requirements [1, 2]. Dependable systems, in particular, must sat-
isfy a set of functional requirements, and in addition, mustadhere to constraints which
ensure correct behaviour of the system. Safety, security and reliability are a few such
dependability requirements. The necessity to satisfy these constraints has spawned new
fields of research. The most prominent area is that of fault tolerant systems, and the in-
troduction of fault tolerance design in the software development process is an emerging
topic.

Research has been carried out informal modellingand analysis of fault toler-
ance properties [3, 4], using either natural language description of models, probabilistic
models, figures of fault-trees or Markov models. Also, some tools have been designed,
which use model-based techniques for analysis and prediction of dependability. There
are presented here briefly:

DEPEND. DEPEND [5] is a design environment for system level dependability anal-
ysis of fault-tolerant systems. It considers both hardwareand software faults and



Fig. 1. Modelling and Simulation Based Design

provides support for automatic fault injection to enable evaluation of system per-
formance and reliability. The simulation tool uses stochastic modelling but also
allows behavioural modelling. The models built are based onthe object-oriented
paradigm. The control program is written in C++ using the library objects provided
by DEPEND. This is followed by compiling the control program, linking the DE-
PEND objects, and then executing in a simulated parallel run-time environment.
Fault injection and repairs are carried out according to theuser’s specification. Fi-
nally, the tool generates statistics of the simulation.

SAVE. System Availability Estimator (SAVE) [6] is a package used to build and an-
alyze models to enable prediction of dependability constraints. A SAVE model is
constructed as a collection of components, each of which canbe subject to failure
and repair. The high-level model is then automatically transformed to a Markov
chain model.

HARP. Hybrid Automated Reliability Predictor (HARP) [7] is a toolused for analysis
of fault-tolerant architectures. It is a Markov model-based approach that allows for
prediction of reliability and availability of systems. It provides support for coverage
modelling and automatic conversion of fault trees to Markovmodels.

Other tools available for dependability evaluation include Figaro [8] and HIMAP [9].
In addition to these, some processes have been proposed to assist developers in produc-
ing dependable software. A few such approaches are discussed below, but the interested
reader is encouraged to consult a more detailed review givenin [10].



HRT-HOOD. Hard Real-Time HOOD (HRT-HOOD) [11] was developed as an exten-
sion of the HOOD object framework, to address issues of timeliness in embedded
real-time systems during the early stages of the development process. The method
provides explicit support for common hard real-time abstractions by introducing
cyclic and sporadic type objects that take into account the timing properties. These
objects are annotated with information about the period of execution, minimum
arrival time, offset times, deadlines, budget times, worst-case execution time, and
importance. The coding language is expected to have supportavailable to program
recovery handling. HRT-HOOD allows addition of extra objects required for repli-
cation in the physical architecture design phase. The method does not provide fault-
tolerance support but it can be extended to consider dependability requirements at
an early stage.

OOHARTS. Object-Oriented Hard Real Time System (OOHARTS) [12] is a process
for developing dependable hard real-time systems. It is based on UML and the hard
real-time constructs of HRT-HOOD. Various extensions to UML are proposed, e.g.
stereotypes such as〈cyclic〉, 〈aperiodic〉, 〈protected〉, 〈passive〉, and〈environment〉
to describe different real-time objects. A special form of UML state diagram called
Object Behaviour Chart is used to define object behaviour. Itprovides means for
representing timing constraints like deadline and period.The UML concurrency
attribute, which can be sequential, guarded, or concurrent, is extended to include
〈mutex〉 (mutual exclusion),〈wer〉 (write execution request), and〈rer〉 (read ex-
ecution request). It introduces an additional phase in the HRT-HOOD software
development life cycle, hard-real time analysis, which provides a framework for
defining the structure and behaviour of hard real-time systems using UML and the
new extensions defined [12].

TARDIS. The Timely and Reliable Distributed Information Systems (TARDIS) project
[13] is targeted towards avionics, process control, military, and safety critical ap-
plications. The framework addresses non-functional requirements (dependability,
timeliness, and adaptability), and implementation constraints from the early stages
of software development. In the architectural design phase, issues of choices are
addressed, for example, between replication and dynamic reconfiguration for im-
proving reliability. The framework is generic, and does notimpose any software
design methods or languages on the developer. The initial proposal, however, was
not completed. The project continued with focus on development of real-time sys-
tems. The architectural design of non-functional requirements related to real-time
issues using the specification language Z and RTL (Real-TimeLogic) is discussed
in [14]. Detailed design using TARDIS is considered in [13] and [14]. Accord-
ing to [14], the TARDIS framework can also be applied to the design of systems
where non-functional requirements like reliability, security, safety, fault tolerance,
and system reconfiguration need to be satisfied.

Although these frameworks aid in the production of dependable systems, to our
knowledge, current approaches do not offer a modelling and simulation based process
such as the one proposed in [15], of which this paper is an extension.

In a model-based design process (Fig. 1), the system under study is modelled in
the most suitable formalism in each step: A domain-specific problem is represented in



an appropriate way, and described in the domain formalism. Once the domain-specific
model is available, an analysis model may be constructed in aformalism amenable to
formal analysis and verification (i.e. covering all possible behaviours). As full analysis
may not be feasible (due to the size of the state-space), a simulation approach to analysis
may be used. A simulation model is constructed in a formalismwhich offers powerful
simulation capabilities. Subsequently, simulation of themodel is performed. The output
of this simulation is processed by a checker, which checks itagainst a set of rules (de-
rived from the requirements). An error found during this checking indicates an error in
the design. Note that as even a large number of simulation runs may not cover all pos-
sible behaviours of the system, no positive statements about correctness of the model
may be made.But confidence may be increased in the next phase where performance
analysis is done to tune the model structure and parameters to satisfy performance re-
quirements.Finally, an execution model is synthesized from the model (if necessary),
thus providing a continuous, traceable path from analysis model to deployed system.
With appropriate model compilers, the simulation expertise required of the designer is
limited to knowledge of formalisms used (such as DEVS,Discrete EVent System spec-
ification).

