
Processing Causal Block Diagrams with
Graph Grammars in AToM3

Ernesto Posse1, Juan de Lara1 � 2, and Hans Vangheluwe1

1 School of Computer Science
McGill University, Montréal

Québec, Canada
eposse@cs.mcgill.ca, hv@cs.mcgill.ca

2 ETS Informática
Universidad Autónoma de Madrid

Madrid, Spain,
Juan.Lara@ii.uam.es

Abstract. AToM3 is a tool which supports multi-formalism modelling and meta-
modelling to facilitate computer assisted analysis and design of complex systems.
To enable the automatic generation of modelling tools, the formalisms themselves
are modelled at a meta-level within an appropriate meta-formalism. The gener-
ated tools are able to process (create, edit, simulate,... ) models expressed in the
corresponding formalism. AToM3 relies on graph grammars and graph rewrit-
ing techniques to perform the transformations between formalisms as well as for
other tasks, such as code generation, model optimization and simulator specifica-
tion. As a case study, we describe the syntax and operational semantics of Causal
Block Diagrams (CBD). The animation of such operational semantics results in
the actual simulation.

Keywords: Modelling & Simulation, Meta-Modelling, Multi-Formalism Modelling,
Graph Grammars, Operational Semantics.

1 Introduction

AToM3 is a visual Meta-Modelling tool developed by the authors, which supports mod-
elling of complex systems. Complex systems are characterized by components and as-
pects which, in addition to being numerous, have structure and behaviour which cannot
be appropriately described in a single formalism. Examples of commonly used mod-
elling formalisms are Differential-Algebraic Equations (DAE), Causal Block Diagrams,
Petri Nets, Entity-Relationship diagrams (ERD), and State Charts.

From the meta-specification of a modelling formalism, AToM3 is able to produce
customized tools to process models specified in the described formalism. Both syntax
and semantics of a formalism are modelled. Some of the model manipulations in which
we are interested include transformations to other formalisms, simulations, optimiza-
tions and (textual) code generation for other tools.

Causal Block Diagrams (CBD) are a general formalism used for modelling of causal,
continuous-time systems. The simulation of such systems on digital computers requires



a discrete-time approximation. There are several approaches to this simulation prob-
lem. One interesting solution is to describe CBD syntax in an appropriate CBD meta-
model and to provide a specification of the operational semantics of such diagrams
using graph grammars. The animation of such operational semantics will result in the
actual simulation. We can thus regard the graph grammar as an executable specification.
This approach is desirable for its generality, since it can be applied to a wide class of
formalisms besides CBD. There is, however, a tradeoff made between generality and
efficiency. As a general rule, customized, hand-coded, formalism-specific simulation
algorithms are more efficient. The approach of relying on graph grammars is expensive
due to the nature of the graph matching algorithm. However, there are other motivations,
both theoretical and practical:

– Explicitly defining the operational semantics of any formalism should be consid-
ered as part of the design of the actual simulator, providing a specification, from
which a more efficient implementation could be built.

– The specification also provides a framework (a reference implementation) for veri-
fying and testing different implementations.

– It provides a portable simulator, since it is more abstract than a hand-coded imple-
mentation.

– It allows for reasoning about the described systems. For example, it allows for the
definition of general algorithms for bisimulation.

The rest of the paper is organized as follows. Section 2 describes the motivations for
meta-modelling. Section 3 relates graph-grammars to meta-modelling. Section 4 gives
a brief description of AToM3’s architecture. Section 5 describes the specification (meta-
model) of the CBD formalism. Section 6 provides the definition of CBD semantics in
terms of graph grammars.

2 Meta-Modelling

One of the characteristics of complex systems is the diversity of their components. Con-
sequently, it is often desirable to model the different components using different mod-
elling formalisms. This is certainly the case when inter-disciplinary teams collaborate
on the development of a single system. Flexibility is also required as different teams
may prefer slight variations of a particular formalism. A proven method to achieve the
required flexibility for a modelling language that supports many formalisms and mod-
elling paradigms is to model the modelling language itself [4][10]. Such a model of the
modelling language is called a meta-model. It describes the possible structures which
can be expressed in the language. A meta-model can easily be tailored to specific needs
of particular domains. This requires the meta-model modelling formalism to be rich
enough to support the constructs needed to define a modelling language. Taking the
methodology one step further, the meta-modelling formalism itself may be modelled
by means of a meta-meta-model. This meta-meta-model specification captures the ba-
sic elements needed to design a formalism. Table 1 depicts the levels considered in our
meta-modelling approach.



