
Objects, Re-use, and Causality

V1 − V2 = R*I

I = (V1−V2)/R

V2 = V1 − R*I

V1 = V2 + R*I

Object "resistor"

R

R

R

V1 V2

I ?

V1

V1

V2

V2 ?

 ?

I

I
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Causality Assignment

������
� �����

�
x � y � z � 0 Equation 1

x � 3z � u2 � 0 Equation 2

z� u� 16 � 0 Equation 4

u� 5 � 0 Equation 4
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Causality Assignment = bipartite (dependency) graph
maximum cardinality matching

Equation 1 Equation 2 Equation 3 Equation 4

variable "x" variable "y" variable "z" variable "u"

Equation 1 Equation 2 Equation 3 Equation 4

variable "x" variable "y" variable "z" variable "u"
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Causality Assignment: causality assigned

������
� �����

�

x � y � z � 0 Equation 1

x � 3z � u2 � 0 Equation 2

z� u� 16 � 0 Equation 4

u� 5 � 0 Equation 4
������

� �����
�

y � � x� z

x � � 3z� u2

z � u � 16

u � 5
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causality assignment: network flow

Equation 1 Equation 2 Equation 3 Equation 4

variable "x" variable "y" variable "z" variable "u"

source

sink
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Network Flow Problems

G � �V � E 	

Directed graph G with source s and sink t
s

t

a b

c d

3,3 4,1

3,2 2,2 3,0

4,2 3,2

cap, flow

1,1
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Network Flow: definitions

Positive capacity cap 
 v � w � on every edge � v � w 	 .
cap 
 v � w � � 0 if � v � w 	 is not an edge.
A flow on G is any real-valued function f with properties:

1. skew symmetry. f 
 v � w � � � f 
 w � v � .
f 
 v � w �� 0 is called a flow from v to w.

2. capacity constraint. f 
 v � w �� cap 
 v � w � . If � v � w 	 is an edge such that
f 
 v � w � � cap 
 v � w � , the flow is said to saturate � v � w 	 .

3. flow conservation. For every vertex v other than s and t

∑
w

f 
 v � w � � 0
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Network Flow: maximum flow

The value � f � of a flow f is the net flow out of the source

∑
v

f 
 s � v �

Maximum Flow Problem (Ford and Fulkerson).
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Network Flow: cut

A cut: partition X � X of the vertex set V into two parts
X and X � V� X such that X contains s and X contains t.
The capacity of a cut X � X is

cap 
 X � X � � ∑
v � X � w � X

cap 
 v � w �

Flow across a cut is
f 
 X � X � � ∑

v � X � w � X

f 
 v � w �
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Network Flow: max-flow min-cut theorem

For any flow f , the flow across any cut X � X is equal to the flow value.
Capacity constraint � flow across cut cannot exceed capacity of the cut.
Maximum flow is not greater than the capacity of a minimum cut.

max-flow min-cut theorem: maximum flow = minimum cut
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Network Flow: residual graph

Residual capacity for flow f

res 
 v � w � � cap 
 v � w �� f 
 v � w �

Up to res 
 v � w � additional flow can be pushed along � v � w 	 .
Residual graph R is graph with edges res 
 v � w � .
Augmenting path from s to t.
Residual capacity is minimum res 
 v � w � .
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Network Flow: residual graph

s

t

a b

c d

3

1

3

1

3221

2

2

1

2
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Network Flow: augmenting path

s

t

a b

c d

3

1

3

1

3221

2

2

1

2
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Ford Fulkerson
� Augmenting step

1. Find an augmenting path p for the current flow.

2. Increase the value of the flow

by pushing res 
 p � units of flow along p.

� Pathfinding step

1. Find a path pi from s to t in G� .

2. Let ∆i be the minimum of f� 
 v � w � for � v � w 	 an edge of pi.

For every edge � v � w 	 on pi, decrease f� 
 v � w � by ∆i and delete � v � w 	

from G� if its flow is now zero.

