
Computer Aided Multi-Paradigm Modelling

to Process Petri-Nets and Statecharts

Juan de Lara1 and Hans Vangheluwe2

1 ETS Informática
Universidad Autónoma de Madrid

Madrid Spain,
Juan.Lara@ii.uam.es

2 School of Computer Science
McGill University, Montréal

Québec, Canada
hv@cs.mcgill.ca

Abstract. This paper proposes a Multi-Paradigm approach to the mod-
elling of complex systems. The approach consists of the combination of
meta-modelling, multi-formalism modelling, and modelling at multiple
levels of abstraction. We implement these concepts in AToM3, A Tool
for Multi-formalism, Meta-Modelling. In AToM3, modelling formalisms
are modelled in their own right at a meta-level within an appropriate
formalism. AToM3 uses the information found in the meta-models to au-
tomatically generate tools to process (create, edit, check, optimize, trans-
form and generate simulators for) the models in the described formalism.
Model processing is described at a meta-level by means of models in the
graph grammar formalism. As an example, meta-models for both syn-
tax and semantics of Statcharts (without hierarchy) and Petri-Nets are
presented. This includes a graph grammar modelling the transformation
between Statecharts and Petri-Nets.

Keywords: Modelling & Simulation, Meta-Modelling, Multi-Formalism Mod-
elling, Automatic Code Generation, Graph Grammars.

1 Introduction

Complex systems are characterized, not only by a large number of components,
but also by the diversity of these components. This often implies the components
are described in different formalisms. Several approaches are possible to deal with
this variety:

1. A single super-formalism may be constructed which subsumes all the for-
malisms needed in the system description. In most cases, this is neither
possible nor meaningful.

2. Each system component may be modelled using the most appropriate formal-
ism and tool. In the co-simulation approach, each component is subsequently

simulated with a formalism-specific simulator. Interaction due to component
coupling is resolved at the trajectory level. Questions about the overall sys-
tem can only be answered at the state trajectory level. It is no longer possible
to answer symbolic, high-level questions which could be answered within the
individual components’ formalisms.

3. In multi-formalism modelling, as in co-simulation, each system component
may be modelled using the most appropriate formalism and tool. However, a
single formalism is identified into which each of the component models may
be symbolically transformed [19]. The formalism to transform to depends
on the question to be answered about the system. The Formalism Transfor-
mation Graph (FTG, see Figure 1) proposed by the authors suggests DEVS
[21] as a universal common formalism for simulation purposes. It is easily
seen how multi-formalism modelling subsumes both the super-formalism ap-
proach and the co-simulation approach.

In order to make the multi-formalism approach applicable, we still have to
solve the problem of interconnecting a plethora of different tools, each designed
for a particular formalism. Also, it is desirable to have highly problem-specific
formalisms and tools. The time needed to develop these is usually prohibitive.
We tackle this problem by means of meta-modelling. Using a meta-layer of mod-
elling, it is possible to model the modelling formalisms themselves. Using the
information in these meta-layers, it is possible to generate customized tools for
models in the described formalisms. The effort required to construct a tool for
modelling in a formalism tailored to particular applications thus becomes min-
imal. Furthermore, when the generated tools use a common data structure to
internally represent the models, transformation between formalisms is reduced
to the transformation of these data structures.

In this article, we present AToM3 [2], a tool which implements the ideas pre-
sented above. AToM3 has a meta-modelling layer in which different formalisms
are modelled. From the meta-specification (in the Entity Relationship formalism
extended with constraints), AToM3 generates a tool to process models described
in the specified formalism. Models are represented internally using Abstract Syn-

tax Graphs. As a consequence, transformations between formalisms is reduced to
graph rewriting. Thus, the transformations themselves can be expressed as graph
grammar models [5]. Although graph grammars have been used in highly diverse
areas such as graphical editors, code optimization, and computer architecture.
[7], to our knowledge, they have never been applied to formalism transforma-
tions. In this paper, we present an example of transforming Statechart models
(without hierarchy) into behaviourally equivalent Petri-Nets.

The rest of the paper is organized as follows: section 2 introduces the concepts
of Multi-Paradigm Modelling and section 3 presents other related approaches.
Section 4 gives an overview of the multi-paradigm modelling tool AToM3. In sec-
tion 5, we show an example of model manipulation in AToM3. Finally, section 6
presents conclusions and future work.

