
Using Meta-Modelling and Graph Grammars to process GPSS models

Juan de Lara1 � 2
1E.T.S. de Informática

Universidad Autónoma de Madrid

Ctra. Colmenar km. 15, Campus Cantoblanco

28049 Madrid, Spain

Juan.Lara@ii.uam.es, jlara@cs.mcgill.ca

Hans Vangheluwe2

2School of Computer Science

McGill University

3480 University Street

Montréal, Québec, Canada H3A 2A7

hv@cs.mcgill.ca

Abstract

This paper discusses the benefits of combining meta-
modelling and graph transformations to automatically gen-
erate modelling tools for simulation formalisms. In meta-
modelling, formalisms are modelled in their own right at
a meta-level within an appropriate meta-formalism. A
meta-model processor uses this information to automati-
cally generate tools to process –create, edit, check, opti-
mize, transform and generate simulators for– the models
in the described formalism. We propose the representa-
tion of (meta-)models as graphs, and subsequently specify
model manipulations as graph grammars. We also present
AToM3, A Tool for Multi-formalism and Meta-Modelling
which implements these concepts. As an example, we show
how to build a meta-model for the popular process interac-
tion discrete event language GPSS in AToM3. From this
meta-model, AToM3 automatically generates a visual tool
to build GPSS models. We also define a graph grammar
to generate textual code for the HGPSS simulator from the
graphically specified GPSS models.
Keywords: Meta-Modelling, Multi-Formalism, Graph
Grammars, GPSS, Automatic Code Synthesis.

1 Introduction

Meta-Modelling is the process of modelling formalisms. In
the context of Modelling and Simulation we are interested
in formalisms such as Petri nets, DEVS, GPSS [11] [23]
and Ordinary Differential Equations (ODEs).
A model of a formalism should contain enough informa-
tion to permit the automatic generation of a tool to check
and build models subject to the described formalism syntax.
The advantage of this meta-modelling approach is clear: in-
stead of building a whole application from scratch, it is only
necessary to specify the kind of models we will deal with.
If this specification is done graphically, the time to develop
a modelling tool can be drastically reduced to a few hours.
Other benefits, such as reduction of testing, ease of change,
and maintainability are also obtained.

In Modelling and Simulation we are also interested in other
model manipulations, such as:

1. Model simulation.

2. Model optimization, for example, reducing its com-
plexity.

3. Model transformation into another (behaviourally
equivalent) model, expressed in a different formalism.
This may be useful in several situations:

� In a composite model with multiple heteroge-
neous components, it may be possible to trans-
form each of those components into a common
formalism. Then, once the composite model has
all its components described in the same formal-
ism, it is possible to process the entire model
meaningfully. This is the core of the multi-
formalism approach to modelling complex sys-
tems [25].

� To solve problems that are easier in another for-
malism. An example is the case of an ODE
model which does not have an analytical solu-
tion. To solve this problem we transform the
model into the Difference Equations formalism
(this is usually done by numerical solvers) and
solve it in this domain. We will lose some infor-
mation when performing this particular transfor-
mation, due to discretization.

4. Generation of code for an existing simulator.

In this paper, we focus on the application of model trans-
formation.
We present AToM3, a tool which implements the ideas pre-
sented above. AToM3 has a meta-modelling layer in which
different formalisms are modelled graphically. From the
meta-specification (a model in the Entity Relationship for-
malism extended with constraints), AToM3 generates a tool
to process models described in the specified formalism.
Models are represented internally using Abstract Syntax
Graphs. As a consequence, model manipulation such as the
ones listed above can be expressed as graph grammars [9].

As an example, we show the generation of a tool to graph-
ically manipulate GPSS models. We also define a graph
grammar to generate textual representations of the graphi-
cal models that can be run on GPSS simulators. The simula-
tion community has many efficient GPSS simulators avail-
able. Many of them have been criticised for their lack of
a graphical interface for modelling, though from its incep-
tion, GPSS has had a standard graphical representation for
its blocks. Arguably, this is one of the main reasons for the
success of GPSS.
Different GPSS simulators implement slight variations of
the original GPSS. A meta-modelling approach is thus very
suitable, as one can generate tools for small variants of the
formalism with little effort. A meta-modelling approach
also makes it possible to devise graphical representations
for elements of the model for which there is no standard
graphical representation, such as storages and table sizes,
functions and variables. Of course, thanks to the flexibil-
ity of meta-modelling, these representations can be readily
modified. In any case, a graph grammar for textual code
generation can dump and rearrange this graphical informa-
tion into a text file for further processing by a GPSS simu-
lator such as our HGPSS [6].