Level Description Example
Meta-Meta-Model Model describes a formalism that

will be used to describe other for-
malisms.

Description of Entity-Relationship
Diagrams, UML class Diagrams

Meta-Model Model describes a simulation for-
malism. Specified under the rules
of a certain Meta-Meta-Model

Description of Deterministic Fi-
nite Automata, Ordinary differen-
tial equations (ODE)

Model Description of an object. Specified
under the rules of a certain Meta-
Model

f
���

x ����� sinx 	 f � 0 �
� 0 (in the
ODE formalism)

Table 1. Meta-modelling levels.

Formalisms such as ERD are often used for meta-modelling. To be able to fully
specify modelling formalisms, the meta-level formalism may have to be extended with
the ability to express constraints (limiting the number of meaningful models). For ex-
ample, when modelling a Determinsitic Finite Automaton, different transitions leav-
ing a given state must have different labels. This cannot be expressed within the ERD
formalism alone. Expressing constraints is most elegantly done by adding a constraint
language to the meta-modelling formalism. Whereas the meta-modelling formalism fre-
quently uses a graphical notation, constraints are concisely expressed in textual form.
For this purpose, some systems [6], including AToM3 use the Object Constraint Lan-
guage OCL [8] used in the UML.

Fig. 1 depicts the structure we propose for a meta-modelling environment. AToM3

was initialized using a hand-coded ERD meta-meta-model. As the ERD formalism can
be described as an ERD model, the environment was subsequently bootstrapped. Meta-
formalisms are described by meta-meta-models. Although it is possible to describe
a meta-formalism mf1 using another meta-formalism mf2 we consider both as meta-
formalisms as no more capabilities are added by going to higher meta-levels.

3 Graph grammars and Meta-modelling

Graph-grammars play an important role in our approach to the modelling of complex
systems. We represent models as Abstract Syntax Graphs (as a logical generalisation of
Abstract Syntax Trees), and therefore model processing as graph grammars. Some of
the manipulations we are interested in are:

– Formalism transformation: Given a model in a certain formalism, these transfor-
mations convert it into a model, but expressed in another formalism. For Modelling
and Simulation, possible transformations are given in a Formalism Transformation
Graph [11].

– Model optimization: These transformations do not change the formalism in which
the model is expressed. Their application results in a reduction of the model com-
plexity.



Meta−Model

MF

User Input
− Create Entities
− Delete Entities
− Verify conditions (local, global)

User Input
− Create Entities
− Delete Entities
− Verify conditions (local, global)

Model

... Meta−Meta Model

Load Formalism

Load Formalism

Model of formalism F

Model of formalism MF

MMF

F

Load Model

Save Model

Save Model

Load Model

AToM3 Kernel

AToM3 Kernel

U
se

r I
nt

er
fa

ce
M

od
el

Constraint Manager

Rewriting

Graph

Abstract

Syntax
Graphical

Model

Code Generator

Graph

Processor

U
se

r I
nt

er
fa

ce

Graphical

Icons

S
tru

ct
ur

e

A
S

G

A
S

G
 N

od
es

S
tru

ct
ur

e

AToM3 Meta*−
Models’ structure

AToM3 Kernel

Fig. 1. Proposed working scheme for a meta-modelling environment.

– Code Generation: These transformations produce a textual representation of the
model (subject to syntactic constraints).

– Simulator specification: These graph grammars specify the operational semantics
of the model. We will present an example of this kind of graph grammar in sec-
tion 5.

All these tasks depend on the formalisms of interest. However, since models deter-
mined by some meta-model are graphs (subject to the constraints given by the meta-
model), these tasks can be performed by a generic graph-transformation algorithm.
Therefore it makes sense to combine meta-modelling and graph-grammars in a uni-
fying framework. Meta-models determine the classes of graphs that are allowed on the
LHS and RHS of a graph-grammar rule. Furthermore, the rules themselves, and the
grammars, can be viewed as models in the graph-grammar formalism, which itself can
be described in a meta-model.