2 Multi-Paradigm Modelling

Computer Automated Multi-Paradigm Modelling is an emerging field which ad-
dresses and integrates three orthogonal directions of research:

1. Multi-Formalism modelling, concerned with the coupling of and transforma-
tion between models described in different formalisms. In Figure 1, a part of
the “formalism space” is depicted in the form of an FTG. The different for-
malisms are shown as nodes in the graph. The arrows denote a homomorphic
relationship “can be mapped onto”. The mapping consists of transforming
a model in the source formalism into a behaviourally equivalent one in the
target formalism.

DEVS

Process Interaction
Discrete Event

state trajectory data (observation frame)

Petri NetsStatecharts

scheduling-hybrid-DAE

Bond Graph a-causal

Bond Graph causal

DAE non-causal set

DAE causal set

PDE

Transfer Function

Difference Equations

System Dynamics

KTG Cellular Automata

Event Scheduling
Discrete Event

3 Phase Approach
Discrete Event

DAE causal sequence (sorted)

DEVS&DESS

Activity Scanning
Discrete Event

Timed Automata

Fig. 1. Formalism Transformation Graph (FTG).

In our approach, we allow the specification of composite systems by coupling
heterogeneous expressed in different formalisms. For the analysis of its prop-
erties, most notably, its behaviour, the composite system must be assessed
by looking at the whole multi-formalism system. For appropriate processing
(simulation, code generation, etc.) of the composite model, its components
may have to be transformed to a common formalism, which can be found in
the FTG. As we will see later, formalisms are meta-modelled and stored as
graphs. Thus, the transformations denoted by the arrows of the FTG can be
modelled as graph grammars.

2. Model Abstraction, concerned with the relationship between models at dif-
ferent levels of abstraction.

3. Meta-Modelling (models of models), which is the process of modelling for-
malisms. Formalisms are described as models using meta-formalisms. The

latter are nothing but formalisms expressive enough to describe other for-
malisms’ syntax and semantics. Examples are the Entity Relationship for-
malism or UML class diagrams. A model of a meta-formalism is called a
meta-meta-model; a model of a formalism is called a meta-model. Table 1
depicts the levels considered in our meta-modelling approach.

Level Description Example

Meta-Meta-
Model

Model that describes a formal-
ism that will be used to describe
other formalisms.

Description of Entity-
Relationship Diagrams, UML
class Diagrams

Meta-Model Model that describes a simu-
lation formalism. Specified un-
der the rules of a certain Meta-
Meta-Model

Description of Deterministic Fi-
nite Automata, Ordinary differ-
ential equations (ODE)

Model Description of an object. Speci-
fied under the rules of a certain
Meta-Model

f ′(x) = − sin x, f(0) = 0 (in the
ODE formalism)

Table 1. Meta-Modelling Levels.

To be able to fully specify modelling formalisms, the meta-level formalism
may have to be extended with the ability to express constraints (limiting
the number of meaningful models). For example, when modelling a Deter-
minsitic Finite Automaton, different transitions leaving a given state must
have different labels. This cannot be expressed within Entity-Relationship
diagrams alone. Expressing constraints is most elegantly done by adding a
constraint language to the meta-modelling formalism. Whereas the meta-
modelling formalism frequently uses a graphical notation, constraints are
concisely expressed in textual form. For this purpose, some systems [18] (in-
cluding ours) use the Object Constraint Language OCL [15] used in the
UML. As AToM3 is implemented in the scripting language Python [17], ar-
bitrary Python code may also be used.

3 Other approaches

A similar approach to our vision of Multi-Paradigm Modelling (although ori-
ented to the software engineering domain) is ViewPoint Oriented Software De-
velopment [9]. Some of the concepts introduced by ViewPoint Oriented Software
Development have a clear counterpart in our approach (for example, ViewPoint

templates are equivalent to meta-models). They also introduce the relationships
between ViewPoints, which are similar to our coupling of models and graph
transformations.

Other approaches to interconnecting formalisms are Category Theory [8], in
which formalisms are cast as categories and their relationships as functors. See
also [20] and [14] for other approaches.