2 Meta-Modelling

Meta-Modelling is the process of explicitly modelling syn-
tax and semantics of formalisms. Any model has meaning
within the context of a formalism. As meta-models describe
classes of models, the formalism in which meta-models are
described (known as the meta-formalism) neeeds to be ex-
pressive enough. Typically, the Entity Relationship dia-
grams or UML class diagram [20] formalisms are used. A
model of a formalism is called a meta-model. A model of
a meta-formalism is called a meta-meta-model. Table 1 de-
picts the levels considered in our meta-modelling approach.
Note that we only consider three levels. When a meta-
formalism mf1 is powerful enough to describe the meta-
meta-model of another meta-formalism mf2, we consider
both mf1 and mf2 as meta-formalisms and place them at
the same meta-level. The meta-formalisms currently used
in AToM3 can describe meta-formalisms as well as for-
malisms.
To be able to fully specify modelling formalisms, the meta-
formalism may have to be extended with the ability to ex-
press constraints limiting the number of meaningful mod-
els. For example, when modelling Determinisitic Finite
Automata, different transitions leaving a given state must
have distinct labels. This cannot be expressed within En-
tity Relationship diagrams alone. Expressing constraints is
most elegantly done by extending the meta-formalism with
a constraint language. Whereas the basic meta-formalism
frequently uses a graphical notation, constraints are con-
cisely expressed in textual form. For this purpose, some
systems [14] (including ours) use the Object Constraint
Language OCL [20] used in UML. As AToM3 [4] is im-

Level Description Examples

Meta-
Meta-
Model

Model describes a for-
malism that will be used
to describe other for-
malisms.

Description of Entity-
Relationship Diagrams,
UML Class Diagrams

Meta-
Model

Model describes a
simulation formalism.
Specified under the
rules of a certain
Meta-Meta-Model

Description of Determin-
istic Finite Automata, Or-
dinary Differential Equa-
tions (ODE)

Model Description of an object
in a formalism. Speci-
fied under the rules of a
certain Meta-Model

f
���

x ���	� sinx
 f � 0 ��� 0
(in the ODE formalism)

Table 1: Meta-Modelling Levels.

plemented in the scripting language Python [22], arbitrary
Python code can also be used.

3 Graph Grammars: an introduction

To completely describe a formalism, not only the syntax
(structure, described in the meta-model) needs to be speci-
fied, but also the semantics. One way to describe semantics
is by explicitly specifying transformations on models in the
formalism.
In our approach, we store models as (hyper)graphs called
Abstract Syntax Graphs (ASGs), and thus we use graph
grammars to express model manipulation. Graph gram-
mars are composed of tranformation rules. Each rule maps
a graph on the left-hand side (LHS) onto a graph on the
right-hand side (RHS). A graph grammar is applied to an
input graph (called host graph) to perform a transforma-
tion. When a match is found between the LHS of a rule
and a part of the host graph, this matching subgraph is re-
placed by the RHS of the rule. Rules may also have con-
ditions which must be satisfied in order for the rule to be
applied, as well as actions to be performed when the rule
is executed. A rewriting system iteratively applies match-
ing rules in the grammar to the graph, until no more rules
are applicable [9]. Some approaches also offer control flow
specifications. In AToM3, rules are given a priority and are
tried in ascending order.
On the one hand, the use of a model (in the form of a graph
grammar) of graph transformations has some advantages
over an implicit representation (embedding the transforma-
tion computation in a program) [5]:

� It is an abstract, declarative, high level representation.
As it is a model in its own right, it may be used as a
basis for analysis, transformation, etc.

� The theoretical foundations of graph rewriting sys-
tems can assist in proving correctness and convergence
properties of the transformation tool.

On the other hand, the use of graph grammars is constrained
by efficiency. In the most general case, subgraph isomor-

phism testing is NP-complete. However, using small sub-
graphs on the left hand side of graph grammar rules, as well
as node labels and edge labels can greatly reduce the search
space.

