Objects, Re-use, and Causality

\[V_1 - V_2 = R \cdot I \]

\[I = \frac{V_1 - V_2}{R} \]

\[V_2 = V_1 - R \cdot I \]

\[V_1 = V_2 + R \cdot I \]
Causality Assignment

\[
\begin{align*}
 x + y + z &= 0 \quad \text{Equation 1} \\
 x + 3z + u^2 &= 0 \quad \text{Equation 2} \\
 z - u - 16 &= 0 \quad \text{Equation 4} \\
 u - 5 &= 0 \quad \text{Equation 4}
\end{align*}
\]
Causality Assignment = bipartite (dependency) graph maximum cardinality matching
Causality Assignment: causality assigned

\[
\begin{align*}
 x + y + z &= 0 \quad \text{Equation 1} \\
 x + 3z + u^2 &= 0 \quad \text{Equation 2} \\
 z - u - 16 &= 0 \quad \text{Equation 4} \\
 u - 5 &= 0 \quad \text{Equation 4} \\
\end{align*}
\]

\[
\begin{align*}
 y &= -x - z \\
 x &= -3z - u^2 \\
 z &= u + 16 \\
 u &= 5
\end{align*}
\]
causality assignment: network flow

source

Equation 1
variable "x"

Equation 2
variable "y"

Equation 3
variable "z"

Equation 4
variable "u"

sink
Network Flow Problems

\[G = [V, E] \]

Directed graph \(G \) with source \(s \) and sink \(t \)
Network Flow: definitions

Positive capacity $\text{cap}(v, w)$ on every edge $[v, w]$.
$\text{cap}(v, w) = 0$ if $[v, w]$ is not an edge.

A flow on G is any real-valued function f with properties:

1. *skew symmetry.* $f(v, w) = -f(w, v)$.

 $f(v, w) > 0$ is called a flow from v to w.

2. *capacity constraint.* $f(v, w) \leq \text{cap}(v, w)$. If $[v, w]$ is an edge such that $f(v, w) = \text{cap}(v, w)$, the flow is said to saturate $[v, w]$.

3. *flow conservation.* For every vertex v other than s and t

\[
\sum_w f(v, w) = 0
\]
Network Flow: *maximum flow*

The value $|f|$ of a flow f is the net flow out of the source

$$
\sum_v f(s, v)
$$

Maximum Flow Problem (Ford and Fulkerson).
Network Flow: cut

A cut: partition X, \overline{X} of the vertex set V into two parts X and $\overline{X} = V - X$ such that X contains s and \overline{X} contains t. The capacity of a cut X, \overline{X} is

$$cap(X, \overline{X}) = \sum_{v \in X, w \in \overline{X}} cap(v, w)$$

Flow across a cut is

$$f(X, \overline{X}) = \sum_{v \in X, w \in \overline{X}} f(v, w)$$
Network Flow: *max-flow min-cut theorem*

For any flow f, the flow across any cut X, \bar{X} is equal to the flow value. Capacity constraint → flow across cut cannot exceed capacity of the cut. *Maximum flow* is not greater than the capacity of a *minimum cut*.

max-flow min-cut theorem: maximum flow = minimum cut
Network Flow: *residual graph*

Residual capacity for flow f

\[res(v, w) = cap(v, w) - f(v, w) \]

Up to $res(v, w)$ additional flow can be pushed along $[v, w]$.

Residual graph R is graph with edges $res(v, w)$.

Augmenting path from s to t.

Residual capacity is minimum $res(v, w)$.
Network Flow: *residual graph*
Network Flow: *augmenting path*
Ford Fulkerson

- Augmenting step
 1. Find an augmenting path p for the current flow.
 2. Increase the value of the flow by pushing $\text{res}(p)$ units of flow along p.

- Pathfinding step
 1. Find a path p_i from s to t in G^*.
 2. Let Δ_i be the minimum of $f^*(v, w)$ for $[v, w]$ an edge of p_i.
 For every edge $[v, w]$ on p_i, decrease $f^*(v, w)$ by Δ_i and delete $[v, w]$ from G^* if its flow is now zero.
 3. Increment i by one.
Path Finding: which path?