There are other visual tools to describe formalisms using meta-modelling,
among them DOME [4], Multigraph [18], MetaEdit+ [12] and KOGGE [6]. Some
of these allow one to express formalism semantics by means of a textual language
(KOGGE for example uses a language similar to Modula-2). Our approach is
quite different, as we express such semantics by means of graph grammar mod-
els. We believe that graph grammars are a natural, declarative, and general way
to express transformations. As graph grammars are highly amenable to graph-
ical representation, they are superior to a purely textual language. Also, none
of the tools consider the possibility of “translating” models between different
formalisms.

There are various languages and systems for graph grammar manipulation,
such as PROGRES [16], GRACE [10] and AGG [1]. None of these have a meta-
modelling layer.

Our approach is original in the sense that we combine the advantages of
meta-modelling (to avoid explicit programming of customized tools) and graph
transformation systems (to express tool behaviour and formalism transforma-
tion). Our main contribution is in the field of multi-paradigm modelling [19], as
we have a general means to transform models between different formalisms.

4 AToM3: an overview

AToM3 is a tool written in Python [17] which uses and implements the concepts
presented above. Its architecture is shown in Figures 2 and 3. In both figures,
models are represented as white boxes, having in their upper-right hand corner
an indication of the meta-...model they were specified with. It is noted that in
the case of a graph grammar model, to convert a model in formalism Fsource

to a model in formalism Fdest, it is necessary to use the meta-models of both
Fsource and Fdest together with the meta-model of graph grammars.

The main component of AToM3 is the Kernel, which is responsible for load-
ing, saving, creating and manipulating models (at any meta-level, via the Graph-

Rewriting Processor), as well as for generating code for customized tools. Both
meta-models and meta-meta-models can be loaded into AToM3 as shown in
Figure 2. The first kind of models allows constructing valid models in a cer-
tain formalism, the second kind are used to describe the formalisms themselves.
Models, meta-models and meta-meta-models are all stored as Abstract Syntax

Graphs whose nodes and links are typed, and their relationships are subject to
constraints dictated by the formalism under which these models were defined.

The ER formalism extended with constraints is available at the meta-meta-
level. It is perfectly possible to define other meta-meta-formalisms using ER,
such as UML class diagrams. Constraints can be specified as OCL or Python
expressions, and the designer must specify when (pre- or post- and on which
event) the condition must be evaluated. Events can be semantic (such as editing

Meta−Model

MF

User Input
− Create Entities
− Delete Entities
− Verify conditions (local, global)

User Input
− Create Entities
− Delete Entities
− Verify conditions (local, global)

Model

... Meta−Meta Model

Load Formalism

Load Formalism

Model of formalism F

Model of formalism MF

MMF

F

Load Model

Save Model

Save Model

Load Model

AToM3 Kernel

AToM3 Kernel

U
se

r
In

te
rf

ac
e

M
od

el

Constraint Manager

Rewriting

Graph

Abstract

Syntax
Graphical

Model

Code Generator

Graph

Processor

U
se

r
In

te
rf

ac
e

Graphical

Icons

S
tr

uc
tu

re

A
S

G

A
S

G
 N

od
es

S
tr

uc
tu

re

AToM3 Meta*−
Models’ structure

AToM3 Kernel

Fig. 2. Meta-... Modelling in AToM3.

Fdest

Fsource

User Input
− Create Entities
− Delete Entities
− Verify conditions (local, global)

Load Formalism

Load Graph−Grammar

Meta−Model
Model of formalism

ER

Graph−Grammar

from Fsource to Fdest

Model of Transformation

Model−1 Model−1

FdestFsource

Save Model

Load Model

’Graph Grammar’

AToM3
Kernel

AToM3

Kernel

Fig. 3. Model Transformation in AToM3.

an attribute, or connecting two entities) or graphical (such as dragging, dropping,
or moving an object).

When modelling at the meta-meta-level, the entities which may appear in a
model must be specified together with their attributes. We will refer to this as
the semantic information. For example, to define the Petri-Nets Formalism, it
is necessary to define both Places and Transitions. Furthermore, for Places we
need to add the attributes name and number of tokens. For Transitions, we need
to specify their name attribute.

In the meta-model, it is also possible to specify the graphical appearance of
each entity when instantiated at the lower meta-level. For example, for Petri-
Nets, we can choose to represent Places as circles with the number of tokens

inside the circle and the name beside it, and Transitions as thin rectangles with
the name beside them. That is, we can specify how some semantic attributes
are displayed graphically. Constraints can also be associated with the graphical
entities.