4 AToM3: an overview

AToM3 [7] is a tool written in Python [22] which imple-
ments the concepts presented above. Its architecture is
shown in Figures 1 and 2. In both figures, models are rep-
resented as white boxes, having on their upper-right hand-
corner an indication of the meta-. . . model (formalism) they
are specified in. In the case of a graph grammar model, to
convert a model in formalism Fsource to Fdest , it is necessary
to use the meta-models of both Fsource and Fdest in addition
to the meta-model of graph grammars.
The main component of AToM3 is the AToM3 Kernel,
which is responsible for loading, saving, creating and ma-
nipulating models (at any meta-level, by means of the
Graph Rewriting Processor), as well as for generating code
for custom tools. Both meta-models and meta-meta-models
can be loaded into AToM3 as shown in Figure 1. The first
kind of models is used to construct valid models in a certain
formalism, the second is used to describe the formalisms
themselves.
In AToM3, the Entity-Relationship (ER) formalism ex-
tended with constraints is available at the meta-meta-level.
As stated before, it is perfectly possible to define other
meta-formalisms using the ER formalism. Constraints can
be specified as OCL or Python expressions, and the de-
signer must specify when (pre- or post- and on which event)
the condition must be evaluated. Events can be semantic
(such as editing an attribute, connecting two entities, etc.)
or graphical (such as dragging, dropping, etc.)
When modelling at the meta-meta-level, the entities which
may appear in a model must be specified together with their
attributes. We will refer to this as the semantic information.
For example, to define the Petri Net Formalism, it is nec-
essary to define both Places and Transitions. Furthermore,
for Places we need to add the attributes name and number
of tokens. For Transitions, we need to specify the name.
The meta-meta-model is used by the AToM3 Kernel to gen-
erate some Python files, which, when loaded by the Kernel,
allow for processing of models in the defined formalism.
One of the components of the generated files is a model
of a part of the AToM3 user interface. This User Interface
model has meaning in the Buttons formalism which has its
own meta-model. Initially, this model represents the neces-
sary GUI buttons to interactively create the entities defined
in the formalism’s meta-model, but can be modified to in-
clude for example, buttons to execute graph grammars on
the current model. We give an example of modifying the
AToM3 User Interface Model in the next section.
In AToM3, entities may have two kinds of attributes: regu-
lar and generative. Regular attributes are used to identify

characteristics of the current entity. Generative attributes
are used to generate new attributes at a lower meta-level.
The generated attributes may be generative in their own
right. Both types of attributes may contain data or code
for pre- and post-conditions.
In the meta-model, it is also possible to specify the graphi-
cal appearance of each entity of the defined formalism. This
appearance is, in fact, a special kind of generative attribute.
For example, for Petri Nets, we can choose to represent
Places as circles with the number of tokens inside the cir-
cle and the name beside them, and Transitions as thin rect-
angles with the name beside them. That is, we can spec-
ify how some semantic attributes are displayed graphically.
Constraints can also be associated with the graphical en-
tities. Each part of the graphical entity can be referenced
by an automatically generated name which gives access to
methods to change the part’s colour, or to hide it.
AToM3 allows for explicit modelling of types. In partic-
ular, it is possible to specify composite types. These are
defined by constructing a type graph [3]. The Meta-model
for this graph was built using AToM3 and then incorporated
into the AToM3 Processor. The components of this graph
can be basic or composite types and can be combined us-
ing the product and union type operators. Types may be
recursively defined, meaning that one of the operands of
a product or union operator can be an ancestor node. Infi-
nite recursive loops are detected using a global constraint in
the type meta-model. The graph describing the type is com-
piled into Python code using a graph grammar (also defined
using AToM3).
The AToM3 source with a collection of useful meta-models
can be found at [4].

5 Meta-Modelling GPSS

The process interaction discrete event simulation lan-
guage GPSS was described by Gordon in the early
1960s [11] [23]. The simplicity and universality of GPSS
concepts as well as the easy-to-learn block diagram nota-
tion have made it a popular choice for modelling and simu-
lation. An excellent overview of 40 years of GPSS is given
in [12].
In this section, we show how to generate a visual tool using
AToM3 for GPSS modelling.
In our GPSS meta-model the basic entity is the GPSS-
Block. In the GPSS formalism there are a number of dif-
ferent blocks (the number depends on the GPSS flavour),
but usually there are about twenty. Each of these blocks
have a different semantics, and one can construct a GPSS
model by connecting these blocks. Additional information
must be provided textually. Thus, GPSSBlocks have a type
and an associated graphical icon that changes depending on
this type. This change is performed by a post-action on the
EDIT event. GPSSBlocks also have a number of parameters
(named A, B, . . . ,F) whose semantics depends on the type
of the block, a Label and a field to include comments. The

