Statecharts aka Harel Charts

- visual formalism
- higraph based (rigour)
- diverse applications;

in particular: concurrent systems behaviour

Visualising Information

- complex
- non-quantitative, structural
- topological, not geometrical
- Euler
 - graphs (nodes, edges: binary *relation*); hypergraphs
 - Venn diagrams (Jordan curve: inside/outside): enclosure, intersection

Venn diagrams, Euler circles

- topological notions:
 enclosure, exclusion, intersection
- Used to represent *mathematical* set operations: union, intersection, difference

Hypergraph

a graph

a hypergraph

- topological notion: connectedness
- Used to represent *relations* between sets.
- Hyperedges: $\subset 2^X \times 2^X$

Higraphs: combining graphs and Venn diagrams

- sets + cartesian product
- hypergraphs

Blobs: set inclusion, not membership

Unique Blobs (atomic sets, no intersection)

- empty space has no meaning, intersection must be identified
- atomic blobs are identifiable sets
- other blobs are union of enclosed sets

Unordered Cartesian Product: Orthogonal Components

E

$$K = G \times H = (L \cup M) \times (N \cup O \cup P)$$

Meaningless constructs

Simple Higraph

Induced Acyclic Graph (blob/orth comp alternation)

Adding (hyper) edges

- hyperedges
- attach to contour of any blob
- inter-level possible (global variables binding)

Clique Example

Clique: fully connected semantics

Entity Relationship Diagram (is-a)

Higraph version of E-R diagram

Extending the E-R diagram

Higraph applications

- E-R diagrams
- data-flow diagrams (activity diagrams)
 edges represent (flow of) data
- inheritance
- StateCharts

Formally

A higraph H is a quadruple (B, E, ρ, Π)

B: set of all unique blobs

E: set of hyperedges $\subset 2^X \times 2^X$

 $\rho: B \to 2^B$, the hierarchy function

 $\Pi: B \to 2^{B \times B}$, the partitioning function (equivalence relationship)

 ρ defines the direct descendants of a blob

$$\rho^0(x) = \{x\}$$

$$\rho^+(x) = \bigcup_{i=1}^{+\infty} \rho^i(x)$$
, cycle free: $x \notin \rho^+(x)$

Simple Higraph

Induced Orthogonal Components

$$B = \{A, B, C, D, E, F, C, G, H, I, J, K, L, M\}$$

$$E = \{(I, H), (B, J), L, C)\}$$

$$\rho(A) = \{B, C, H, J\}, \rho(G) = \{H, I\}, \rho(B) = \{D, E\}, \rho(C) = \{E, F\},$$

$$\rho(J) = \{K, L, M\}, \rho(D) = \rho(E) = \rho(F) = \rho(H) = \rho(I) = \rho(K) = \rho(L) = \rho(M) = \emptyset$$

$$\Pi(J) = \{(K, K), (K, L), (L, L), (L, K), (M, M)\}$$

Induces equivalence classes $\{K,L\}$ and $\{M\}, \ldots$ These are the *orthogonal components*

StateCharts = state diagrams + depth + orthogonality + broadcast

- Reactive Systems (event driven, react to internal and external stimuli)
- like Petri Nets, CSP, CCS, sequence diagrams, ...
- graphical but formal and rigourous for
 - analysis
 - code generation
- solve FSA problems:
 - flat \Rightarrow hierarchy \Rightarrow re-use
 - represent large number of transitions concisely
 - represent large number of states concisely
 - sequential \Rightarrow concurrent

Depth (XOR)

Orthogonality (AND), flattening ⇒ semantics

Broadcasting (output events)

History States

Executable Object Modelling

- analysis ⇒ use cases ⇒ sequence diagrams
- analysis ⇒ use cases ⇒ class diagrams
- ◆ Statecharts ⇒ sequence diagrams ⇒ test use cases

Executable Object Modelling with Statecharts

- OO development: intuitive and rigourous
- fully executable models (simulation)
- code synthesis

Executable Object Modelling with Statecharts

- Structure (classes, multiplicities, relationships)
 - ⇒ Object-model diagrams (higraph version of ER-diagrams)
- Behaviour
 - ⇒ StateCharts

Automated Railcar System

Scenarios (Use Cases)

- Car approaches terminal
- Car departs from terminal
- Passenger in terminal

Inheritance

- structural or behavioural
- interface subtyping
- Modify states
 - Decompose state in OR or AND components
 - Add sub-states to OR state
 - Add orthogonal components to any state