The meta-meta-information is used by the Kernel to generate some Python
files (see the upper-right corner of Figure 2), which, when loaded by the Kernel,
allows the processing of models in the defined formalism. These files include a
model of the user interface presented when the formalism is loaded. This model
follows the rules of the “Buttons” formalism, and by default contains a “create”
button for each object found in the meta-model. For the case of the Petri-Net
formalism, it contains buttons to create Places, Transitions, and the connec-
tions between them. This model can be modified using AToM3 to for example
add buttons to execute graph grammars on the current model or to delete un-
wanted buttons. When a formalism is loaded, the Kernel interprets the user
interface model, to create and place the actual widgets and associate them with
the appropriate actions.

Figure 4 shows an example of meta-modelling at work. It shows AToM3 being
used to describe the Petri-Net formalism (left), and the automatically generated
tool (from the previous description) to process Petri-Nets.

For the implementation of the Graph Rewriting Processor, we have used an
improvement of the algorithm given in [5], in which we allow non-connected
graphs in Left Hand Sides (LHS) in rules. It is also possible to define a sequence
of graph grammars to be applied to the model. This is useful, for example to
couple grammars to convert a model into another formalism, and then apply an
optimizing grammar. Often, for clarity and efficiency reasons, graph grammars
are divided into different independent parts.

Rule execution can either be continuous (no user interaction) or step-by-step
whereby the user is prompted after each rule execution. As the LHS of a rule
can match different subgraphs of the host graph, we can also control whether
the rule must be applied to all the matching subgraphs (if disjoint), if the user
can choose one of the matching subgraphs interactively, or whether the system
chooses one at random.

As in grammars for formalism transformations we have a mixing of entities
belonging to different formalisms, it must be possible to open several meta-

Fig. 4. Meta-Model of the Petri-Net Formalism (left) and Generated Tool to Process
Petri-Net Models, with a Producer-Consumer model (right).

models at the same time (see Figure 3). Obviously, the constraints of the in-
dividual formalism meta-models are meaningless when entities in different for-
malisms are present in a single model. Such a model may come to exist during
the intermediate stages of graph grammar evaluation when transforming a model
from one formalism into another. It is thus necessary to disable evaluation of
constraints during graph grammar processing (i.e., all models are reduced to
Abstract Syntax Graphs). At the end of the execution of a graph grammar for
formalism transformation, the Kernel checks if the resulting model is valid in
some of the currently open formalisms, and closes the other formalisms.

5 Model manipulations

In this section we present some examples of the kind of model manipulations
performed in AToM3. These manipulations complement the default Kernel ca-
pabilities. When a tool is generated, it can be used to build, load and save models
and check whether they are correct. Graph grammars are a way to enrich these
functionalities. Some examples of the uses of graph grammars in AToM3 are:

– Formalism transformation: n example will be presented in subsection 5.1.

– Model optimization: these transformations reduce the complexity of a model.

– Simulator specification: allow us to express the operational semantics of a
formalism.

– Code generation: permit the generation of code for a specific tool.

5.1 Formalism Transformation

A formalism transformation takes a model m1 in a formalism Fsource and con-
verts it into a model m

′

1
but expressed in formalism Fdest. The FTG (see Fig-

ure 1) shows behaviour preserving transformations between formalisms. We have
implemented several of these transformations in AToM3 with graph grammars.
Some of the reasons to perform formalism transformations are:

– In a composite model with components described in different formalisms, it
may be possible to transform each component into some formalism reach-
able (in the FTG) from the formalisms of each component. Then, once the
composite model has all its components described in the same formalism, we
can simulate it.

– To solve problems that are easier to solve in some other formalism. For
example, in the case of a model in the Statecharts formalism, for which
we want to determine whether it can deadlock. As this kind of analysis is
well known for Petri-Nets, we can transform the Statecharts model into the
Petri-Nets formalism, and then solve the problem in that domain. We will
provide such a transformation (limited to non-hierarchical Statecharts) in
this section.