There are tools for specifying graph-grammars and tools for meta-modelling, but to
our knowledge no tool combines them in a unified framework. AToM3 was conceived
to fill this gap.

We would like to emphasize the role of graph-grammars in Modelling and Simu-
lation. As mentioned before, graph transformations can be regarded as models, which
can process models of other formalisms (Fig. 2 (a)). This basic paradigm can be ap-
plied to the general process of simulation. In order to simulate a model, one must first
provide values to the model’s parameters, and feed these, with the actual input, to the
simulator ([12]). Each of these processes can be specified by graph grammars (Fig. 2
(b)). In transformations T1 and T2, the given model is enriched with additional struc-
ture (parameters and input). Transformation T3 is the actual simulator, which can also



Model T 1
Parameters
Model with T 2

Model with
Parameters,
Input, and
Initial Conditions

T 3 Output

Model M

Formalism F
Graph Grammar G

GG Engine

Graph Grammar

Model M’

Formalism F’

(a)

(b)

Fig. 2. Graph-grammars in Modelling and Simulation.

be specified as a graph grammar, based on the operational semantics of the model’s for-
malism. Input as well as output, can themselves be regarded as models in a formalism
of traces (time-segments) of the values of interest.

4 AToM3

AToM3 is a Meta-Modelling tool written in Python [9]. Its main component is the Ker-
nel, which is responsible for loading, saving, creating and manipulating models (at any
meta-level), as well as for generating code for customized tools. Both meta-models and
meta-meta-models can be loaded when AToM3 is invoked (see Figure 1). The first kind
of models allow construction of valid models in a certain formalism, the latter are used
to describe the formalisms themselves. In AToM3 all models, irrespective of meta-level,
have the same internal structure (a graph).

The ERD formalism extended with constraints is available at the meta-meta-level.
Constraints can be specified as OCL or Python expressions, and the designer must spec-
ify when (pre- or post- and on which event) the condition must be evaluated. Events
can be semantic (such as editing an attribute, connecting two entities, etc.) or graphical
(such as dragging, dropping, etc.)

When modelling at the meta-meta-level, the entities which may appear in a model
must be specified together with their attributes. AToM3 supports two kinds of attributes:
regular and generative. Regular attributes are used to identify characteristics of the
current entity. Generative attributes are used to generate new attributes at a lower meta-
level. The generated attributes may be generative in their own right. In this way a meta-
formalism, such as the ERD can be used to describe other meta-formalisms, such as the
UML class diagrams. Both types of attributes, regular and generative may contain data
or code for pre- and post-conditions.

The meta-meta-information is used by the Kernel to generate some Python files (see
upper-right corner of Fig. 1), which, when loaded by the Kernel, allows the processing



of models in the defined formalism. These files include a model of the user interface
presented when the formalism is loaded. This model follows the rules of the “Buttons”
formalism, and by default contains a button to create each object found in the meta-
model. For the case of the Petri-Nets formalism ([7]), it would contain buttons to create
Places, Transitions, and the connections between them. This model can be modified
using AToM3 to for example add buttons to execute graph grammars on the current
model or delete unwanted buttons. When a formalism is loaded, the Kernel interprets
this user interface model, to create and place the actual widgets and associate them with
the appropriate actions.

The functionalities of the generated tools include creating models under the rules of
the specified formalism, verifying that these models are valid, loading, saving, and pro-
ducing a Postscript file with its graphical representation. Further model manipulations
can be obtained by defining appropriate graph grammars.

For the implementation of the Graph Rewriting Processor, we have used an im-
provement of the algorithm given in [5], in which we allow non-connected graphs in
LHSs. It is also possible to define a sequence of graph grammars that have to be applied
to the model. This is useful, for example to couple grammars to convert a model into
another formalism, and then apply an optimizing grammar. For clarity and efficiency
reasons graph grammars are often divided in independent parts. In our tool, rules are
ordered based on a user-assigned priority, and the rewriting system iteratively applies
matching rules in the grammar to the graph, until no more rules are applicable.