3. Increment i by one.
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Path Finding: which path ?
� Edmonds and Karp:

augmentation along path with maximum residual capacity.

� Dinic:

augmentation along shortest augmenting path.

Length: number of edges a path contains.
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Dinic’s algorithm:
find blocking flows to saturate edges

1. Begin with zero flow.

2. Find a blocking flow f� on the level graph for the current flow f .

Blocking flow: every path from the source s to the sink t contains a

saturated edge.

3. Replace f by the flow f � f� defined by:


 f � f� � 
 v � w � � f 
 v � w � � f� 
 v � w ���

4. Repeat until the sink t is not in the level graph for the current flow.
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Level Graph
� R: the residual graph for a flow f .

� level of v = the length of the shortest path from s to any vertex v in R.

� Level graph L for f = the subgraph of R containing

– only the vertices reachable from s

– only the edges � v � w 	 such that

level 
 w � � level 
 v � � 1�

L contains every shortest augmenting path and can be constructed in

O 
 m � time by breadth-first search.
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Finding a Blocking Flow (DFS)
� Initialize: Let p � � s 	 and v � s. Go to Advance.

� Advance: If there is no edge out of v, go to Retreat. Otherwise, let � v � w 	

be an edge out of v. Replace p by p& � w 	 and v by w. If w �� t repeat

Advance; if w � t go to Augment.

� Augment: Let ∆ be the minimum of 
 cap 
 v � w �� f 
 v � w � � for � v � w 	 an

edge of p. Add ∆ to the flow of every edge on p, delete from G all newly

saturated edges, and go to Initialize.

� Retreat: If v � s halt. Otherwise, let � u � v 	 be the last edge on p. Delete v
from p and � u � v 	 from G, replace v by u, and go to Advance.
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Dinic Performance
(m is number of nodes, n is number of edges)

� Finds a blocking flow in O 
 nm � time, and a maximum flow in O 
 n2 m �

time.

� On a unit network, Dinic’s algorithm finds a blocking flow in O 
 m � time,

and a maximum flow in O 
 n1 � 2 m � time. Unit network: edge capacities

integer, each vertex v other than the source and the sink has either a

single entering edge of capacity one, or a single outgoing edge of

capacity one.

� On a network whose edge capacities are all one, Dinic’s algorithm finds

a maximum flow in O 
 min � n2 � 3 m � m3 � 2 � � time.
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Example
s

t

a b

c d

3 4

3 2 3

4 3

1

t(3)

a(1) b(1)

c(2) d(2)

3,3 4,1

3,1 2,2 3,1

4,1 3,3

s(0)

t(4)

a(2) b(1)

c(3) d(2)

3,1

2,1 2,0

3,1

1,1

t(5)

a(3) b(1)

c(4) d(2)

2,1

1,1 2,1 2,1

2,1

s(0)

t

a(3) b(1)

d(2)

3,3 4,3

3,3 2,1 3,2

4,3 3,3

1,1

s(0)

s(0)

(8 )

(8 )c

A. B.

D.C.

E.
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Symbolic Manipulation (Computer Algebra)

Simplification of expressions, re-writing of equations, symbolic solving, . . .

� Mathematica

� REDUCE

� AXIOM

� MACSYMA

� MuPAD (http://www.mupad.de/)

McGill, December, 2001 hv@cs.mcgill.ca CS 308-522A Modelling and Simulation 21/48



(muPAD) examples

>> 100!;

93326215443944152681699238856266700490715968264381621468592963895217599993\

22991560894146397615651828625369792082722375825118521091686400000000000000\

0000000000

>> (x+1)ˆ4;

4

(x + 1)

>> expand(%);

2 3 4

4 x + 6 x + 4 x + x + 1

>> xˆ2+2*x+1;

2

2 x + x + 1
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(muPAD) examples
>> factor(%);

[1, x + 1, 2]

>> diff(xˆ2+2*x+1,x);

2 x + 2

>> int(xˆ2+2*x+1,x);