The Statecharts formalism is widely used for modelling reactive systems.
Statecharts can be described as an elaboration of the HiGraphs [11] semantics
as well as of State Automata. HiGraphs allow for hierarchy (blobs can be inside
blobs), parallelism (a blob can be divided into concurrent Orthogonal compo-
nents), Blobs are connected via hyperedges. Our meta-model for Statecharts is
thus composed of the following entities:

– Blobs. These have a name and represent the states in which the system
can be. A state may have one or more Orthogonal components inside. We
represent Blobs as rectangles.

– Orthogonal components. These have a name and a Statechart inside. We will
represent Orthogonal components as rectangles with rounded, dashed lines.
As we will see later, “insideness” is represented as a relationship at the
meta-level.

– Initial state. These kind of entities mark the state in which the system enters
when reaching a certain Orthogonal component.

The following relationships are also included in the meta-model:

– Hyperedge. This relationship implements a directed hyperedge and is used
to connect a group of Blobs. It contains the following attributes:
• Event, which is a list of the events that must occur for the transition to

take place;
• Broadcast Event, which is a list of the events to broadcast if the transition

takes place;
• and Actions which stores Python code to be executed when the transition

takes place.

Events can be global, or can be directed to a particular Orthogonal compo-

nent. Also included in the Event list is a guard: the condition of a particular
Orthogonal component being in a certain state.

– has Inside. This is a relationship between Orthogonal components and Blobs.
It expresses the notion of hierarchy: Blobs are inside Orthogonal components.

– composed of. This is a relationship between Blobs and Orthogonal compo-

nents. It expresses the notion of hierarchy in the other direction, meaning
that Blobs are composed of one or more Orthogonal components.

– has Initial. This relationship express the notion of hierarchy between Or-

thogonal components and Initial states.
– iconnection. This relationship allows the connection of an Initial state and a

Blob

As relationships has Inside, composed of and has Initial are a means to ex-
press hierarchy they are drawn as invisible links.

Some actions have been added to the meta-model to move all the Blobs inside
of Orthogonal components when the latter are moved. Also, when an Orthogonal

component is placed inside a Blob, this is enlarged to accomodate it. Figure 5
shows the meta-model and the generated tool for modelling Statecharts.

Fig. 5. The Meta-Model (left) and the generated tool for Statechart modelling. Used
here to model the Producer-Consumer Problem (right).

For brevity, in this section we will present a graph grammar to transform
non-hierarchical Statecharts into Petri-Nets. That is, a Statechart model can be
composed of several Orthogonal components, which can contain Blobs, but the
converse is not allowed. The model in Figure 5 has this restriction.

This transformation has been implemented in four different, independent
graph grammars. This, as there are four well defined steps for completing the
transformation, and there is no need to evaluate the applicability of the other
rules, as none of them will be applicable. This makes the transformation process
faster. Another reason to split the transformation is that it is easier to debug.
The four graph grammars are:

1. The first graph grammar identifies the events in the Statechart by looking
at the events each hyperedge has in its lists. It creates a Place for each event.
In our approach, each type of event in the system is assigned a Place. These
are considered interfaces in which the system puts a token whenever the
event takes place. For each Orthogonal component in the Statechart model,
the graph grammar creates “local” versions of the global events. Each global
event is connected to the local events via a unique Transition, in such a way
that when the global event is present, the token is broadcast to all the local
events of the Orthogonal components. This global/local distinction is useful
when an output event has to be sent:
– If the event has to be sent to a particular Orthogonal component, a token

will be placed in its corresponding local event Place.
– If it has to be broadcast to the whole system, it will be placed in the

global event Place.
Note also that the local event Places are connected to a Transition whose
purpose is to eliminate the token if it has not been consumed immediatelly
after the event took place. This graph grammar is shown in Figure 6.