We are interested in developing the modelling and simulation based process illus-
trated in Fig. 2 for designing a dependable system. All stepsin the evolution, from initial
requirements and constraints to final system, are explicitly modelled. Models at various
stages of the process are each expressed in the most appropriate formalism. Transfor-
mations themselves are also modelled explicitly, so no knowledge is left implicit. The
process allows us to predict the behaviour of a specific system, and compare it to the
behaviour of a fault-tolerant implementation of the same system. This is done through
a sequence of manual activities. First, from functional requirements, a model is derived
which represents the structure of a chosen system. A fault injection mechanism is also
modelled as a means to generate faulty behaviour of the system. Simulation results in-
dicate how the system performs in the presence of faults, andwhether it conforms to
the specified requirements. Secondly, from dependability constraints, a fault-tolerant
model is created which includes techniques designed to improve on the initial system.
A fault-tolerant simulation model is derived and simulatedto gather performance data.
This data reflects the dependability constraints that must be satisfied by the system. In
this paper, system models are constructed in the DEVS formalism, and simulation mod-
els are developed using PythonDEVS [16]. Finally, once performance metrics indicate
that dependability constraints are satisfied, the fault injection mechanism is separated
from the fault-tolerant model, and the final application canthen be synthesized using
Real-time PythonDEVS [17].

The paper is structured as follows. Section 2 presents essential background con-
cepts relating to the DEVS formalism and to fault tolerance.Section 3 describes the
real-timePump Control System(PCS) chosen to demonstrate our process. We intro-
duce its functional requirements and dependability constraints and briefly discuss why
modelling and simulation is an appropriate approach, and why DEVS is a suitable mod-
elling formalism. Section 4 introduces the model of the PCS,and the means by which
fault injection is introduced in the system. A PCS failure situation is described in Sec-
tion 5, and a fault-tolerant model is presented that counteracts this failure. Furthermore,



Fig. 2.The Model-based Process

safety and reliability are defined as the dependability constraints that are threatened by
failure of the PCS.Section 6 gives implementation-specific details and the experimental
simulation framework is outlined.Mathematical equations are presented to quantify the
safety and reliability of the PCS, and results of the simulations are analyzed to com-
pare the performance of the PCS in the two models. The simulation model is validated
by means of a probabilistic model. Finally, Section 7 draws some general conclusions
about our model-based process.

2 Background

This section introduces the theDiscrete EVent system Specification(DEVS) formalism
used in the case study. It also gives a brief overview of faulttolerance and the technique
we apply in our work.

2.1 The DEVS Formalism

The DEVS formalism was introduced in the late seventies by Bernard Zeigler to de-
velop a rigorous basis for the compositional modelling and simulation of discrete event
systems [18, 19]. The DEVS formalism has been successfully applied to the design
and implementation of a plethora of different complex systems such as peer-to-peer



networks [20], transportation systems [21], and complex natural systems [22]. In this
section we briefly present the DEVS formalism.

A DEVS model is eitheratomicor coupled. An atomic model describes the be-
haviour of a reactive system. A coupled model is the composition of several submodels
which can be atomic or coupled. Submodels haveports, which are connected by chan-
nels. Ports have a type: they are eitherinputor outputports. Ports and channels allow a
model to receive and send signals (events) from and to other models. A channel must go
from an output port of some model to an input port of a different model, from an input
port in a coupled model to an input port of one of its submodels, or from an output port
of a submodel to an output port of its parent model.

An atomic model has, in addition to ports, a set ofstates, one of which is theinitial
state, and two types of transitions between states:internalandexternal. Associated with
each state is atime-advanceand anoutput.

Atomic DEVS 1

An atomic DEVS is a tuple(S,X,Y,δint ,δext,λ,τ) whereS is a set ofstates, X
is a set ofinput events, Y is a set ofoutput events, δint : S→ S is the internal
transition function , δext : Q×X →Sis theexternal transition function , λ : S→Y
is theoutput function andτ : S→ R+

0 is thetime-advancefunction.
In this definition,Q = {(s,e) ∈ S×R+ | 0 ≤ e≤ τ(s)} is called thetotal-state
space, for each(s,e) ∈ Q, e is called theelapsed-time.2

Informally, the operational semantics of an atomic model are as follows: the atomic
model starts in its initial state, and it will remain in any given state for as long as its
corresponding time-advance specifies or until input is received on some port. If no input
is received, when the time of the state expires, the model sends output as specified byλ
(before changing the state), and subsequently jumps to the new state as specified byδint .
On the other hand, if input is received before the time for thenext internal transition
expires, then it isδext which is applied. The external transition depends on the current
state, the time elapsed since the last transition and the inputs from the input ports.

