Overview

e Untimed models of discrete event systems
e Languages
e Regular Expressions

e Automata
— Finite State Automata
— Nondeterministic Finite State Automata
— State Aggregation

— Discrete Event Systems as State Automata
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Untimed models

e Level of specification: 1/0O System (state based, deterministic)
e Time Base = N (time = progression index)

e Dynamic but
— only sequence (order) of states traversed matters

— not when in state or how long in state

e Discrete Event: event set E
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Languages — Regular Expressions — Automata

e /anguage L, defined over alphabet £ (events) =
set of strings formed from E

e Example: all possible input behaviours:

L = {e,ARR,DEP,ARR ARR DEP,...}

e Regular expression: shorthand notation for a regular language
ARR DEP,ARR +« DEPx,(DEP + ARR)

Concatenation (4), Kleene closure (x).

e Finite State Automaton (model): generate/accept a language
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Finite State Automaton

(E7X7f7x07F)
e [ is a finite alphabet
e X is a finite state set

e f is a state transition function,
X XE—X

® X is an initial state, xg € X
e F'is the set of final states

Dynamics (x’ is next state):

X = f(x7 8)
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FSA graphical notation: State Transition Diagram
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FSA recognizes Language

e extended transition function:

[ XXEx—X

f(xa ue) — f(f(xa u>7e>

e A string u over the alphabet E is recognized by a FSA (E, X, f,xo, F)
if f(xo,u) =xwherex e F.

e The language recognized by a FSA A = (E, X, f,xo, F') is the set of
strings {u : f(xo,u) € F}.
The language recognized by A is L(A).
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Nondeterministic Finite State Automaton

NFA = (E,X, f,xo,F)
fiXxE—2X
e Monte Carlo simulation (if probabilities added)

e Transform to equivalent FSA (aka DFA)
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Nondeterministic Finite State Automaton
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Constructed Deterministic Finite State Automaton
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Transformation Rules
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eliminateMDT 3
elimUnreachModes 1
joinEqual States 2
eliminateSelfHDT 4

Rules

InitialAction  edit

FinalAction edit

Ok
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Rule LHS
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Rule RHS
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Managing Complexity: State Aggregation

(E7X7f7x07F)
RCX

R consists of equivalent states with respect to F
if for any x,y € R,x # y and any string u,

fru) e F & f(yu) €F
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State Aggregation Algorithm

1. Mark (x,y) forallx e F,y ¢ F

2. For every pair (x,y) not marked in previous step:

(@) If (f(x,e), f(y,e)) is marked for some e € E, then:
.. Mark (x,y)
ii. Mark all unmarked pairs (w,z) in the list of (x,y). Repeat this
step for each (w,z) until no more markings possible.

(b) If no (f(x,e), f(y,e)) is marked, the for every e € E:
.. If f(x,e) # f(y,e) then add (x,y) to the list of f(x,e) # f(y,e)

Pair which remain unmarked are in equivalence set
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digit sequence (123) detector FSA
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State Reduced FSA
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State Automata to model Discrete Event Systems

e X is state space

e All inputs are strings from an alphabet E (the events)
e State transition function x' = f(x,e)

e Allow X and E to be countable rather than finite

e Introduce feasible events
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State Automaton

(E7X7F7f7x0)
e [ is a countable event set
e X is a countable state space

e I'(x) is the set of feasible or enabled events
xeX,I'(x) e E

e f is a state transition function,
f:X xE — X, only defined for e € T'(x)

e xp is an initial state, xg € X
(E7X7 F? f)
omits xg and describes a class of State Automata.
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Feasible/Enabled Events

e On transition diagram: not feasibe =- not marked
e Meaning: ignore non-feasible events

e Why not f(x,e) = x for non-feasible events ?
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State Automata for Queueing Systems
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State Automata for Queueing Systems:
customer centered

OJO01010010%.
E={a,d}
X =1{0,1,2,...}
I'(x) ={a,d},Vx>0,I'(0) = {a}

flx,a)=x4+1,¥x>0
flx,d)=x—1,Vx>0
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State Automata for Queueing Systems:
server centered (with breakdown)
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State Automata for Queueing Systems: server
centered (with breakdown)

E ={s,c,b,r}

Events: s denotes service starts, ¢ denotes service completes, b denotes
breakdown, r denotes repair.

X ={1,B,D}
State: I denotes idle, B denotes busy, D denotes broken down.
['(I) ={s},[(B) = {c,b},['(D) = {r}

f(I,S) :B,f(B,C) :Ivf(Bvb) :D,f(D,I’) =1

McGill, 26 September, 2000 hv@cs.mcgill.ca Multi-formalism Modelling and Simulation

23/28



Interpretations/Uses

e (Generate all possible behaviours.
e Accept all allowed input sequences = code generation.

e \Verification of properties.
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State Automata with Output

(E,X,F,f,X(),Y,g>
e Y is a countable output set,

e g is an output function

g: XXE—=Yeecl(x)
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State Automata for Adventure Games

Skoop
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State Automata (later: StateCharts) for
Graphical User Interface Specification
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Limitiations/extensions of State Automata

e Adding time ?

e Hierarchical modelling ?

e Concurrency by means of X

e States are represented explicitly

e Specifying control logic, synchronisation ?
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