1’
edone=edone+1

<ANY>/<ANY>
1

bedone<len(BEvents) and
isMulticast(BEvents[bedone])

1’
bedone=bedone+1

<ANY>/<ANY>
1

bedone<len(BEvents) and
isMulticast(BEvents[bedone])

1’
bedone=bedone+1

1’
bedone=bedone+1

::=

Rule 1: genInputEventPlaces

<ANY>/<ANY>
1

Transition t | t.name==node(1).Events[node(1).done]

isGlobal(Events[edone])
edone<len(Events)

2’

+node(1).Events[node(1).edone] name=node(1).Events[node(1).edone]

3’

4’

weight=1

name="GLOBAL "

Rule 3: genMCastOutputEventPlaces2

2

name==
Ortho(node(1).BEvents[bedone])

Place p | p.name==node(1).BEvents[node(1).bedone]

::= 2’ 5’4’

3’

weight=1

6’

8’

weight=1

7’

name="GLOBAL "
+Event(node(1).BEvents[node(1).bedone])

Event(node(1).BEvents[node(1).bedone])
name=

Rule 2: genMCastOutputEventPlaces1

2

name==
Ortho(node(1).BEvents[bedone])

::=

Event(node(1).BEvents[bedone])
name==

2’ 5’3 4’

3’

weight=1

6’

Place p | p.name==node(1).BEvents[node(1).bedone]

name=node(1)
.BEvents[node(1).bedone]

weight=1
7’

8’

name=node(1)
.BEvents[node(1).bedone]

9’
10’

weight=1

Transition t | t.name==node(1).Events[node(1).node]

Rule 4: genRegularOutputEventPlaces

bedone<len(BEvents)

<ANY>/<ANY>
1

::=
2’ 3’

weight=1

name="GLOBAL "+node(1).BEvents[node(1).bedone]

4’

Rule 5: createLocalEvents

1 2

Place p | p.name==node(1).name+"."+node(2).name

::=
1’

3’

4’

.BEvents[node(1).bedone]
name=node(1)

2’

node(1).name+"."+node(2).name
name=

5’

5’

weight=1

weight=1

6’

name="EMPTY "+node(4’).name

name="EMPTY "+node(5’).name

name="EMPTY "+node(4’).nameInscription:

Statecharts: Petri−Nets:

Orthogonal Component

Blob

Place

Transition

Pl2Tran and Tran2Pl
[Events]/[Broad_Events] Hyperedge

has_inside

composed_of

iconnection

has_Initial

Fig. 6. First Graph Grammar: creates the Local and Global Event Places.

It can also be observed how the local events are connected to their corre-
sponding Orthogonal component.

2. The second graph grammar creates a Place for each Blob and moves the
Hyperedges from the Blobs to the Places. Figure 7 shows this graph gram-
mar. The way the transfer of the hyperedges from the Blobs to the Places

1’

3’

2’

4’ 5’

name=node(1).name

1’ 3’

4’

6’ 2’ 7’

5’

Rule 5: deleteStates

::=
1

2
3 3’

Rule 4: deleteInitialState

1

2

3

4

5
6

7

7

tokens = 1

::=

1’

2’

3’ 4’

Rule 3: copyLoopHyperedges

2

3

4

1

Rule 2: startCopyingHyperedges

::=

1 2
3

4 5

6 7

Rule 1: statesIntoPlaces

1

2

3

::= ::=

Fig. 7. Second Graph Grammar: creates the Local and Global Event Places.

is done is by keeping a connection from the Blob to the associated Place.
The graph grammar also locates the initial state and thus puts a token in
the corresponding Place (see rule 4). Once all the hyperedges are moved, the
Blobs can be erased. During the execution of the Petri-Net, in the Places

that represent the states of the system, we will have a number of tokens
equal to the number of Othogonal components.

3. The third graph grammar converts the hyperedges into Transitions connected
to the appropriate Places. Figure 8 shows some of the rules of this graph
grammar (the implementation is composed of nine rules). The way to proceed
is first to identify the Place associated with the first event of the list of events
of the hyperedge and then make a connection between this event and an
itermediate Transition which is created in the process, and then eliminate
the event from the list. A similar process has to be followed for the lists of
events to be broadcast. The process finishes when both lists of events are
empty. Observe that we used a Prolog-like notation for identifying the first
element of the lists of events and its subsequent elimination.
Other rules of this graph grammar deal with the case when an Orthogonal

component is in a certain state; and with the case of an event to be sent to
a particular Orthogonal component.

4. The fourth graph grammar simply removes the Orthogonal components.

The results of the application of this graph grammar to the Statechart model
in Figure 5 is shown in Figure 9 (after applying a graph grammar for simplifying
Petri-Nets, not shown in this paper).