The following definition formalises the concept of coupled DEVS models3

Coupled DEVS
A coupled DEVSnamedD is a tuple(X,Y,N,M, I ,Z,select) whereX is a set of
input events, Y is a set ofoutput events, N is a set ofcomponent namessuch that
D 6∈ N, M = {Mn | n∈ N,Mn is a DEVS model (atomic or coupled) with input set
Xn and output setYn} is a set of DEVSsubmodels, I = {In | n∈N, In ⊆N∪{D}} is
a set ofinfluencer sets for each component namedn, Z = {Zi,n | ∀n∈N, i ∈ In.Zi,n :
Yi → Xn or ZD,n : X → Xn or Zi,D : Yi →Y} is a set oftransfer functions from each
componenti to some componentn, andselect: 2N → N is theselectfunction.

Connectivity of submodels is expressed by the influencer setof each component.
Note that for a given modeln, this set includes not only the external models that provide

1 For simplicity, we do not present a formalisation of the concept of “ports”.
2 R+

0 denotes the positive reals with zero included.
3 For simplicity, this “formalisation” does not deal with ports, and it leaves out the proof of

well-definedness for coupled models.



inputs ton, but also its own internal submodels that produce its output(if n is a coupled
model.) Transfer functions represent output-to-input translations between components,
and can be thought of as channels that make the appropriate type translations. Theselect
function takes care of conflicts as explained below.

The semantics for a coupled model is, informally, the parallel composition of all
the submodels. This is, each submodel in a coupled model is assumed to be an inde-
pendent process, concurrent to the rest. There is no explicit method of synchronization
between processes. Blocking does not occur except if it is explicitly modelled by the
output function of a sender, and the external transition function of a receiver. There is
however aserializationof events whenever there are two submodels that have a transi-
tion scheduled to be performed at the same time. Logically, the transitions are assumed
to be done in that time instant, but its implementation on a sequential computer is seri-
alized. The coupled model has aselecttie-breaking function which chooses one of the
models to undergo the transition first.

2.2 Fault Tolerance

Complex computer systems are increasingly built for highlycritical tasks, from mili-
tary and aerospace domains to industrial andcommercialareas. They are critical in the
sense that their failures may have severe consequences ranging from loss of business
opportunities, physical damage, to more catastrophic loss, such as human lives. Systems
with such responsibilities should be highlydependable. A number of varied means of
achieving this goal have been established and should be considered jointly during hard-
ware as well as software development:fault prevention, fault removal, fault forecasting
andfault tolerance[23]. In particular, we will discuss fault tolerance in moredetail in
this section.

The idea of incorporating means for fault tolerance in orderto achieve system de-
pendability has developed considerably since the originalwork by von Neumann in the
mid-1950s [24], and many techniques have been established.To discuss fault tolerance
more meaningfully, a definition ofcorrect system behaviouris needed: the specifica-
tion. As long as the system satisfies the specification, it is considered to be behaving
correctly. A failure can then be defined as an observable deviation from the system
specification. An error is that part of the system state that leads to a failure. The error
itself is caused by some defect in the system; those defects that cause observable er-
rors are calledfaults[25]. Fault tolerance aims at preventing failures in the presence of
hardware or software faults within the system. Therefore, as soon as an error has been
detected, it must be corrected to ensure that a system continues to deliver its services
and to avoid a potential failure later on in the execution.

These corrective measures need to be taken to keep the error from propagating to
other parts of the system, thus preventing further damage. Once the error is under con-
trol, error recovery is applied and a correct error-free system state is restored. There are
two basic recovery techniques [26]:backwardandforward error recovery.

Backward error recovery involves periodically checkpointing the application state
and then, in case of a failure, restoring the state to a previous correct state. This can
be very time consuming. Therefore, real-time systems oftenfavour fault tolerance tech-
niques based on forward error recovery. Forward error recovery attempts to construct a



coherent, error-free system state by applying corrective actions to the current, erroneous
state.

In stateless, cyclic systems, where one iteration of execution does not depend on the
previous run, a popular way of masking faults efficiently is to use redundancy.N-version
programming [27, 28], for instance, is a technique that usessoftware redundancy to tol-
erate algorithm design faults. Multiple components (called versions), sometimes imple-
mented in different programming languages following different design methodologies,
perform the same, highly critical functionality in parallel. The results of all versions
are gathered, and passed to a decision mechanism (sometimesalso called voter), that
determines which of the results can be considered correct.

A similar technique used to increase hardware reliability is Triple Modular Re-
dundancy(TMR). TMR uses three identical copies of a unit instead of one, and an
intelligent, application-specific voting scheme which is applied to their output. This
technique, described in more detail later, is used in this paper to improve reliability and
safety of our case study system by tolerating faults of hardware sensors.

3 Modelling and Simulation Based Design: An Example

3.1 The Pump Control System Case Study

The system used to demonstrate our approach is a Pump ControlSystem (PCS). The
PCS has often been used in the real-time systems literature.For example, Burns and
Lister used the PCS as a case study to discuss the TARDIS project [29]. We adopt the
Pump Control System problem from [29], and with some abstractions, define it as our
case study for modelling and simulation based design of a dependable system.

The basic task of the system is to pump to the surface the waterthat accumulates
at the bottom of a mine shaft. The pump must be switched on whenthewater-sensor
detects that the water has reached ahigh-leveldepth, and must be switched off when
it detects that the level has been sufficiently reduced (low-level). In addition, the pump
functionality depends on some atmospheric readings. Amethane-sensormeasures the
level of methane in the environment: high levels may cause fire in the shaft if the pump
is in operation. Acarbon monoxide-sensorand anair-flow sensoralso monitor the
environment for critical readings (high for carbon monoxide and low for air-flow) which
cause immediate evacuation of the shaft. Critical readingsproduced by all atmospheric
sensors are sent to a human operator, but only critical methane readings cause the pump
to switch off. To summarize, the pump is switchedON if the water-level is high and
methane-level is not critical, and is switchedOFF if the water-level is low and pump
is on; or if the pump is on and the methane-level is critical.The proposed architectural
system structure for the PCS is illustrated in Fig. 3.

