Overview

e Untimed models of discrete event systems
e Languages
e Regular Expressions

e Automata
— Finite State Automata
— Nondeterministic Finite State Automata
— State Aggregation

— Discrete Event Systems as State Automata

McGill, 26 September, 2000 hv@cs.mcgill.ca Multi-formalism Modelling and Simulation 1/28

Untimed models

e Level of specification: 1/0O System (state based, deterministic)
e Time Base = N (time = progression index)

e Dynamic but
— only sequence (order) of states traversed matters

— not when in state or how long in state

e Discrete Event: event set E

McGill, 26 September, 2000 hv@cs.mcgill.ca Multi-formalism Modelling and Simulation 2/28

Languages — Regular Expressions — Automata

e /anguage L, defined over alphabet £ (events) =
set of strings formed from E

e Example: all possible input behaviours:

L = {e,ARR,DEP,ARR ARR DEP,...}

e Regular expression: shorthand notation for a regular language
ARR DEP,ARR +« DEPx,(DEP + ARR)

Concatenation (4), Kleene closure (x).

e Finite State Automaton (model): generate/accept a language

McGill, 26 September, 2000 hv@cs.mcgill.ca Multi-formalism Modelling and Simulation 3/28

Finite State Automaton

(E7X7f7x07F)
e [is a finite alphabet
e X is a finite state set

e f is a state transition function,
X XE—X

® X is an initial state, xg € X
e F'is the set of final states

Dynamics (x’ is next state):

X = f(x7 8)

McGill, 26 September, 2000 hv@cs.mcgill.ca Multi-formalism Modelling and Simulation 4/28

FSA graphical notation: State Transition Diagram

McGill, 26 September, 2000 hv@cs.mcgill.ca Multi-formalism Modelling and Simulation 5/28

FSA recognizes Language

e extended transition function:

[XXEx—X

f(xa ue) — f(f(xa u>7e>

e A string u over the alphabet E is recognized by a FSA (E, X, f,xo, F)
if f(xo,u) =xwherex e F.

e The language recognized by a FSA A = (E, X, f,xo, F') is the set of
strings {u : f(xo,u) € F}.
The language recognized by A is L(A).

McGill, 26 September, 2000 hv@cs.mcgill.ca Multi-formalism Modelling and Simulation 6/28

Nondeterministic Finite State Automaton

NFA = (E,X, f,xo,F)
fiXxE—2X
e Monte Carlo simulation (if probabilities added)

e Transform to equivalent FSA (aka DFA)

McGill, 26 September, 2000 hv@cs.mcgill.ca Multi-formalism Modelling and Simulation 7/28

Nondeterministic Finite State Automaton

McGill, 26 September, 2000 hv@cs.mcgill.ca Multi-formalism Modelling and Simulation 8/28

Constructed Deterministic Finite State Automaton

McGill, 26 September, 2000 hv@cs.mcgill.ca Multi-formalism Modelling and Simulation 9/28

McGill, 26 September, 2000

Transformation Rules

Hame |NF&2DF A
news | edit | delete |I

eliminateMDT 3
elimUnreachModes 1
joinEqual States 2
eliminateSelfHDT 4

Rules

InitialAction edit

FinalAction edit

Ok

~|

Cancel

hv@cs.mcgill.ca

Multi-formalism Modelling and Simulation

10/28

Rule LHS

McGill, 26 September, 2000 hv@cs.mcgill.ca Multi-formalism Modelling and Simulation 11/28

Rule RHS

McGill, 26 September, 2000 hv@cs.mcgill.ca Multi-formalism Modelling and Simulation 12/28

Managing Complexity: State Aggregation

(E7X7f7x07F)
RCX

R consists of equivalent states with respect to F
if for any x,y € R,x # y and any string u,

fru) e F & f(yu) €F

McGill, 26 September, 2000 hv@cs.mcgill.ca Multi-formalism Modelling and Simulation 13/28

State Aggregation Algorithm

1. Mark (x,y) forallx e F,y ¢ F

2. For every pair (x,y) not marked in previous step:

(@) If (f(x,e), f(y,e)) is marked for some e € E, then:
.. Mark (x,y)
ii. Mark all unmarked pairs (w,z) in the list of (x,y). Repeat this
step for each (w,z) until no more markings possible.

