Overview

- Petri net notation and definition (no dynamics)
- Introducing State: Petri net marking
- Petri net dynamics
- Capacity Constrained Petri nets
- Petri net models for . . .
 - FSA
 - Nondeterminism
 - Data Flow Computation
 - Communication Protocols
 - Queueing Systems
• Petri nets vs. State Automata
• Analysis of Petri nets
 – Boundedness
 – Liveness and Deadlock
 – State Reachability
 – State Coverability
 – Persistence
 – Language Recognition
• The Coverability Tree
• Extensions: colour, time, ...
Petri nets

- Formalism similar to FSA
- Graphical notation
- C.A. Petri 1960s

- Additions to FSA:
 - Explicitly (graphically) represent when event is enabled
 → describe control logic
 - Elegant notation of concurrency
 - Express non-determinism
Petri net notation and definition (no dynamics)

\[(P, T, A, w)\]

- \(P = \{p_1, p_2, \ldots\}\) is a finite set of *places*
- \(T = \{t_1, t_2, \ldots\}\) is a finite set of *transitions*
- \(A \subseteq (P \times T) \cup (T \times P)\) is a set of *arcs*
- \(w : A \rightarrow \mathbb{N}\) is a *weight function*

Note: no need for *countable* \(P\) and \(T\).
Derived Entities

- $I(t_j) = \{p_i : (p_i, t_j) \in A\}$ set of input places to transition t_j
 (≡ conditions for transition)

- $O(t_j) = \{p_i : (t_j, p_i) \in A\}$ set of output places from transition t_j
 (≡ affected by transition)

- Transitions ≡ events

- similarly: input- and output-transitions for p_i

- graphical representation: Petri net graph (multigraph)
Example Petri net

- \(P = \{ H_2, O_2, H_2O \} \)
- \(T = \{ t \} \)
- \(A = \{ (H_2, t), (O_2, t), (t, H_2O) \} \)
- \(w((H_2, t)) = 2, w((O_2, t)) = 1, w((t, H_2O)) = 2 \)
Pure Petri net

- No self-loops:

\[\forall p_i \in P, t_j \in T : (p_i, t_j) \in A, (t_j, p_i) \in A \]

- Can convert impure to pure Petri net
Impure to Pure Petri net
Introducing State: Petri net Markings

- Conditions met? Use tokens in places
- Token assignment \equiv marking x

$$x : P \rightarrow \mathbb{N}$$

- A marked Petri net

$$(P, T, A, w, x_0)$$

x_0 is the initial marking

- The state x of a marked Petri net

$$x = [x(p_1), x(p_2), \ldots, x(p_n)]$$

Number of tokens need not be bounded (cfr. State Automata states).
State Space of Marked Petri net

- All n-dimensional vectors of nonnegative integer markings
 \[X = \mathbb{N}^n \]
- Transition $t_j \in T$ is enabled if
 \[x(p_i) \geq w(p_i, t_j), \forall p_i \in I(t_j) \]
Example with marking, enabled
Petri Net Dynamics

State Transition Function f of marked Petri net (P, T, A, w, x_0)

$$f : \mathbb{N}^n \times T \rightarrow \mathbb{N}^n$$

is defined for transition $t_j \in T$ if and only if

$$x(p_i) \geq w(p_i, t_j), \forall p_i \in I(t_j)$$

If $f(textbfx, t_j)$ is defined, set $x' = f(x, t_j)$ where

$$x'(p_i) = x(p_i) - w(p_i, t_j) + w(t_j, p_i)$$

- State transition function f based on structure of Petri net
- Number of tokens need not be conserved (but can)
Example “firing”

- Select Sequential Manual execution
- Transition: $[2, 2, 0] \rightarrow [0, 1, 2]$
Example

- order of firing not determined (due to untimed model)
- selfloop
- “dead” net
Conflict, choice, decision
Semantics

- *sequential vs. parallel*

- Handle nondeterminism:
 1. User choice
 2. Priorities
 3. Probabilities (Monte Carlo)
 4. Reachability Graph (enumerate all choices)
Application: Critical Section
Reachability Graph
Algebraic Description of Dynamics

- Firing vector \mathbf{u}: transition j firing

 $$\mathbf{u} = [0, 0, \ldots, 1, 0, \ldots, 0]$$

- Incidence matrix \mathbf{A}:

 $$a_{ji} = w(t_j, p_i) - w(p_i, t_j)$$

- State Equation

 $$\mathbf{x}' = \mathbf{x} + \mathbf{uA}$$
Infinite Capacity Petri net

- Add Capacity Constraint: $K : P \rightarrow \mathbb{N}$
- New transition rule
Can transform to infinite capacity net

1. Add complimentary place p' with initial marking $x_0(p') = K(p)$

2. Between each transition t and complimentary places p'
 - add arcs (t, p') or (p', t) where
 - $w(t, p') = w(p, t)$
 - $w(p', t) = w(t, p)$
Capacity Constrained Petri net
Equivalence proof: use Reachability Graph

[p1K2, p2K1]
Petri net as State Machine
Representing a Petri net as a State Machine

Construct Reachability Graph

- Reachability Graph is State Machine
- States are tuples \((p_1, p_2, \ldots, p_n)\)
- Events correspond to \(t_i\) firing
- May be infinite
Representing a State Machine as a Petri net

1. no output
2. with output

⇒ automatic (though inefficient) transformation
FSA without output
FSA with output
Petri net models for Queueing Systems

Capacity Constraints for Resource Conservation
Simple Server/Queue Model
Model departure explicitly
Model Server Breakdown
Modular Composition: Communication Protocol

Build incrementally:

1. Single transmitter: FSA vs. Petri net
2. Two transmitters competing for channel

Pros/Cons of Petri net models (depends on goals!):

- Petri net is more complex than FSA for single transmitter
- More insight
- Incremental modelling
- Modular modelling
- Intuitive modelling of concurrency
Single Transmitter FSA

Idle

Message present

Transmitting

I

M

T

ack received

transmit

timeout

arr
Single Transmitter Petri net
Concurrent, Non-interacting Transmitters
Concurrent, Interacting Transmitters
Analysis of Petri nets

Analysis of *logical* or *qualitative* behaviour.