As all complex and critical applications, the PCS involves some important con-
straints, namely those of dependability, timing and security. This case study focuses
on the dependability requirements defined for the PCS in [29]which demand that the
system is reliable and safe.

Reliability of the pump system is measured by the number of shifts that arelost if
the pump does not operate when it should. The pump is supposedto operate when



the water levels become critical: that is the beginning of a shift, and the shift ends
either when the methane level becomes critical or the water level becomes non-
critical. If the pump does not operate in such circumstances, then it is said to miss
a work-shift. In order to be considered reliable, our PCS maylose at most 1 shift in
1000.

Safety of the system is related to the probability that an explosionoccurs as a result of
the pump operating despite critical methane levels. In order to be considered safe,
the probability of a possible explosion in our PCS should be less than 10−3 during
the simulated lifetime of the system.

Environment Monitor

Environment Sensors

Environment Subsystem

Pump Controller

Pump Subsystem

Water Sensor

ON

OFF

Methane Request

Methane Reply

Methane Alarm

Human
Operator

Alarms
Pump

Fig. 3. The Pump Control System Logical Structure.

3.2 Why Use DEVS for The PCS?

The successful development of large-scale complex real-time systems commonly re-
lies on system-theoretic modelling approaches, such as DEVS, or object-oriented ap-
proaches such as UML Real-Time. UML-RT is an extension to UMLwhich, in addi-
tion to offering constructs to model relationships among components, incorporates the
Real-Time Object-Oriented Modelling constructs and is used to model the structural
and behavioural aspects of systems. The behaviour of the system is specified in State-
charts by the sequence of signal communication [30]. Contrary to DEVS, in Statecharts
we cannot formally specify explicit timing in the specification of models. Statecharts
are also based on multi-component specification and broadcast communication, and
the lack of a complete formal definition of UML-RT Statechartsemantics hinders the
formal specification of structural information. Furthermore, although UML-RT offers
important capabilities for modelling real-time systems, it does not provide semantics
suitable for simulated time: it prohibits carrying out simulation studies. On the contrary,
DEVS separates models from how they may be executed; therefore simulators can be
independently developed and verified, thus increasing reusability, formal analysis, and
model validation. In addition, DEVS allows the specification of both the structural and
behavioural aspects of a system.

The PCS is a reactive discrete-event system: the system’s state changes in reac-
tion to external events, such as critical environmental readings. In addition, the PCS is
composed of many different interacting subsystems. DEVS, being highly modular and



supporting hierarchical coupling of models, allows for theseparation of concerns and
a clean model of such a complex system. Since the aim of our approach is to improve
the design of a real-time system, we can simulate DEVS modelsto observe the faulty
behaviour in the original PCS model and to predict the system’s behaviour under dif-
ferent fault tolerance techniques. From the simulations one can gather statistical data
on whether or not dependability requirements are met withinthe PCS, and evaluate
alternative system designs. The above mentioned reasons make DEVS an appropriate
modelling formalism for the Pump Control System. Note that other types of systems
may require other modelling formalisms.

4 Modelling the PCS

The models presented in Sections 4 and 5 are created using AToM3’s [31] visual mod-
elling and simulation environment for DEVS. AToM3, A Tool for Multi-formalism and
Meta-Modelling, is a tool for multi-paradigm modelling developed at McGillUniver-
sity’s Modelling, Simulation and Design Lab in the School ofComputer Science. The
main features are:

Meta-modelling: refers to the description or modelling of different kinds offormalisms
(such as DEVS) used to model systems. The meta-model description of a formal-
ism is itself a model in theEntity Relationship formalism. From this meta-model,
AToM3 generates a visual tool in which models described in the specified formal-
ism can be created and edited [32];

Model-transformation: refers to the (automatic) process of converting, translating or
modifying a model in a given formalism, into another model that might or might
not be in the same formalism. In AToM3, these transformations are performed by
graph rewriting and are expressed as graph-grammar models [33].

4.1 Building the DEVS Model of the PCS

Each subsystem illustrated in Fig. 3 (pump, environment, communication) is modelled
as an atomic DEVS whose structure and behaviour encodes the functional requirements
of the PCS as depicted in Fig. 4. Below is the general model description of the “perfect”
Pump Control System. This system is 100% safe, and 100% reliable, and is “calibrated”
and “validated” in the absence of faults. Simulations basedon this model give “perfect”
performance results, and provide a useful way to check that the performance metrics
for safety and reliability have been encoded properly and accurately reflect the sys-
tem behaviour. Testing and checking of the performance metrics must be done against
“known” data, which in this case is that we have a “correct” system.

Methane Sensor, Carbon Monoxide Sensor, Airflow Sensor
States:Sensor may either be ‘READING’ the level of gas or flow in the environment

or ‘IDLE’ between readings. The internal behaviour of the Methane Sensor is illus-
trated in Fig. 5.

Output:Upon transitioning from ‘READING’ to ‘IDLE’, the sensor outputs the level
of gas or flow in the environment at that time.