(b) If no (f(x,e), f(y,e)) is marked, the for every e € E:
.. If f(x,e) # f(y,e) then add (x,y) to the list of f(x,e) # f(y,e)

Pair which remain unmarked are in equivalence set

McGill, 26 September, 2000 hv@cs.mcgill.ca Multi-formalism Modelling and Simulation 14/28

digit sequence (123) detector FSA

McGill, 26 September, 2000 hv@cs.mcgill.ca Multi-formalism Modelling and Simulation 15/28

State Reduced FSA

McGill, 26 September, 2000 hv@cs.mcgill.ca Multi-formalism Modelling and Simulation 16/28

State Automata to model Discrete Event Systems

e X is state space

e All inputs are strings from an alphabet E (the events)
e State transition function x' = f(x,e)

e Allow X and E to be countable rather than finite

e Introduce feasible events

McGill, 26 September, 2000 hv@cs.mcgill.ca Multi-formalism Modelling and Simulation 17/28

State Automaton

(E7X7F7f7x0)
e [is a countable event set
e X is a countable state space

e I'(x) is the set of feasible or enabled events
xeX,I'(x) e E

e f is a state transition function,
f:X xE — X, only defined for e € T'(x)

e xp is an initial state, xg € X
(E7X7 F? f)
omits xg and describes a class of State Automata.

McGill, 26 September, 2000 hv@cs.mcgill.ca Multi-formalism Modelling and Simulation 18/28

Feasible/Enabled Events

e On transition diagram: not feasibe =- not marked
e Meaning: ignore non-feasible events

e Why not f(x,e) = x for non-feasible events ?

McGill, 26 September, 2000 hv@cs.mcgill.ca Multi-formalism Modelling and Simulation 19/28

State Automata for Queueing Systems

o MR —

Arrival

o

Arrival
[IAT distribution]

McGill, 26 September, 2000 hv@cs.mcgill.ca

Departure
Queue Cashier
Physical View
—_—
Departure
Cashier
Queue

[ST distribution]

Abstract View

Multi-formalism Modelling and Simulation

20/28

State Automata for Queueing Systems:
customer centered

OJO01010010%.
E={a,d}
X =1{0,1,2,...}
I'(x) ={a,d},Vx>0,I'(0) = {a}

flx,a)=x4+1,¥x>0
flx,d)=x—1,Vx>0

McGill, 26 September, 2000 hv@cs.mcgill.ca Multi-formalism Modelling and Simulation 21/28

State Automata for Queueing Systems:
server centered (with breakdown)

McGill, 26 September, 2000 hv@cs.mcgill.ca Multi-formalism Modelling and Simulation 22/28

State Automata for Queueing Systems: server
centered (with breakdown)

E ={s,c,b,r}

Events: s denotes service starts, ¢ denotes service completes, b denotes
breakdown, r denotes repair.

X ={1,B,D}
State: I denotes idle, B denotes busy, D denotes broken down.
['(I) ={s},[(B) = {c,b},['(D) = {r}

f(I,S) :B,f(B,C) :Ivf(Bvb) :D,f(D,I’) =1

McGill, 26 September, 2000 hv@cs.mcgill.ca Multi-formalism Modelling and Simulation

23/28

Interpretations/Uses

e (Generate all possible behaviours.
e Accept all allowed input sequences = code generation.

e \Verification of properties.

McGill, 26 September, 2000 hv@cs.mcgill.ca Multi-formalism Modelling and Simulation 24/28

State Automata with Output

(E,X,F,f,X(),Y,g>
e Y is a countable output set,

e g is an output function

g: XXE—=Yeecl(x)

McGill, 26 September, 2000 hv@cs.mcgill.ca Multi-formalism Modelling and Simulation 25/28

State Automata for Adventure Games

Skoop

McGill, 26 September, 2000

K arm PCiaal
I R am W Pi_laalw
N
- Streat |- FPlato Les
. o y————————
Stre afvy Platoy
M
H o ey
l w.{ﬂ o
Bure 2
ol

hv@cs.mcgill.ca

Multi-formalism Modelling and Simulation

26/28

State Automata (later: StateCharts) for
Graphical User Interface Specification

OMERET > |l
mugun-@u L] s
1 & “ | »

ul!]III ?*] - lm «| Me | mm

McGill, 26 September, 2000 hv@cs.mcgill.ca Multi-formalism Modelling and Simulation

27/28

Limitiations/extensions of State Automata

e Adding time ?

e Hierarchical modelling ?

e Concurrency by means of X

e States are represented explicitly

e Specifying control logic, synchronisation ?

McGill, 26 September, 2000 hv@cs.mcgill.ca Multi-formalism Modelling and Simulation 28/28