3

2 x

x + x + --

3

>> 2+3+4+x+4;

x + 13

>> 2+ 3+x+y+x*y+xˆ2+yˆ3+4;

2 3

x + y + x y + x + y + 9
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(muPAD) examples

>> solve({x+a*y-2,x-b*y+4},{x,y});

{ { 2 b - 4 a 6 } }

{ { x = ---------, y = ----- } }

{ { a + b a + b } }

>> subs(%,a=3,b=4);

{{x = -4/7, y = 6/7}}

>> generate::C(xˆ2+4-sin(y));

" t4 = -sin(y) + x*x + 4.0 ;"

>> generate::TeX(xˆ2+4-sin(y));

"- \\sin\\left(y\\right) + xˆ2 + 4"
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Canonical Form

>> (y+2)+3 + x;

x + y + 5

>> 5+y+x;

x + y + 5

>> 2+3+2*y+x-y;

x + y + 5

>> 2+x -y -x;

2 - y
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Canonical Form

(Davenport)

A representation of a mathematical object (e.g., polynomial) is canonical if

two different representations always correspond to two different objects.

A correspondence f between a class O of objects and a class R of

representations is a representation of O by R if each element of O
corresponds to one or more elements of R (otherwise it is not represented)

and each element of R corresponds to one and only one element of O
(otherwise we do not know which element of O is represented).

The representation is canonical if f is bijective. With a canonical

representation it is possible to check equality of objects by verifying that their

representations are equal.
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Normal Form

If O has the structure of a monoid, a weaker concept may be defined. A

representation is called normal if zero has only one representation. Every

canonical representation is normal, but the converse is false.

Having a unique representation for zero is important to be able to test for

division by zero.

A normal representation over a group also gives us an algorithm to

determine whether two elements a and b of O are equal. It is sufficient to

check whether a� b � 0. In a canonical representation, it suffices to check

whether a’s and b’s representations are identical.
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Regular and Natural form

A representation should be regular

A � x2 � x �

A � 1 � 
 x3� 1 � � 
 x� 1 � �
A� x � x2, . . . is not regular.

Representations must be natural. Some form of simplification should occur.

For polynomials in one variable, every power of x should appear at most

once, and powers should be sorted in ascending or descending order.
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Polynomials

Representations of polynomials: dense and sparse.

� Dense: vector of coefficients

� Sparse: list of (coeff, degree) tuples

 x1000 � 1 � 
 x1000� 1 � � x2000� 1

Polynomial in a particular variable: sin 
 x � � 3� sin2 
 x �� 2
is polynomial in sin 
 x �

Increasing or decreasing powers.
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Polynomials in multiple variables

canonical, natural representation

Different types of ordering:

� lexicographic: alphabetically ordered. Within one variable name,

ordered by powers. If the powers of that variable are the same, look at

the next (lexicographic) variable. x2 � 2xy � x � y2 � y � 1

� total degree, then lexicographic: lexicographic distinction between same

total degree, ordered by total degree. x2 � 2xy � y2 � x � y � 1

� total degree, then inverse lexicographic: y2 � 2xy � x2 � y � x � 1
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Types, Domains, Algebraic Structures

Used to define generic operations

Definitions (Birkhoff & McLane)

1. Semigroup S � �

� closure

� associativity

2. Monoid

� Semigroup with unit 0

3. Group

� Identity 1

� Inverse
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4. Commutative (Abelian)

� Semigroup
� Monoid

� Group

5. Ring R � � ��

� R � � Abelian Group

� R �� Monoid with unit 1

� � is distributive on both sides over �

6. Commutative Ring

� Ring and R �� is commutative

7. Field � Commutative Ring

� each non-zero element has multiplicative inverse
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Computer Algebra � Compilers

1. lexical analysis

2. syntactic analysis (grammar parsing)

3. intermediate representation: Abstract Syntax Tree (AST) and Symbol

Table (ST)

4. operations (symbolic manipulation) on AST+ST

5. compiler compilers

� Gentle http://www.first.gmd.de/gentle

� TRAP http://www.first.gmd.de/smile/trap

� ANTLR http://www.antlr.org

� PCCTS http://www.ocnus.com/pccts.html
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� Catalog of Compiler Construction Tools

http://www.first.gmd.de/cogent/catalog
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Internal model representation
� Abstract Syntax Tree + Symbol Table

b � 2� 
 a � 3 � � x

=[ +[b, +[2, -[a, 3]], x]

� From the AST + ST, a dependency graph can be built.