MethaneSensor

mrOUT

CarbonMonoxideSensor

cmOUT

AirFlowSensor

afOUT

EnvironmentMonitor

afIN

cmIN

mrIN

q_recv

q_sack

alrmOUT

Communication

q_send

q_rack

alrm_recv

alarm_sent_hc

alrm_sent_pc

q_recv

q_sack

PumpController

wIN
q_rack

meth_alrm

q_send

pump_op

Water

wOUT

HumanController

alarmIN

Pump

opIN

Fig. 4. The Pump Control System Modelled in the DEVS Formalism usingAToM3.

Environment monitor
States:The monitor may either be processing sensor readings (‘PROCESSING’), re-

sponding to a query (‘QUERYING’) or doing nothing (‘IDLE’).
Output:Upon receiving a query from the Pump Controller through the Communica-

tion channel, the monitor responds by sending an acknowledgement which contains
a message stating the criticality of the methane level. Uponreceiving critical read-
ings from the environment sensors, it outputs alarms. All messages to and from the
pump controller or to the human controller are sent through the Communication
DEVS.

Communication
States:The communication channel may either be sending alarms (‘SEND-ALARM’),

sending a query to the environment monitor (‘SEND-QUERY’) or sending a query
acknowledgement to the pump controller (‘SEND-ACK’). Whenit completes either
of these tasks, its state is ‘IDLE’. The internal behaviour of the Communication
DEVS is illustrated in Fig. 6.

Output:Upon receiving a query from the Pump Controller, it forwardsthis query to the
environment monitor, and once it receives the reply from theenvironment monitor,
it propagates it to the pump controller. When it receives critical alarms, it delivers
them to the human and pump controllers.

Pump Controller
States:It may either be processing a water sensor reading and sending an operation to

the pump (‘PROCESSING-WATER’), processing a methane alarm(‘PROCESSING-



ALARM’), processing a query acknowledgement (‘PROCESSING-ACK’), or do-
ing nothing (‘IDLE’).

Output:Upon receiving a low-water reading, the pump controller sends an “off” mes-
sage to the pump to switch it off. If the controller receives ahigh-water reading, it
turns the pump to ready mode and sends a query to the environment monitor: the
controller only turns the pump on if the methane level is not critical. If an acknowl-
edgement is received stating that the methane level is high,then the controller turns
the pump off, otherwise, it turns it on. Similarly, when the controller receives a
methane alarm, it turns the pump off.

Water Sensor
States:It randomly switches between the ‘HIGH’ and ‘LOW’ states.
Output:Upon switching, the sensor outputs the state to which it is transitioning.

Human Controller
This is a passive DEVS: it does not react to any input messagesand remains
constantly ‘IDLE’. If required, aspects of the behaviour ofthe human controller (such

as attention span or pump control activities) can also be modelled.

MethaneSensor

mrOUT

READING
IDLE

CarbonMonoxideSensor

EnvironmentMonitor

mrIN

Fig. 5.The internal behaviour of the MethaneSensor DEVS.

4.2 Modelling of Fault Injection in the PCS

As dependability constraints need to be met in addition to functional requirements, a
quantitative analysis method for assessing the dependability of the system must also be
modelled. For this purpose, many methods have been defined, such as reliability block
diagrams, analysis of non-deterministic state graph models, and fault simulation [23].
The latter is a universal approach combining techniques which assume a model of the
system, a set of external input/output sequences applied toit, and the possibility to inject
faults into it. Most of these techniques can be classified as fault injection techniques,
which consist in artificially adding faults to a system in order to analyze the behaviour.
These faults make the system evolve towards different states which are recorded in
order to assess the dependability constraints.



HumanController

Communication

alrm_recv

q_send

q_rack

alrm_sent_hc

q_sack

alarn_sent_pc

q_recv

SEND-ACK

received ack @q_rack

IDLE

communication_delay

communication_delay

communication_delay

SEND-QUERY

received query @q_recv

SEND-ALARM

received alarm @alrm_recv

Fig. 6. The internal behaviour of the Communication DEVS.

If we want to use a simulation-based technique to assess the reliability and safety
of our system, we must, in addition to modelling the PCS, build a fault injection model.
A fault injector could be described as an atomic entity on itsown in the coupled DEVS
model. However, modelling faults within a separate subsystem more accurately repre-
sents real-world faulty behaviour. Our approach consists in provoking a sensor break-
down on a periodic basis to simulate a possible fault that could make the Pump Control
subsystem fail. For example, a fault in the methane sensor would generate faulty (noisy)
methane readings of the environment, which would be propagated to the environment
monitor, and through the communication subsystem to the pump controller. This wrong
methane reading could possibly force the pump to shut off when it is not supposed to, or
it might fail to cause a critical alarm to be raised. The simulation results should reflect
how safety and reliabilty vary in the absence and presence offaults.

We concentrate here on the consequence of the methane sensorfailure on the safety
and reliability requirements of the PCS (Section 5.1). To model faulty behaviour of
a methane sensors, we assign to it a probabilityp of failure. We assume Byzantine
failures, i.e. upon failing, sensors produce an erroneous result rather than no result at
all. The output value of a faulty sensor is a random value chosen uniformly from the
possible output range. In practice, a sensor has a very low failure probability, however
in this case study, the simulated probabilityp is chosen to be significantly higher to
induce more erroneous states and observable failure of the system. Such a “worst case”,
conservative choice is warranted as decisions made based onsimulation results will
be overly pessimistic and hence safe. For the methane sensor, we assumep = 0.1. At
each methane-reading time, the sensor will either output the actual methane level in the
environment, or will generate a false reading and output it with probabilityp.