Rule execution can either be continuous (no user interaction) or step-by-step whereby
the user is prompted after each rule execution. As the LHS of a rule can match different
subgraphs of the host graph, we can also control whether the rule must be applied in all
the subgraphs (if disjoint), whether the user can choose one of the matching subgraphs
interactively, or whetherthe system chooses a random one.

As in grammars for formalism transformations we have a mixing of entities belong-
ing to different formalisms, it must be possible to open several meta-models at the same
time. Obviously, the constraints of the individual formalism meta-models are meaning-
less when entities in different formalisms are present in a single model. Such a model
may come to exist during the intermediate stages of graph grammar evaluation when
transforming a model from one formalism into another. It is thus necessary to disable
evaluation of constraints during graph grammar processing (i.e. all models are reduced
to Abstract Syntax Graphs). At the end of the execution of a graph grammar for for-
malism transformation, the Kernel checks if the resulting model is valid in the active
formalism. Formalisms used for intermediate processing are closed appropriately.

5 Meta-Modelling CBD with AToM3

As an example of AToM3’s capabilities to model syntax and operational semantics of
formalisms, we present Causal Block Diagrams (CBD). CBD are commonly used in
tools such as MathWorks’ Simulink (tm).

CBDs have two basic entities: blocks and links. Blocks represent transfer functions,
such as arithmetic operators or integators. Links transmit signals between blocks. Sig-



nals are functions of time. We meta-model CBD syntax by means of an ERD model1.
Our representation consists of an entity called block with an attribute that represents its
type2 (e.g. constant generator, or addition). Links are modelled as a relation between
such entities. Links have an attribute representing the value of the signal at the cur-
rent time of simulation. We also include other elements in our ERD meta-model, called
blinks, point, and focus. They will not represent syntactic elements of the CBD per se,
but structures necessary to simulate them. This is explained in more detail below. Fig. 3
shows AToM3 with the CBD meta-model (on the left) and the generated tool to process
CBD models (on the right).

Fig. 3. ER metamodel of CBD (left), and generated tool to process CBD (right)

When simulating CBDs, unless a parallel machine is used, with a processor for
each block, where all the processors work in perfect synchronization, one must choose
a strategy for propagating information in a way which does not create inconsistencies.
This means that there needs to be an ordering in evaluation of dependent nodes. Sub-
graphs that are independent could be evaluated concurrently, but only before any block
that is influenced by them.

The solution is simple: 1) order the nodes by a topological sort of the graph (done
by a standard depth-first traversal) 2) evaluate each block following this ordering. In
section 6.1 we present such an algorithm by means of a graph grammar. For this we
require an additional type of link between blocks, which we call blink. A blink between
a block B1 and a block B2 represents the relation “evaluate B1 before evaluating B2”.
After the topological sort has finished, there will be a hamiltonian path over the blocks
where the blocks will be connected by edges of type blink. The other entity, the focus
is a pointer to the block being processed. Only one focus entity is created by the graph
grammar, since our approach is purely sequential.

1 A meta-meta-model for the ERD formalism is present in AToM3

2 AToM3 has a meta-model of Types.



5.1 CBD Denotational Semantics

Here, we provide an informal description of the denotational semantics of block dia-
grams (Figure 4 on the left). This description simply associates each block diagram to
a set of equations representing the values of the links between blocks as signals. More
precisely, the denotation of a block diagram is the set of signal functions corresponding
to every link in the diagram 3.

In order to simulate CBD on a digital computer we need to discretize the signals,
i.e. use the natural numbers as the time-base for the signals. The interpretation of the
delay block adopted here is only for a discrete time-base. The other blocks have the
same interpretation for both discrete and continuous time. The denotation for the delay
block in continuous time has to take a time segment as initial condition, instead of the
point value h, shown here.

where op is in {+,-,*,/}

c
x(t) = c

Arithmetic operators

Constant signal generator

Delay operator

op

x(t)

y(t)
z(t) = x(t) op y(t)

delay

i

x(t)
y(0) = i
y(t) = x(t-1) for t > 0

c
X

Constant signal generator

Arithmetic operators

Delay operator

Op

X

Y Op

where Z=[X(t) op Y(t): t>=0]

Y

X
Z

where op is in {+,-,*,/}

delay

i

X [i]#X
delay

i

X

X#[c]
c

Fig. 4. Denotational (left) and Operational (right) semantics of CBD.