1. for causality assignment,

2. for equation re-write,

3. for loop detection and sorting,

4. for constant folding,

5. for parameter expression lifting (� K � g),

6. for output equation selection
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Constant Folding Graph Grammar

c1 � c2

Rule 1.

OP: +

CONST: c1 CONST: c2

CONST: c1+c2::=
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Constant Folding Transformation

v � 2 � 
 3 � 4 �

1.
OP: =

VAR: v

OP: +

CONST: 3 CONST: 4

OP: +

CONST: 2

2. Rule 1
OP: =

VAR: v

CONST: 7

OP: +

CONST: 2

3. Rule 1
OP: =

VAR: v CONST: 9
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Canonical Representation
To encode associativity and commutativity of operators.
A representation of a mathematical object is canonical if two different
representations always correspond to two different objects.

1. n-ary operators

2. inv for each operator

3. lexicographic ordering

+[2, inv[3], a, inv[b]]

+[inv[1], a, inv[b]]

2� 3 � a� b � � 1 � a� b

� � symbolic operations (simplify, analyze, . . . )

� � re-use AND performance !
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Object-Oriented Modelling of Physical Systems

1. Encapsulation, objects, classes, . . .

2. Types (Software vs. Dynamical systems)

� Subtypes

� Contravariance

� Semantics of composition

3. Inheritance

4. Different levels of abstraction
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Based on . . .
� WEST (bioactivated sludge waste water treatment)

www.hemmiswest.com

� Modelica (ESPRIT Basic Research, now Association)

www.modelica.org

Aims:

– Standard language for model exchange and re-use

– Support non-causal, hybrid, hierarchical modelling

– Semantics based on Hybrid DAEs

– Separate model (goal: re-use, exchange)

from its numerical solution (goal: accuracy, speed)

– Library of basic models
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Electrical example: Modelica vs. Matlab/Simulink
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Electrical Types

type Time = Real (final quantity="Time", final unit="s");

type ElectricPotential = Real (final quantity="ElectricPotential",

final unit="V");

type Voltage = ElectricPotential;

type ElectricCurrent = Real (final quantity="ElectricCurrent",

final unit="A");

type Current = ElectricCurrent;
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Electrical Pin Interface

connector PositivePin "Positive pin of an electric component"

Voltage v "Potential at the pin";

flow Current i "Current flowing into the pin";

end PositivePin;
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Electrical Port

partial model OnePort

"Component with two electrical pins p and n

and current i from p to n"

Voltage v "Voltage drop between the two pins (= p.v - n.v)";

Current i "Current flowing from pin p to pin n";

PositivePin p;

NegativePin n;

equation

v = p.v - n.v;

0 = p.i + n.i;

i = p.i;

end OnePort;
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Electrical Resistor

model Resistor "Ideal linear electrical resistor"

extends OnePort;

parameter Resistance R=1 "Resistance";

equation

R*i = v;

end Resistor;
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The circuit
model circuit

Resistor R1(R=10);

Capacitor C(C=0.01);

Resistor R2(R=100);

Inductor L(L=0.1);

VsourceAC AC;

Ground G;

equation

connect(AC.p, R1.p);

connect(R1.n, C.p);

connect(C.n, AC.n);

connect(R1.p, R2.p);

connect(R2.n, L.p);

connect(L.n, C.n);

connect(AC.n, G.p);

end circuit;
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Dynasim Modelica demo
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Future
� multi-formalism

� multi-abstraction

� meta-modelling (AToM3)
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