User Input
− Create Entities
− Delete Entities
− Verify conditions (local, global)

User Input
− Create Entities
− Delete Entities
− Verify conditions (local, global)

Meta−Model

MF

Constraint Manager

Rewriting

Graph

Abstract

Syntax
Graphical

Model

U
se

r I
nt

er
fa

ce

Code Generator

Graph

Processor

AToM3 Kernel

AToM3 Meta*−
Models’ structure

nodes
Graphical

nodesASG
ASG

Syntactic Actions

Model

... Meta−Meta Model

Load Formalism

Load Formalism

Model of formalism F

Model of formalism MF

MMF

F

Load Model

Save Model

Save Model

Load Model

AToM3 Kernel

AToM3 Kernel

Figure 1: Meta-... Modelling in AToM3.

User Input
− Create Entities
− Delete Entities
− Verify conditions (local, global)

Fdest

Fsource

Load Formalism

Load Graph−Grammar

Meta−Model
Model of formalism

ER

Graph−Grammar

from Fsource to Fdest
Model of Transformation

Model−1 Model−1

FdestFsource

Save Model

Load Model

’Graph Grammar’

AToM3 Kernel

AToM3 Kernel

Figure 2: Model Transformation in AToM3.

Label is filled automatically with a unique string when the
entity is created, but can be modified by the user.
GPSSBlocks can be connected to other GPSSBlocks. Con-
straints have been added to regulate the number of outgoing
connections a block can have (some may have one, while
others may have two). Some of the blocks which have two
outgoing connections store the label of the connected en-
tities in parameters A and B. These parameters are filled
appropriately by means of post-actions on the CONNECT
event.
Other entities have been defined in the meta-model to de-
scribe table properties, functions, variables and storage
sizes. Each of these entities, which cannot be connected,
have been given a visual representation (and icon). The
model as a whole has been provided with some global at-
tributes, namely the model and author names, and a list of
control statements (the simulation experiment description).
The latter are implemented as a composite type, which is
composed of the statement name (an enumerate type) and
some additional parameters.
On the left hand side of Figure 3, AToM3 uses the Entity
Relationship formalism to describe the GPSS meta-model.

The generated GPSS modelling tool is shown on the right
hand side.
As explained in the previous section, AToM3 generates a
model of the user interface (in the Buttons formalism). The
Buttons meta-model (in the ER formalism) is composed of
one entity: the Button entity. This entity has attributes to
edit the text or image of the button, and to add an action
in the form of Python code. By default, a User Interface
Model is generated with one button for each entity or rela-
tionship in the meta-model. To obtain the tool of the right
hand side of figure 3, we have modified this model with
AToM3, as the default User interface model contained but-
tons for the defined entities (the GPSSBlock, Table, Func-
tion, SNA Variables and Storage Sizes) and the connected to
relationship. We have deleted the button for this last rela-
tionship and added a button Gen.Code to execute the graph
grammar to generate textual code for the HGPSS simulator.
This graph grammar is explained in the next section.

6 Processing GPSS models

In this section, we construct a graph grammar which takes
GPSS models defined using the tool generated in the pre-

Figure 3: GPSS Meta-Model and Generated Tool to Process GPSS Models.

vious section, and produces textual code to be executed in
a GPSS simulator. This graph grammar is shown in Fig-
ure 4. We can identify two types of rules: those ones deal-
ing with the GPSSBlocks (rules 2-6), and those dealing with
functions, tables, storages, and variable definitions (rules 1,
7-9).
The graph grammar has an initial action which opens the
file where the code is to be generated and decorates all the
entities in the model with two auxiliary attributes: current
and visited. The current attribute is used to identify the
node in the model whose code has to be generated next.
The visited attribute is used to determine whether code for
the node has been generated yet.
The graph grammar is composed of nine rules which are
tried in ascending order:

Rule 1 locates function descriptions and generates the cor-
responding code.

Rule 2 locates GATE or TEST blocks and generates code
for them. These blocks have two children. The rule
has to ensure that the branch corresponding to the A
parameter is visited first.