6 Processing CBD models

By having the natural numbers as our time base, we can view signals as streams, i.e. un-
bounded sequences of the values that the signals take at the discrete points. This allows
us to see the block diagram as a dataflow network. Here we present an approach based
on [1]. One way to model this is by providing each link with an attribute that represents
the complete stream computed so far. By doing so, the definition of the operational se-
mantics of CBDs by means of a graph grammar becomes straight-forward. Certaintly

3 In our treatment of causal block diagrams we require the explicit use of delay blocks whenever
there is a feedback loop. The reason is that otherwise, the denotational semantics given here
would produce inconsistencies in the presence of such loops. Furthermore we require there to
be at least one constant generator in the model.



this is space-expensive but, as we mentioned in the introduction, the goal of this ap-
proach is not to achieve efficiency, but to be able to define an executable specification
of the operational semantics.

A first, stream-oriented approach to the operational semantics is straightforward. We
observe the following conventions: uppercase letters represent streams, explicit streams
are written as lists with square brackets, e.g. � x0 � x1 � x2 ���� � . Stream concatenation is
done with the # operator. If we have a finite stream X , then X# � e � represents the stream
resulting from appending e to X . The operational semantics are defined then as shown
in figure 4 (right).

This matches the denotational semantics: The constant generator simply generates
an infinitely long stream: X ��� c � c � c ���� � . Hence X � t ��� c for all t � 0. The rule for an
arithmetic operator block � guarantee that if X ��� x0 � x1 � x2 ���� � and Y ��� y0 � y1 � y2 ���� �
then Z ��� x0 � y0 � x1 � y1 � x2 � y2 ���� � , that is, Z � t ��� X � t ��� Y � t � for all t � 0. Finally,
for the delay operator we have that if the input is X ��� x0 � x1 � x2 ���� � then the output is
Y ��� i � x0 � x1 � x2 ���� � , i.e. Y � 0 � � i, Y � 1 � � X � 0 � , Y � 2 � � X � 1 � , etc. Hence Y � t � � X � t ! 1 �
for all t " 0.

6.1 Topological Sort

The problem with these rules is that they do not take into account the issue of evaluation
order. This might be enough to reason about CBDs, but not to produce an “executable
specification”. In order to deal with this, we introduce a set of rules which will sort the
blocks. This set of rules is to be evaluated before the actual operational semantics rules.

The general idea of this set of rules is based on a depth-first search of the graph
[3]. Here we explicitly construct the evaluation path, i.e. we create blinks between the
blocks. First we find some root block4, a block without parents, and visit all its chil-
dren recursively, marking with a colour blocks already visited. When a node has not
been visited, it is white. When it has been visited but not all its decendants have been
explored, it is gray. Otherwise it is black. We also keep a pointer to the node currently
visited, which we call the focus. As the focus goes from parent to child, a blink edge is
created between them, and a blink coming out of the parent is transferred to the child.
When backtracking after finding a dead-end (i.e. a gray or black node, already visited),
blinks are left unchanged. When a branch has been completely explored, a new root is
searched for and the process is repeated until all nodes are coloured black.

Given the space limitations only some representative rules are shown (for details, we
refer to the AToM3 web-page [2]). Blocks will have a counter representing the number
of immediate children being explored. The rule in Fig. 5 shows the rule representing
the discovery of a node that hasn’t been visited, as described above. (Dashed arrows are
blinks.)

Another important rule is shown in Fig. 6, depicting the backtracking when a loop
is detected or when all the children have been visited.

The graph-grammar implementing the topological sort, adds a blink between the
last node and the first, making it a loop.

4 In the CBD presented here there will always be at least one root node, since we require to be
at least one constant generator.



color=gray
cc = n

focus focus

color=white
cc=0

color=gray
cc = n+1

color=gray
cc=0A B

C

A B

C

Fig. 5. Topological sort of a CBD: new non-terminal discovered

focus

A
color=gray

cc = n
color=gray

cc = 0 color=black

D

B

C
focus

A
color=gray
cc = n-1

color=black
cc = 0 color=black

D

B

C

Fig. 6. Topological sort of a CBD: loop detected or children completed.