The following is a pseudo-code model of the faulty bahaviourof a methane sensor,
encoded in the output function of the MethaneSensor DEVS.

totalMethaneReadings = 0
totalReliabilityFailures = 0
totalSafetyFailures = 0
overall_safety_index = 0
overall_reliability_index = 0

method outputFnc:
totalMethaneReadings = totalMethaneReadings + 1
if(sensor_state is IDLE):

actualMethaneReading = randint(0, 10)
falseMethaneReading = randint (0,10)
decision = uniform(0,99)

if(decision < methaneFailureProbability):
if(falseMethaneReading is CRTL4 and actualMethaneReading not CRTL):
# Methane reading was falsely critical.
totalReliabilityFailures = totalReliabilityFailures + 1

if(falseMethaneReading not CRTL and actualMethaneReading is CRTL):
# Methane reading was falsely not critical.
totalSafetyFailures = totalSafetyFailures + 1

else:
overall_safety_index = overall_safety_index + 1
overall_reliability_index = overall_reliability_index + 1

output(falseMethaneReading)

else:
# Methane sensor sent the actual reading.
overall_reliability_index = overall_reliability_index + 1
overall_safety_index = overall_safety_index + 1
output(actualMethaneReading)

5 Modelling the Fault-Tolerant System

5.1 Failure Scenario in the PCS

Burns and Lister [29] describe four failure situations at the environment, communica-
tion and pump subsystems level for the PCS that affect the dependability. To illustrate
our approach, we consider the situation in which the environment subsystem provides
an incorrect methane reading (when asked by the pump subsystem). The case study
focuses on the role of the environment subsystem on safety and reliability, thus upper-
bounding the measure of dependability of the system by the dependability of the envi-
ronment subsystem. We assume that no mechanical failures occur in the communication
and pump subsystems and that they do not introduce erroneousstate.

4 CRTL stands for CRITICAL.



The environment subsystem fails in a noisy manner, i.e. it generates incorrect/noisy
output. Since we only investigate hardware faults, we assume failures originate in the
methane sensor: the subsystem provides incorrect methane readings if it receives such
incorrect values from the sensor itself. Therefore, we can generalize the failure scenario
to that of the methane sensor providing an incorrect methanereading.

Safety of the System.The safety requirement is compromised if the sensor outputsa
falsely low methane reading which causes the pump to operatedespite critical con-
centrations in the environment. This introduces a threat ofexplosion in the mine
shaft. However, if the sensor outputs a false reading whose criticality is in accor-
dance with the accurate reading, i.e. it is critical when theaccurate reading is criti-
cal, and not critical when the accurate reading is not critical, then the system is still
considered to be safe.

Reliability of the System. The reliability requirement is threatened if the sensor out-
puts a falsely high methane reading which causes the pump to shut down despite
non-critical concentrations in the environment. This causes a loss of shift for the
pump.

Safety and reliability can be improved by replication of themethane sensors and apply-
ing the TMR technique [29]. This method can also be used for the carbon monoxide
and airflow sensors.

5.2 Modelling Fault Tolerance for the PCS

We change the PCS model, in AToM3, to integrate fault tolerance based on TMR. A cou-
pled DEVS containing three sets of methane sensors and a voter replace the methane
sensor modelled in Fig. 4. In this case, even if one methane sensor fails, the correct read-
ing can still be determined using the output of the other sensors, and a response from the
voter is passed on to the environment monitor. This approachcan also be applied to the
carbon monoxide and airflow sensors. A partial view of the fault-tolerant environment
subsystem is shown in Fig. 7. In the initial experiments described in [15], we used two
different types of voters, amaximumvoter and amajority voter. The maximum voter
is a PCS-specific voter in which the highest value received from the replicated sensors
is considered as accurate. The interest in the highest valueresides in the fact that the
system must be safe: if the pump is switched on while methane levels are critical, safety
is threatened. Thus, the maximum voter is an appropriate choice for this problem. The
majority voter is a well-studied voter that givenn results, selects the value of the ma-
jority. In our case, if majority cannot be decided, the voterfalls back to the maximum
value. This paper extends [15] by also experimenting with anaveragevoter. This voter
is also very popular in literature, and givenn results, calculates the average reading.

The fault injection in the sensors is modelled similarly to the PCS model (Section
4.2); This allows us to compare the behaviour of the two systems and observe how the
performance changes. At each methane-reading time, the sensor will either output the
actual methane level in the environment, or will generate a false reading and output
it with probability p. This leads to a roadblock in the design. Previously, the fault in-
jection was introduced into the methane sensor itself sinceit was also responsible for



generating the methane reading. Thus, if three methane sensors are grouped together,
each one will be generating its own reading value, and these three values might not
coincide in value. For this reason, we introduce an ActualRGenerator DEVS into the
model, which takes the responsibility of generating the actual methane reading away
from the methane sensors. Note that this does not change the behaviour of the methane
sensors: the sensor still performs readings, and could failwith probability p by gen-
erating some random value. However, if the sensor does not fail, it outputs the actual
methane reading generated by the ActualRGenerator DEVS.This DEVS also produces
the actual readings for the airflow and carbon monoxide sensors, and may be viewed
simply as a random number generator.

Communication

mr_IN

MethaneCDEVS

mr_OUT

ms1

MethaneSensor:

ms2

MethaneSensor:
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MethaneSensor:

voter
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Fig. 7.Fault-tolerant Methane Sensor Subsystem of the Pump Control System: 3 methane sensors
send their environmental readings to a voter. The voter decides which reading to propagate to the
communication subsystem.