Rule 3 traverses the selected branch in a depth first way,
generating code for each visited node.

Rule 4 is executed when a branch ends. Note that the cur-
rent attribute is not transferred to a new node. Rather,
rule 5 will locate a new branch to traverse.

Rule 5 starts a new branch, setting the current attribute of
the next node to be visited.

Rule 6 is executed when a root node is found. Root nodes
do not have any incoming connections, and the code
generation of the GPSSBlocks graph starts in them.
Caveat: GPSS allows incoming connections to a GEN-

ERATE block. This may lead to models without root
node, a case not covered in our rules. To cover this
pathological case, it suffices to use a generate block as
the root node.

Remaining rules generate code for tables, storages and
variables definitions.

The graph grammar also has a final action which generates
the code for the control variables (attributes of the model),
erases the auxiliary attributes (current and visited) from the
entities, and closes the output file.
The advantage of using a graph grammar to generate the
textual code is that it is done in a graphical, high-level fash-
ion, and the user does not need any knowledge of compilers
nor of the AToM3 Kernel internals.
The result of the automatic code generation for the model of
a telephone exchange partially visible in Figure 3 is shown
in Figure 5.

7 Related work

Apart from AToM3, other visual meta-modelling tools ex-
ist. Examples are DOME [8], Multigraph [24], MetaEdit+
[18] and KOGGE [10]. Some of these allow one to express
formalism semantics by means of some kind of textual lan-
guage. For example, KOGGE uses a language similar to
Modula-2. Our approach is quite different, as we express
such semantics by means of graph grammars. We believe
graph grammars are a natural and general way to express
graph manipulation. A rationale for using graph grammars
in our approach was given in section 3. Also, none of the
tools consider the possibility to transform models between
different formalisms.

Variable

visited == 0
type == Variable

1
::=

visited = 1

1’
Variable

1

2 3

ACTION: generate code for node(1)

::=

visited == 0 visited == 0
current == 0 current = 1

visited = 1
current = 0type==GATE or TEST

visited == 0
current == 1

1’

2’ 3’

current == 0
label == node(1).A

::=
::=

1

2

current == 0

visited == 0
current == 0

1’

2’
current = 1

visited == 1

visited == 0
current == 0 ::=

1 1’
current = 1

type==Function

1 1’

visited == 1
visited == 0

ACTION: generate code for node(1)

2.− genBranchBlocks. Priority: 2

1.− genFunctions. Priority: 1

3.− goDeep. Priority: 3

4.− finishBranch. Priority: 4

5.− startNewBranch. Priority: 5

6.− findRoot. Priority: 6

7.− genTableSizes. Priority: 7

8.− genStorageSizes. Priority: 8

9.− genVariables. Priority: 9

::=
1’1

visited == 0
current == 1

ACTION: generate code for node(1)

visited = 1
current = 0

2’

1’

::=

ACTION: generate code for node(1)

visited == 0
current == 1

2

1

visited == 0
current == 0 current = 1

current = 0
visited = 1

::=

type==TableSize

1 1’

ACTION: generate code for node(1)
visited == 0

visited = 1

1

visited == 0

::=
1’

visited = 1
type == StorageSize

Figure 4: A graph grammar to generate code for a simulator from a GPSS model.

Systems and languages exist for graph grammar manipula-
tion. Examples are PROGRES [21], GRACE [13], AGG
[2], etc. All lack of a Meta-Modelling layer.
In 1997, the OMG [20] proposed a Meta-Data standard,
called the Meta-Object Facility (MOF) [19]. In this ap-
proach, meta-models are described using UML and are
stored in a standard format. From these meta-models, by
means of XMI, it is possible to automatically obtain DTDs
and XML documents. We are invesitgating to make the way
we store (meta-)models compatible with the MOF. Of par-
ticular interest is the standard representation of model trans-
formations (in the form of graph grammar models), as they
would allow the translation of data between different DTDs
in a meaningful and automated fashion.
Our approach is original in the sense that we take the ad-
vantages of Meta-Modelling to avoid explicit programming
of customized tools and combine them with those of graph
transformation systems to express model behaviour, for-
malism transformation. Our main contribution is thus in
the field of multi-paradigm modelling [25] as we provide a
general means to manipulate and transform models between

different formalisms.