- Edmonds and Karp:
 augmentation along path with maximum residual capacity.

- Dinic:
 augmentation along shortest augmenting path.
Length: number of edges a path contains.
Dinic’s algorithm: find blocking flows to saturate edges

1. Begin with zero flow.

2. Find a blocking flow f' on the level graph for the current flow f.
 Blocking flow: every path from the source s to the sink t contains a saturated edge.

3. Replace f by the flow $f + f'$ defined by:

 $$(f + f')(v, w) = f(v, w) + f'(v, w).$$

4. Repeat until the sink t is not in the level graph for the current flow.
Level Graph

- R: the residual graph for a flow f.
- $level$ of $v = \text{the length of the shortest path from } s \text{ to any vertex } v \text{ in } R$.
- $Level \ graph \ L$ for $f = \text{the subgraph of } R \text{ containing}$
 - only the vertices reachable from s
 - only the edges $[v, w]$ such that

$$level(w) = level(v) + 1.$$

L contains every shortest augmenting path and can be constructed in $O(m)$ time by breadth-first search.
Finding a Blocking Flow (DFS)

- **Initialize**: Let $p = [s]$ and $v = s$. Go to Advance.

- **Advance**: If there is no edge out of v, go to Retreat. Otherwise, let $[v, w]$ be an edge out of v. Replace p by $p & [w]$ and v by w. If $w \neq t$ repeat Advance; if $w = t$ go to Augment.

- **Augment**: Let Δ be the minimum of $(\text{cap}(v, w) - f(v, w))$ for $[v, w]$ an edge of p. Add Δ to the flow of every edge on p, delete from G all newly saturated edges, and go to Initialize.

- **Retreat**: If $v = s$ halt. Otherwise, let $[u, v]$ be the last edge on p. Delete v from p and $[u, v]$ from G, replace v by u, and go to Advance.
Dinic Performance

\(m\) is number of nodes, \(n\) is number of edges

- Finds a blocking flow in \(O(nm)\) time, and a maximum flow in \(O(n^2m)\) time.

- On a unit network, Dinic's algorithm finds a blocking flow in \(O(m)\) time, and a maximum flow in \(O(n^{1/2}m)\) time. Unit network: edge capacities integer, each vertex \(v\) other than the source and the sink has either a single entering edge of capacity one, or a single outgoing edge of capacity one.

- On a network whose edge capacities are all one, Dinic's algorithm finds a maximum flow in \(O(\min\{n^{2/3}m, m^{3/2}\})\) time.
Example
Symbolic Manipulation (Computer Algebra)

Simplification of expressions, re-writing of equations, symbolic solving, . . .

- Mathematica
- REDUCE
- AXIOM
- MACSYMA
- MuPAD (http://www.mupad.de/)
(muPAD) examples

```
>> 100!;
93326215443944152681699238856266700490715968264381621468592963895217599993\n229915608941463976156518286253697920827223758251185210916864000000000000000
000000000

>> (x+1)^4;

        4
    (x + 1)

>> expand(%);

2            3            4
4 x + 6 x + 4 x + x + 1

>> x^2+2*x+1;

        2
    2 x + x + 1
```
(muPAD) examples

>> factor(%%);

[1, x + 1, 2]

>> diff(x^2+2*x+1,x);

2 x + 2

>> int(x^2+2*x+1,x);

3

2 x

x + x + --

3

>> 2+3+4+x+4;

x + 13

>> 2+3+x+y+x*y+x^2+y^3+4;