6 Simulation and Results

6.1 Performance Metrics Modelling

In the previous sections we showed how the PCS and the fault-tolerant PCS are mod-
elled using DEVS. In order to perform dependability analysis, we model the safety and
reliability as dependabilityperformancemetrics to be evaluated while the simulation
runs. Each simulation keeps track of the total number of methane readings performed
(TotalMethane-Readings). A readingmi is associated with a safety conformance index
si and a reliability conformance indexr i . These indices are equal to 0 if the reading
causes a safety-threatening (forsi) or reliability-threatening (forr i) fault, and 1 other-
wise. Safety of the system can then be determined by∑n

i=1si /TotalMethaneReadings,



and reliability by∑n
i=1 r i /TotalMethaneReadings (wheren is equal toTotalMethane-

Readings).

6.2 Implementation and Experimentation

Once the system and the constraints are modelled, they are implemented using the
PythonDEVS package [16]. This package provides a class architecture that allows hier-
archical DEVS models to be easily defined and a simulation engine. Using this frame-
work, each atomic and coupled DEVS described in the model of the PCS, the fault-
tolerant PCS usingmaximumvoting, and the fault-tolerant PCS using majority voting,
can be encoded into a Python class. Python is an interpreted object-oriented program-
ming language, which offers high-level data types and a simple syntax. Its main advan-
tage for the PCS case study is that it is an ideal language for quick and simple appli-
cation development. Actually, the DEVS modelling environment in AToM3 synthezises
PythonDEVS code.

Each Python class representation of a DEVS has four functions defined in it: an
internal transition function, an external transition function, an output function and a
time-advance function. Next, simulation experiments are setup to gather statistical data
which is representative of the system’s behaviour under thespecified constraints. The
following summarizes the experimental framework:

– Time advances:A methane reading is generated every 2s, carbon monoxide every
6s, airflow every 5s, and water level is checked every 10s.

– Reading Interval: All environmental readings are integers in the interval[0,10].
We chose integers to avoid the errors common in voters when comparing float-
ing point numbers.

– Critical Readings: The critical concentrations are defined in the reading interval
to be 7 for methane, 5 for carbon monoxide and 3 for airflow.

– Simulation Time: Two sets of experiments are conducted. In the first set, each
model is run for a duration of 2000 simulation time units (seconds). This pro-
cess is repeated 5 times, starting from the same initial state, but using a different
random number stream. In the second set, each model is run fora duration of
75000 simulation time units to satisfy the law of large numbers. As with the
first set, this process is also repeated 5 times. For each of these runs, safety and
reliability results are logged and analyzed.

A third set of experiments is carried out, using the time advances, reading inter-
val and critical readings defined above, but uses a modified model of the PCS and of
the fault-tolerant systems. Firstly, the methane sensor failure probability is decreased
tenfold (p = 0.01 instead ofp = 0.1), and the simulations run for a longer duration
(500000 simulation units) and are repeated 5 times. Secondly, in addition to the fault
tolerant systems using maximum and majority voting, a faulttolerant system using an
average voter is also encoded.



Fig. 8.Safety Results for the Second Set of Simulations.

6.3 Results of Second Set of Experiments

Since the results of the first two sets of simulations are comparable, only results of the
second set are analyzed here. These results are an indicatorof which voter is best suited
for the PCS with regard to system safety and reliability.

Fig. 9. Reliability Results for the Second Set of Simulations.

Safety. In the initial model, the average failure to satisfy the safety requirement is
2.32% (average safety of 97.68%) which is high for a system in which failures
are catastrophic in nature. In the fault-tolerant model using the maximum voter, the



average safety rises to 99.99% (Fig. 8). It can be concluded that TMR with maxi-
mum voting reduces the occurrence of safety-threatening failures. However, there
is a notable trade-off between safety and reliability here.This is not surprising as
the choice of maximum voter was made to emphasize the safety requirement in
such a critical system.

Reliability. In the initial model, the average failure to satisfy the reliability require-
ment is 10.09% (average reliability of 89.91%), which is proportional to the prob-
ability that was associated with the methane sensor DEVS of 10% failure. In the
implementation with the maximum voter, the reliability percentage falls even lower
(Fig. 9). This is explained by the fact that the maximum voteralways picks the
highest value to output, be it accurate or false. For example, a case where the actual
reading is 2, but the false reading received is 8, then 8 is voted to be the correct read-
ing. This approach advocates safety of the system at the costof reduced reliability
of the sensors. In order to attain a fair balance between the safety and reliability
requirements, the use of a majority voter is advised. The majority voter implemen-
tation results in an average reliability of 98.3%, but a slight decrease in the safety
can be seen in Fig. 8. However, this is clearly a solid improvement on the original
model and on the maximum voter, while still preserving safety.

6.4 Results of Third Set of Experiments

The general result of the third set of experiments strengthens the conclusion made in the
previous section: the fault tolerant system using a majority voter performs better overall
than the system implementing the maximum voter. A quick lookat Fig. 10 shows that
the average safety of the initial PCS is 99.76%, improved by the maximum voter to an
average safety of 100%, at the expense of reliability of the system as seen in Fig. 11.
The PCS system using the majority voter scheme performs moreadequately in terms of
safety and reliability, improving on the original system onboth occasions.

On the other hand, some surprising conclusions can be drawn from the safety and
reliability results obtained from experiments on the faulttolerant system using average
voter. Indeed, the average voter lowers the overall performance of the system: the aver-
age safety decreases from 99.76% to 99.6%, and reliability from 98.98% to 97.76%.