8 Conclusions and future work

In this paper we have discussed the advantages of meta-
modelling to obtain customized modelling environments in
an automatic way. Building the application from scratch is
no longer necessary, we only have to specify –in a graphical
way– the meta-model of the formalism we are interested in.
The processing of models in the described formalism can be
expressed at the meta-level by means of graph grammars.
Our approach is also highly applicable if we want to con-
struct a slight variation of some formalism. In this case, we
only need to specify the meta-model for the new formalism
and a transformation into a “known” formalism (one that
already has a transformation to generate model code to be
used as input for a simulator, for example).
We have presented AToM3, a tool which implements the
concepts presented before, and demonstrated its usefulness
by generating a modelling tool for GPSS models able to
produce textual code for further simulation. As we also

SIMULATE
1 FUNCTION RN1,C24

0.0,0.0/0.1,0.104/0.2,0.222/0.3,0.355/0.4,0.509/0.5,0.69
0.6,0.915/0.7,1.2/0.75,1.38/0.8,1.6/0.84,1.83/0.88,2.12
0.9,2.13/0.92,2.52/0.94,2.81/0.95,2.99/0.96,3.2/0.97,3.5
0.98,3.9/0.99,4.6/0.995,5.3/0.998,6.2/0.999,7.0/0.9997,8.0
*
L1 GENERATE 12,FN1
L3 TEST G V2,2,OUT
L4 ASSIGN 1,V1,H
L5 GATE LR PH1,L4
L6 ASSIGN 2,V1,H
L7 TEST NE P1,P2,L6
L0 LOGIC R PH1
L8 TRANSFER BOTH,L9,L11
L9 LOGIC R PH1
L10 TERMINATE 1
OUT TERMINATE 0
L11 ENTER LNKS
L12 GATE LR PH2,L13
L16 LOGIC S PH2
L17 ADVANCE 120,FN1
L18 LOGIC R PH1
L19 LOGIC R PH2
L20 LEAVE LNKS
L21 TERMINATE 1
L13 LOGIC R PH1
L14 LEAVE LNKS
L15 TERMINATE 1
LNKS STORAGE 10
1 VARIABLE XH1*RN1/1000+1
2 VARIABLE XH1-2*S$LNKS

START 1000
END

Figure 5: Synthesized GPSS code

generate a model of part of the user interface, the tool can be
customized (in a graphical way) very easily. Thanks to the
combined approach of Meta-Modelling and Graph Trans-
formations, we were able to build the complete environ-
ment in one day. This environment was subsequently used
in a Modelling and Simulation course at McGill University
to build GPSS models, generate the GPSS textual programs
and run these programs in the HGPSS Simulator [6].
One possible drawback of the approach taken in AToM3 is
that even for non-graphical formalisms, one must devise a
graphical representation. For example, in the case of Alge-
braic Equations, the equations must be drawn in the form
of a graph. To solve this problem, we add the possibility
to enter models textually. This text will be parsed into an
ASG. Once the model is in this form, it can be treated as
any other (graphical) model.
In the future, we will extend the GPSS meta-model to take
advantage of the hierarchical possibilities of HGPSS. We
also plan to extend AToM3 in other ways:

� Describing another meta-meta-model in terms of
the current one (the Entity-Relationship meta-meta-
model). In particular, we plan to describe UML class
diagrams. For this purpose, relationships between
classes such as inheritance must be described. Thanks

to our meta-modelling approach, we are able to de-
scribe different subclassing semantics and their rela-
tionship with subtyping [1]. Furthermore, as the se-
mantics of inheritance will be described at the meta-
level, code can be generated in non-object-oriented
languages. A similar approach (meta-modelling +
bootstrapping) to model UML class diagrams is also
proposed by Harel in [16].

� Allow collaborative modelling: for this purpose, we
are putting the APIs for constructing graphical inter-
faces in Java (Swing) and Python (Tkinter) at the same
level. These developments, together with the possi-
bility of using Python on top of the Java Virtual Ma-
chine (e.g., by means of Jython [17]), will allow us
to make AToM3 accessible through a web browser in
applet form. This possibility as well as the need to ex-
change and re-use (meta-. . .) models raises the issue
of formats for model exchange. A viable candidate
format is the OMG’s MOF in combination with XML.

Acknowledgments

This paper has been partially sponsored by the Span-
ish Interdepartmental Commission of Science and Tech-
nology (CICYT), project number TEL1999-0181. Prof.
Vangheluwe gratefully acknowledges partial support for
this work by a National Sciences and Engineering Research
Council of Canada (NSERC) Individual Research Grant.