2 3

x + y + x y + x + y + 9
(muPAD) examples

```
>> solve({x+a*y-2,x-b*y+4},{x,y});

{ { 2 b - 4 a   6 } }
{ { x = -------, y = ----- } }
{ { a + b       a + b } }

>> subs(%a=3,b=4);

{ { x = -4/7, y = 6/7 } }

>> generate::C(x^2+4-sin(y));

"  " t4 = -sin(y) + x*x + 4.0 ;"

>> generate::TeX(x^2+4-sin(y));

" - \sin\left(y\right) + x^2 + 4"
```
Canonical Form

\[
\begin{align*}
\text{\texttt{>> (y+2)+3 + x;}} & \quad \text{\texttt{x + y + 5}} \\
\text{\texttt{>> 5+y+x;}} & \quad \text{\texttt{x + y + 5}} \\
\text{\texttt{>> 2+3+2*y+x-y;}} & \quad \text{\texttt{x + y + 5}} \\
\text{\texttt{>> 2+x -y -x;}} & \quad \text{\texttt{2 - y}}
\end{align*}
\]
Canonical Form

(Davenport)

A representation of a mathematical object (e.g., polynomial) is canonical if two different representations always correspond to two different objects.

A correspondence f between a class O of objects and a class R of representations is a representation of O by R if each element of O corresponds to one or more elements of R (otherwise it is not represented) and each element of R corresponds to one and only one element of O (otherwise we do not know which element of O is represented).

The representation is canonical if f is bijective. With a canonical representation it is possible to check equality of objects by verifying that their representations are equal.
Normal Form

If O has the structure of a monoid, a weaker concept may be defined. A representation is called *normal* if zero has only one representation. Every canonical representation is normal, but the converse is false.

Having a unique representation for zero is important to be able to test for division by zero.

A normal representation over a group also gives us an algorithm to determine whether two elements a and b of O are equal. It is sufficient to check whether $a - b = 0$. In a canonical representation, it suffices to check whether a’s and b’s representations are identical.
Regular and Natural form

A representation should be *regular*

\[A = x^2 + x, \]
\[A + 1 = (x^3 - 1)/(x - 1), \]
\[A - x = x^2, \ldots \text{is not regular}. \]

Representations must be *natural*. Some form of simplification should occur. For polynomials in one variable, every power of \(x \) should appear at most once, and powers should be sorted in ascending or descending order.
Polynomials

Representations of polynomials: *dense* and *sparse*.

- **Dense**: vector of coefficients
- **Sparse**: list of (coeff, degree) tuples

\[
(x^{1000} + 1)(x^{1000} - 1) = x^{2000} - 1
\]

Polynomial *in* a particular variable: \(\sin(x) + 3 \sin^2(x) - 2 \)
is polynomial in \(\sin(x) \)

Increasing or decreasing powers.
Polynomials in multiple variables

canonical, natural representation

Different types of ordering:

- **lexicographic**: alphabetically ordered. Within one variable name, ordered by powers. If the powers of that variable are the same, look at the next (lexicographic) variable. \(x^2 + 2xy + x + y^2 + y + 1 \)

- **total degree, then lexicographic**: lexicographic distinction between same total degree, ordered by total degree. \(x^2 + 2xy + y^2 + x + y + 1 \)

- **total degree, then inverse lexicographic**: \(y^2 + 2xy + x^2 + y + x + 1 \)
Types, Domains, Algebraic Structures

Used to define \textit{generic} operations

Definitions (Birkhoff & McLane)

1. Semigroup $S, +$
 - closure
 - associativity

2. Monoid
 - Semigroup with unit 0

3. Group
 - Identity 1
 - Inverse
4. Commutative (Abelian)
 - Semigroup
 - Monoid
 - Group

5. Ring R, $+$, \ast
 - R, $+$ Abelian Group
 - R, \ast Monoid with unit 1
 - \ast is distributive on both sides over $+$

6. Commutative Ring
 - Ring and R, \ast is commutative

7. Field $=$ Commutative Ring
 - each non-zero element has multiplicative inverse
Computer Algebra ~ Compilers

1. lexical analysis

2. syntactic analysis (grammar parsing)

3. intermediate representation: Abstract Syntax Tree (AST) and Symbol Table (ST)