6.2 Operational Semantics

We need to adapt the rules shown in Fig. 4 so that blocks are evaluated in the correct
order. This is implemented by focusing on one block, evaluating it, and follow the blinks
created by the topological sort. An example of one such rule is shown in figure 7.

Op

X

Y OpY

X

Z

A

B C

focus

A

B C

focus

D D

where Z=[X(t) op Y(t) for t>=0]

Fig. 7. A representative rule for evaluation of a CBD.

Since the topological sort returns a loop covering all nodes, evaluation proceeds
following the described scheme until some termination criteria is met. To specify ter-
mination, we add two global attributes to the meta-model of CBD: an iteration counter,
and a maximum number of iterations attribute. Models in AToM3 can also have user-
defined constraints, making it easy to define the termination criteria in terms of these
atributes.



6.3 Simulation Results

The specified CBD simulator was tested on the harmonic oscillator equation (also
known as the “circle test”): dx2

dt2 ��! x � x � 0 �#� 1 � dx
dt � 0 �#� 0. Full results can be found

on the AToM3 homepage [2].

7 Conclusions

In this article we have presented our approach to modelling complex systems, which
is based on meta-modelling and multi-formalism modelling, and is implemented in the
software tool AToM3. This code-generating tool, developed in Python, relies on graph
grammars and meta-modelling techniques.

We have demonstrated how both syntax and operational semantics of the commonly
used formalism Causal Block Diagrams formalism can be modelled. When doing so in
AToM3, a tool for modelling and simulating CBD is automatically obtained.

Our main contribution is the unification of meta-modelling (formalisms – classes of
models – may be modelled in their own right) and graph transformation based on graph
grammar specifications.

The advantages of using an automated tool for generating customized model-processing
tools are clear: instead of building the whole application from scratch, it is only nec-
essary to specify –in a graphical manner– the kinds of models we will deal with. The
processing of such models can be expressed at the meta-level by means of graph gram-
mars.

AToM3, with meta-models for modelling with Entity-Relationship, Data Flow Di-
agrams, Structure Charts, Petri-Nets, Statecharts, GPSS, DEVS and Finite State Au-
tomata and some transformations is available at [2].

Acknowledgements

This paper has been partially sponsored by the Spanish Interdepartmental Commission
of Science and Technology (CICYT), project number TEL1999-0181.Prof. Vangheluwe
gratefully acknowledges partial support for this work by a National Sciences and Engi-
neering Research Council of Canada (NSERC) Individual Research Grant.

References

1. Abelson H., Sussman G. J. Structure and Interpretation of Computer Programs 2nd edition.
MIT Press. 1996.

2. AToM3 Home page:
http://moncs.cs.mcgill.ca/MSDL/research/projects/ATOM3.html

3. Cormen, T., Leiersson, C. H., Rivest, R. S. Introduction to Algorithms 1st edition. MIT Press.
1990.

4. DOME guide. http://www.htc.honeywell.com/dome/, Honeywell Technology Center. Hon-
eywell, 1999, version 5.2.1



5. Dorr, H. 1995. Efficient Graph Rewriting and its implementation. Lecture Notes in Computer
Science, 922. Springer.

6. Gray J., Bapty T., Neema S. 2000. Aspectifying Constraints in Model-Integrated Comput-
ing, OOPSLA 2000: Workshop on Advanced Separation of Concerns, Minneapolis, MN,
October, 2000.

7. Murata, T. Petri Nets: Properties, analysis and applications. Proceedings of the IEEE, 77(4)-
541-580.

8. OMG Home Page: http://www.omg.org
9. Python home page: http://www.python.org

10. Sztipanovits, J., et al. 1995. ”MULTIGRAPH: An architecture for model-integrated comput-
ing”. In ICECCS’95, pp. 361-368, Ft. Lauderdale, Florida, Nov. 1995.

11. Vangheluwe, H. DEVS as a common denominator for multi-formalism hybrid systems mod-
elling. In Andras Varga, editor, IEEE International Symposium on Computer-Aided Control
System Design, pages 129–134. IEEE Computer Society Press, September 2000. Anchorage,
Alaska.

12. Zeigler, B., et al. 2000 Theory of Modelling and Simulation: Integrating Discrete Event and
Continuous Complex Dynamic Systems. Academic Press. Second Edition. 2000