Resource sharing ⇒ *fair* usage of resources:

- Boundedness
- Conservation
- Liveness and Deadlock
- State Reachability
- State Coverability
- Persistence
- Language Recognition
Boundedness

- Example: upper bound on number of customers in queue.
- Definition: A place $p_i \in P$ in a Petri net with initial state x_0 is k—bounded or k—safe if $x(p_i) \leq k$ for all states in all possible sample paths.
- A 1—bounded place is called safe.
- If a place is k—bounded for some k, the place is bounded.
- If all places are bounded, the Petri net is bounded.
Bounded vs. Unbounded

\[\text{bounded} \]

\[\text{unbounded} \]
Conservation

Token represents *resource*, *process*, ...

Sum *Busy* + *Idle* tokens must be *constant* for all states in all sample paths
Conservation, weighted sum

\[2 \text{ Transm} + \text{ Idle} + \text{trsChannel} = \text{constant} \]
Conservation

A Petri net with initial state x_0 is conservative with respect to $\gamma = [\gamma_1, \gamma_2, \ldots, \gamma_n]$ if

$$\sum_{i=1}^{n} \gamma_i x(p_i) = constant$$

for all states in all possible sample paths.
Liveness and Deadlock

- Cyclic dependency \Rightarrow wait indefinitely
- Deadlock
- Deadlock avoidance: avoid certain states in sample paths
Deadlock in Queueing system with Rework

\[
[QueueFree, Queue1, Rework] = [0, 1, 1]
\]
Deadlock resolved
Liveness

Given initial state x_0, a transition in a Petri net is:

- **L0-live (dead):** if the transition can never fire.
- **L1-live:** if there is some firing sequence from x_0 such that the transition can fire at least once.
- **L2-live:** if the transition can fire at least k times for some given positive integer k.
- **L3-live:** if there exists some infinite firing sequence in which the transition appears infinitely often.
- **L4-live:** if the transition is L1-live for every possible state reached from x_0.
Liveness example
State Reachability

- A state x in a Petri net is *reachable* from a state x_0 if there exists a sequence of transitions starting at x_0 such that the state eventually becomes x.

- Build/use reachability graph.

- Deadlock avoidance is a special case of reachability.
State Coverability

- In a Petri net with initial state x_0, a state y is *coverable* if there exists a sequence of transitions starting at x_0 such that the state eventually becomes x and $x(p_i) \geq y(p_i)$.

- Related to L1-liveness: *minimum number of tokens required* to enable a transition.
Persistence

- More than one transition enabled by the same set of conditions (choice, undeterminism).
- If one fires, does the other remain enabled?
- A Petri net is *persistent* if, for any two enabled transitions, the firing of one cannot disable the other.
- Non-interruptedness (of multiple processes).
Language Recognition

Language defined by Petri net

≡

set of transition sequences which can fire
Coverability Notation

- Root node
- Terminal node
- Duplicate node
Coverability Notation

- Node dominance

\[x = [x(p_1), x(p_2), \ldots, x(p_n)] \]

\[y = [y(p_1), y(p_2), \ldots, y(p_n)] \]

\[x >_d y \] (\(x \) dominates \(y \)) if

1. \(x(p_i) \geq y(p_i), \forall i \in \{1, \ldots, n\} \)
2. \(x(p_i) > y(p_i) \) for at least some \(i \in \{1, \ldots, n\} \)

- The symbol \(\omega \) represents infinity

\[x >_d y \]

For all \(i \) such that \(x(p_i) > y(p_i) \), replace \(x(p_i) \) by \(\omega \)

\[\omega + k = \omega = \omega - k \]
Coverability Tree Construction

1. Initialize $x = x_0$ (initial state)

2. For each new node x,
 evaluate the transition function $f(x, t_i)$ for all $t_j \in T$:

 (a) if $f(x, t_j)$ is undefined for all $t_j \in T$, then x is a terminal node.

 (b) if $f(x, t_j)$ is defined for some $t_j \in T$,
 create a new node $x' = f(x, t_j)$.

 i. if $x(p_i) = \omega$ for some p_i, set $x'(p_i) = \omega$.

 ii. If there exists a node y in the path from root node x_0 (included) to x such that $x' >_d y$, set $x'(p_i) = \omega$ for all p_i such that $x'(p_i) > y(p_i)$

 iii. Otherwise, set $x' = f(x, t_j)$.

3. Stop if all new nodes are either terminal or duplicate
Coverability Tree Example: Cashier/Queue
Coverability Tree Example: Cashier/Queue
Applications of the Coverability Tree

- Boundedness: ω does not appear in coverability tree
- Bounded Petri net \Rightarrow reachability graph
- Conservation: $\gamma_i = 0$ for ω positions
- Inverse problem: what are γ and C?
- Coverability: inspect coverability tree
- Limitations: deadlock detection