References

[1] M. Abadi and L. Cardelli 1996. A Theory of Objects.
Monographs in Computer Science. Springer.

[2] AGG Home page: http://tfs.cs.tu-berlin.de/agg/

[3] A.V. Aho, R. Sethi, and J.D. Ullman 1986. Compil-
ers, principles, techniques and tools. Chapter 6, Type
Checking. Addison-Wesley.

[4] AToM3 home page:
http://moncs.cs.mcgill.ca/MSDL/research
/projects/ATOM3.html

[5] D. Blonstein, H. Fahmy, and A. Grbavec 1996. Is-
sues in the Practical Use of Graph Rewriting. Lec-
ture Notes in Computer Science, Vol. 1073, Springer-
Verlag, pp.38-55.

[6] F. Claeys, H. Vangheluwe, and G.C. Vansteenkiste
1995. HGPSS: A hierarchical extension to GPSS. In
M. Snoreck, M. Sujansky, and A. Verbraeck, editors,
Procedeedings of the 1995 European Simulation Mul-
ticonference (ESM). Society for Computer Simulation
International (SCS), June 1995, pp.138-142.

[7] J. de Lara and H. Vangheluwe 2002. AToM3: A tool
for multi-formalism and meta-modelling. In European
Joint Conference on Theory And Practice of Software

(ETAPS), Fundamental Approaches to Software Engi-
neering (FASE), Lecture Notes in Computer Science
2306, pages 174 - 188. Springer-Verlag, April 2002.
Grenoble, France.

[8] DOME guide. http://www.htc.honeywell.com/dome/,
Honeywell Technology Center. Honeywell, 1999, ver-
sion 5.2.1

[9] H. Dorr 1995. Efficient Graph Rewriting and its im-
plementation. Lecture Notes in Computer Science
922. Springer-Verlag.

[10] J. Ebert, R. Sttenbach, and I. Uhe 1997. Meta-CASE
in Practice: a Case for KOGGE. Advanced Infor-
mation Systems Engineering, Proceedings of the 9th
International Conference, CAiSE’97 LNCS 1250, S.
203-216, Berlin, 1997. See KOGGE home page at:
http://www.uni-koblenz.de/ ist/kogge.en.html

[11] G. Gordon 1996. System Simulation, Prentice Hall.
Second Edition.

[12] I. Ståhl 2001. GPSS - 40 Years of Development. Pro-
ceedings of the 2001 Winter Simulation Conference.
Washington, DC.

[13] GRACE Home page: http://www.informatik.uni-
bremen.de/theorie/GRACEland/GRACEland.html

[14] J. Gray, T. Bapty, and S. Neema 2000. Aspectifying
Constraints in Model-Integrated Computing, OOP-
SLA 2000: Workshop on Advanced Separation of
Concerns, Minneapolis, MN, October, 2000.

[15] D. Harel 1988. On visual formalisms. Communica-
tions of the ACM, 31(5):514–530, May 1988.

[16] D. Harel and B. Rumpe 2000. Modeling languages:
Syntax, Semantics and All That Stuff. Part I: The Ba-
sic Stuff Technical Report MCS00-16 in the Belfer In-
stitute of Mathematics and Computer Science.

[17] Jython Home Page: http://www.jython.org

[18] MetaCase Home Page: http://www.MetaCase.com/

[19] Meta-Object Facility, from the OMG:
http://www.omg.org/cwm

[20] OMG Home Page: http://www.omg.org

[21] PROGRES home page:
http://www-i3.informatik.rwth-
aachen.de/research/projects/progres/main.html

[22] Python home page: http://www.python.org

[23] T. Schriber 1974. Simulation Using GPSS. Wiley.

[24] J. Sztipanovits, et al. 1995. MULTIGRAPH: An
architecture for model-integrated computing. In
ICECCS’95, pp. 361-368, Ft. Lauderdale, Florida,
Nov. 1995.

[25] H. Vangheluwe 2000. DEVS as a common denomina-
tor for multi-formalism hybrid systems modelling. In
Andras Varga, editor, IEEE International Symposium
on Computer-Aided Control System Design, pages
129–134. IEEE Computer Society Press, September
2000. Anchorage, Alaska.