This is explained by the fact that calculating the average ofinteger values may lead
to a real value rather than an integer value result. This requires (abs(x− xcomp) < ε)
- style comparison for equality testing (in our model,ε = 0.25). For example, a case
where the actual reading is 6, but the readings received by the voter are 6, 8, and 9, then
7.66 is voted to be the correct reading. This reading raises a critical methane alarm. A
falsely critical reading will cause the pump to shutdown if it were in operation, or will
cause it to miss a shift if a critical water level requires itsoperation. On the other hand,
in a case where the actual reading is, for example, 8, and the readings received by the
voter are 2, 4 and 9, then 5 is voted to be the correct reading. Clearly, this is safety-
threatening as a non-critical methane reading may allow thepump to operate despite
actual critical methane levels. It becomes clear that an average voter mechanism is not
an appropriate choice for the PCS.
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Fig. 10.Safety Results for the Third Set of Simulations.

6.5 Validation of Results

Over the years, a lot of work has been done on estimating software reliability based on
probabilistic models. To compare our simulation- based approach to an analytic one, we
performed a probabilistic assessment of the reliability ofthe fault-tolerant model based
on majority voting. We used the same assumptions as in the simulation:

– if no majority can be determined, then the maximum result is selected as the correct
one;

– methane sensors produce an integer readingr ∈ [0,10];
– sensors either work correctly, or fail with a probabilityp by outputting a random

reading uniformly distributed between 0 and 10.

As discussed previously, reliability is threatened when a falsely critical reading is
sent to the environment monitor although the actual readingis non-critical. There are
three cases that lead to a wrong decision by the voter. Each case can be considered
separately. The total probability of the voter failing to decide on the correct output is
then equal to the probability that the correct reading is non-critical (which is 7/11)
multiplied by the sum of the probabilities corresponding tothe cases listed below:
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Fig. 11.Reliability Results for the Third Set of Simulations.

– one sensor outputs a correct reading, two sensors output equal, critical and false
reading: 3∗ (1− p)∗ (p∗4/11)∗ (p∗1/11);

– all three sensors output wrong readings, but at least two areequal, critical and false
reading:p3∗ ((4/11)(1/11)+2(7/11)(4/11)(1/11));

– all three sensors output wrong distinct readings, and at least one is critical:p3∗(1−
7/11∗6/11∗5/11)∗ (10/11∗9/11).

Since we assume thatp = 0.1 for the methane sensor, this leads to a majority voter
failure probability of 0.0061, or a reliability of 99.39%. The results of our simulation
indicated a reliability of 98.3%. Although similar, this clearly demonstrates that simula-
tion results do not always coincide closely with the analytical results. If the simulation
ran for a significantly longer period of time, however, the simulated value should con-
verge to the analytical one.

The probabilistic assessment leads to exact and precise results, but in cases where
the problem is non-linear, the equations may become very complex and impossible to
solve. For instance, sensors could fail in a non-uniform way, or additional acceptance
tests could be used that look at results and exclude those that signal an unrealistic vari-
ation of the methane level reading compared to the previous one. Modeling these cases
analytically becomes soon very tricky or even impossible.



The approach presented in this paper, however, is especially effective for complex
systems for which deriving mathematical models is not feasible. One might argue that
this approach requires extensive work in designing and encoding the models, and in ana-
lyzing the simulation results. However, models are easily derived from the requirements
and logical structure of the system. Furthermore, the choice of modelling formalism and
programming language make for a modular implementation, and if tools are available
which automatically generate the applications, the process can be speedy. Lastly, sim-
ulation results are simple to analyze as they are derived from such simple equations
as those described in Section 6.1. Mathematical models do not have these advantages.
However, probabilistic models can be useful as a validationmethod for modelling and
simulation based approaches as well as provide solutions torare-event cases.

7 Conclusion

In most complex systems today, it is crucial to guarantee that the dependability require-
ments are successfully achieved. Methods should be provided which can accurately
assess what level of dependability has been attained by a system. In this paper, we have
presented a modelling and simulation-based development process targeted towards de-
pendable systems, and have demonstrated it through an application to the safety-critical
Pump Control System.

A continuity was maintained throughout the development process. We started from
requirements, mapped these to a DEVS model, extended the model to consider the
dependability constraints, defined performance metrics toencode these contraints, im-
plemented the model using AToM3 and the PythonDEVS framework, and performed
simulations whose results reflected the safety and reliability of the system. DEVS is
deemed the most appropriate formalism for modelling both the system under study and
the fault tolerance techniques.This is because discrete-event models are clearly at the
right abstraction level, and because of the compositionality of the DEVS formalism.
Fault tolerance, more specifically TMR, was used as a means toachieve dependability.
In this approach three types of voters were used and the simulation results were in-
spected to decide which voter best satisfied the dependability requirement.The results
indicated that this outlined method improved the dependability levels of the example
system.

We have shown how models can be useful for designing dependable systems: a
model can be extended to address possible failures and to incorporate fault tolerance
techniques that overcome them. The simulation results emulate the expected behaviour
of the system. They allow us to predict behaviour, estimate system dependability, and
enable an informed decision on which fault tolerance technique to apply. If such a step is
taken during the analysis and design phase of any project, development cost is reduced
as an optimal system is built right the first time, while faulttolerance is addressed earlier
on in the development cycle, and simulation results emulatethe expected behaviour of
the dependable system.

We plan to further investigate a genericprocessfor the analysis and design of de-
pendable systems. In addition, we will use the fault-tolerant models to synthesize appro-
priate software ports of the final application. In future work, we will further research



how different requirements on the one hand, and different fault distributions on the
other, can lead to drastically different design choices.
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