1’

4’

2’ [T] / <ANY>

1 2 [e | T] / X

3

weight=1

8’

weight=1

Rule 3: startGenInputEventTransitions2

[e | T] / <ANY>1 2 3

::=

4

6

7
5

name == node(7).name+"."+e

7’

5’

6’

3’9’

10’

::=

name==e

4

5

6

7

7’

5’

6’

weight = 1

2’ [T] / <ANY>

3’

5’
4’

1’

Rule 6: genInputEventTransitions2

Rule 9: endGenEventTransitions

::=
1’ 4’ weight = 1

3’
1 2 [] / []

3

Fig. 8. Third Graph Grammar (not Completelly Shown): eliminates Hyperedges.

1

1

1
1

1

1

1

1

1

1

1

1

1

1

buffer++

buffer−−

Produce

Consume

Empty buffer++

Empty buffer−−

Empty Produce

Empty Consume

In Full

In Empty

Buff.buffer++

Buff.buffer−−

Producer.Produce

Consumer.Consume

1 1
1 1

1

1

1

1

1

1

1

1
1

1

1

1

1

1

1

1

GLOBAL buffer++

0

GLOBAL buffer−−

0

GLOBAL Produce

0

GLOBAL Consume

0

Buff.buffer++

0

Buff.buffer−−

0

Producer.Produce

0

Consumer.Consume

0

Empty

1

Full

0

Producing

1

Wait4Prod

1

Wait4Cons

0

Computing

0

Fig. 9. Result of the application of the graph grammat to the Producer-Consumer
Statechart.

There are other approaches to the conversion of Statecharts into Petri-Nets.
In [13], a manual method is proposed, but it is not systematic. Basically, a human
Petri-Net and Statecharts expert would have to understand the behaviour of the
Statechart model and then model an equivalent Petri-Net. An equivalence proof
between both models is not provided. The possibility of further simplification
and manipulation of the model is not considered. Also, events are represented
as Transitions whereas in our approach, we insert interface Places to represent
Global and Local events. This facilitates the reuse of the Petri-Net models and
makes it possible to send events to particular orthogonal components.

6 Conclusions and future work

In this paper we have discussed the advantages of a multi-paradigm approach
when modelling complex systems. Meta-Modelling means explicitly model the
formalisms. It allows for the automatic generation of customized tools. Formal-
ism transformation permits the translation of models between formalisms to
solve problems that are easier to solve in other formalisms.

We have presented AToM3, a meta-modelling tool able to generate cus-
tomized, formalism-specific tools. As models are stored in the form of graphs,
AToM3 can manipulate them using graph grammars. Users can define –in a vi-
sual, high level way– graph grammars to manipulate their models without having
to modify or have knowledge about the AToM3 kernel code.

In particular, we have shown how the user can analyze a Statechart model
by converting it into a Petri-Net. Some other graph grammars could then be
applied to reduce its complexity, and to simulate it or to generate code for
a specific Petri-Net tool for further processing. Note how this process can be
completely automated from the appropriate graph grammars. The process could
also be made invisible to the Statecharts modeller, who could be only interested
in knowing –in the case of the example presented– whether the Buffer can be
made to exceed its capacity.

The advantages of using an automated tool for generating customized model-
processing tools are clear: instead of building the whole application from scratch,
it is only necessary to specify –in a graphical manner– the kind of models we will
deal with. The processing of such models can be expressed by means of graph
grammars, at the meta-level. Our approach is also highly applicable if we want
to work with a slight variation of some formalism, where we only have to specify
the meta-model for the new formalism and a tranformation into a “known”
formalism (one that already has a simulator available, for example). We then
obtain a tool to model in the new formalism, and are able to convert models in
this formalism into the other for further processing. We have not only described
formalisms commonly used in the simulation of dynamical systems, but we have
also described formalisms such as Data Flow Diagrams and Structure Charts
used for the structured description of software.

In the future, we plan to extend the tool in several ways:

– Describing another meta-meta-model in terms of the current one (the Entity-
Relationship meta-meta-model) is possible. In particular, we plan to describe
UML class diagrams. For this purpose, relationships between classes such as
inheritance should be described. Thanks to our meta-modelling approach,
we will be able to describe different subclassing semantics and their rela-
tionship with subtyping. Furthermore, as the semantics of inheritance will
be described at the meta-level, code can be generated in non-object-oriented
languages.