4. operations (symbolic manipulation) on AST+ST

5. compiler compilers
 - Gentle http://www.first.gmd.de/gentle
 - TRAP http://www.first.gmd.de/smile/ Personally
 - ANTLR http://www.antlr.org
 - PCCTS http://www.ocnus.com/pccts.html
• Catalog of Compiler Construction Tools

 http://www.first.gmd.de/cogent/catalog
Internal model representation

- Abstract Syntax Tree + Symbol Table

\[b + 2 - (a + 3) = x \]

\[= [+[b, +[2, -[a, 3]], x] \]

- From the AST + ST, a dependency graph can be built.
 1. for causality assignment,
 2. for equation re-write,
 3. for loop detection and sorting,
 4. for constant folding,
 5. for parameter expression lifting \((-K/g)\),
 6. for output equation selection
Constant Folding Graph Grammar

\[c_1 + c_2 \]

Rule 1.

```
OP: +
CONST: c1
CONST: c2
::= CONST: c1+c2
```
Constant Folding Transformation

\[v = 2 + (3 + 4) \]
Canonical Representation

To encode associativity and commutativity of operators.
A representation of a mathematical object is canonical if two different representations always correspond to two different objects.

1. n-ary operators
2. inv for each operator
3. lexicographic ordering

\[+[2, \ inv[3], \ a, \ inv[b]] \]
\[+[inv[1], \ a, \ inv[b]] \]

\[2 - 3 + a - b \Rightarrow -1 + a - b \]

\[\rightarrow \text{ symbolic operations (simplify, analyze, \ldots) } \]
\[\rightarrow \text{ re-use AND performance! } \]
Object-Oriented Modelling of Physical Systems

1. Encapsulation, objects, classes, …

2. Types (Software vs. Dynamical systems)
 - Subtypes
 - Contravariance
 - Semantics of composition

3. Inheritance

4. Different levels of abstraction
Based on . . .

- WEST (bioactivated sludge waste water treatment)
 www.hemmiswest.com

- Modelica (ESPRIT Basic Research, now Association)
 www.modelica.org

Aims:
- Standard language for model exchange and re-use
- Support non-causal, hybrid, hierarchical modelling
- Semantics based on Hybrid DAEs
- Separate model (goal: re-use, exchange)
 from its numerical solution (goal: accuracy, speed)
- Library of basic models
Electrical example: Modelica vs. Matlab/Simulink
Electrical Types

type Time = Real (final quantity="Time", final unit="s");
type ElectricPotential = Real (final quantity="ElectricPotential", final unit="V");
type Voltage = ElectricPotential;
type ElectricCurrent = Real (final quantity="ElectricCurrent", final unit="A");
type Current = ElectricCurrent;
Electrical Pin Interface

connector PositivePin "Positive pin of an electric component"
 Voltage v "Potential at the pin";
 flow Current i "Current flowing into the pin";
end PositivePin;
Electrical Port

partial model OnePort

 "Component with two electrical pins p and n
 and current i from p to n"
Voltage v "Voltage drop between the two pins (= p.v - n.v)"
Current i "Current flowing from pin p to pin n"
 PositivePin p;
 NegativePin n;
equation
 v = p.v - n.v;
 0 = p.i + n.i;
 i = p.i;
end OnePort;
Electrical Resistor

model Resistor "Ideal linear electrical resistor"
extends OnePort;
parameter Resistance R=1 "Resistance";
equation
 R*i = v;
end Resistor;
The circuit

model circuit
 Resistor R1(R=10);
 Capacitor C(C=0.01);
 Resistor R2(R=100);
 Inductor L(L=0.1);
 VsourceAC AC;
 Ground G;

equation
 connect(AC.p, R1.p);
 connect(R1.n, C.p);
 connect(C.n, AC.n);
 connect(R1.p, R2.p);
 connect(R2.n, L.p);
 connect(L.n, C.n);
 connect(AC.n, G.p);
end circuit;
Dynasim Modelica demo
Future

- multi-formalism
- multi-abstraction
- meta-modelling (AToM³)