– Exploring the automatic proof of behavioural equivalence between two mod-
els in different formalisms by bi-simulation. This may help in validating that
a graph grammar for formalism transformation is correct.

– Integrating a module to help the user to decide which alternatives are avail-
able a a certain moment of the modelling of a multi-formalism system. This
module may assist in deciding to which formalism to transform each com-
ponent (following the FTG).

– Extending the tool to allow collaborative modelling. This possibility as well
as the need to exchange and re-use (meta-. . .) models raises the issue of
formats for model exchange. A viable candidate format is XML.

References

1. AGG Home page: http://tfs.cs.tu-berlin.de/agg/
2. AToM3 home page: http://moncs.cs.mcgill.ca/MSDL/research/projects/ATOM3.html
3. Blonstein, D., Fahmy, H., Grbavec, A.. 1996. Issues in the Practical Use of Graph

Rewriting. LNCS 1073, Springer, pp.38-55.
4. DOME guide. http://www.htc.honeywell.com/dome/, Honeywell Technology Cen-

ter. Honeywell, 1999, version 5.2.1
5. Dorr, H. 1995. Efficient Graph Rewriting and its implementation. LNCS 922,

Springer.
6. Ebert, J., Sttenbach, R., Uhe, I. Meta-CASE in Practice: a Case for KOGGE

Proceedings of the 9th International Conference, CAiSE’97, Barcelona. LNCS
1250, 203-216, Berlin, 1997. See KOGGE home page at: http://www.uni-
koblenz.de/∼ist/kogge.en.html

7. Ehrig, H., Kreowski, H.-J., Rozenberg, G. (eds.) 1991. Graph Grammars and their
application to Computer Science: 4th International Workshop, Bremen, Germany,
March 5-9, 1990. LNCS 532, Springer.

8. Fiadeiro, J.L., Maibaum, T. 1995. Interconnecting Formalisms: Supporting Modu-
larity, Reuse and Incrementality Proc.3rd Symposium on the Fundations of Soft-
ware Engineering, G.E.Kaiser(ed),pp.: 72-80, ACM Press.

9. Finkelstein, A., Kramer, J., Goedickie, M. 1990. ViewPoint Oriented Software De-
velopment Proc, of the 3rd Workshop on Software Engineering and its Applications,
Tolouse.

10. GRACE Home page:
http://www.informatik.uni-bremen.de/theorie/GRACEland/GRACEland.html

11. Harel, D. On visual formalisms. Comm. of the ACM, 31(5):514–530, 1988.
12. Kelly, S., Lyytinen, K., Rossi, M. MetaEdit+: A fully configurable Multi-User

and Multi-Tool CASE and CAME Environment In Advanced Information System
Engineering; LNCS 1080. Berlin, Springer 1996. See MetaEdit+ Home page at:
http://www.MetaCase.com/

13. King, P., Pooley, R. Using UML to Derive Stochastic Petri Net Models In Davies
and Bradley Editors. UKPEW’99, Proc. 15th UK Performance Engineering Work-
shop. Bristol. pp.: 45-56.

14. Niskier, C., Maibaum, T., Schwabe, D. 1989 A pluralistic Knowledge Based Ap-
proach to Software Specification 2nd European Software Engineering Conference,
LNCS 387, Springer, pp.:411-423.

15. OMG Home Page: http://www.omg.org
16. PROGRES home page: http://www-i3.informatik.rwth-

aachen.de/research/projects/progres/main.html
17. Python home page: http://www.python.org
18. Sztipanovits, J., et al. 1995. ”MULTIGRAPH: An architecture for model-integrated

computing”. In ICECCS’95, pp. 361-368, Ft. Lauderdale, Florida, Nov. 1995.
19. Vangheluwe, H. DEVS as a common denominator for multi-formalism hybrid sys-

tems modelling. In IEEE International Symposium on Computer-Aided Control
System Design, pp.:129–134. IEEE Computer Society Press, September 2000. An-
chorage, Alaska.

20. Zave, P., Jackson, M. 1993. Conjunction as Composition ACM Transactions on
Software Engineering and Methodology 2(4), 1993, 371-411.

21. Zeigler, B., Praehofer, H. and Kim, T.G. Theory of Modelling and Simulation:
Integrating Discrete Event and Continuous Complex Dynamic Systems. Academic
Press, 2nd ed., 2000.

