Timed Discrete Event Modelling and Simulation

- extend State Automata with "time in state"
- equivalent to Event Graphs "time to transition"
- \Rightarrow schedule events

(timed) Discrete Event Models

Discrete Event Modelling and Simulation

- Model: objects and relationships among objects
- Object : characterized by attributes to which values can be assigned
- Attributes:
 - indicative
 - relational
- Values: of a type

Time and State Relationships

- Indexing Attribute: enables state transitions
 Time is most common.
- Instant: value of System Time at which the value of at least one attribute of an object can be assigned.
- Interval: duration between two successive instants.
- Span: contiguous succession of one or more intervals.
- State of an object: enumeration of all attribute values at a particular instant.
- State of the system: all object states at a particular instant.

Single Server Queueing System

Queueing System State Trajectory

Time and State Relationships

- Activity: state of an object over an interval
- Event: change in object state, occurring at an instant.
 Initiates an activity
 - Determined: occurrence based on time ("time event")
 - Contingent: based on system conditions ("state event")
- Object activity: state of object between two events for that object
- Process: succession of states of object over a span

Event/Object Activity/Process

Event Scheduling

- Identify objects and their attributes
- Identify system attributes (global)
- Define what causes changes in attribute value as event
- Write event routine for each event:
 - modify state (attributes)
 - *schedule* event(s) at $t + \Delta t, \Delta t \ge 0$
- Priorities for tie-breaking
- Event scheduling logic

Cashier-queue Event Scheduling Model

```
declare variables:
     : Time
queue_length : PosInt
cashier_state : {Idle, Busy}
declare events:
 start, arrival, departure, end
define events:
 start event:
 /* scheduled first automatically by simulator */
  /* initializations */
  queue_length = 0
 cashier_state = Idle
  /* schedule end of simulation */
  schedule end absolute end_time
```

```
/* schedule first arrival */
 schedule arrival relative 0
arrival event:
 schedule arrival relative Random (IATmean, IATspread)
 if (queue length == 0)
  if (cashier state == Idle)
   cashier_state = Busy
   schedule departure relative Random (SERVmean, SERVspread)
  else
   queue_length++
 else /* queue length != 0 */
 queue length++
departure event:
 if (queue_length == 0)
  cashier state = Idle
 else /* queue_length != 0 */
  queue_length--
  schedule departure relative Random (SERVmean, SERVspread)
```

```
end event:
  /* terminates simulation */
  /* process/output performance metrics */
  print time, queue_length /* current */
  print average_queue_length
```

Event Scheduling Kernel

Input Generation

A "model" of input (sequence of Inter Arrival Times):

- Trace driven
- Auto generating (bootstrapping)

Cashier-queue Event List

Queueing System State Trajectory

Termination Conditions

- Empty Event List Need to stop generating arrivals after t_{end} when auto-generating arrivals
- Schedule Termination Event
 - process statistics
 - cleanup
 - stop
 - caveat: process all final events!
 - * use reserved priority
 - * re-schedule
- Similarly: schedule initialization/setup

Event Scheduling (dis)advantages

- advantage: run-time efficient
- disadvantage: hard to understand model

Activity Scanning (rule-based)

Activity:

- condition: must be satisfied for activity to take place.
 Becomes true *only* at event times.
- actions: operations performed when condition becomes true

Time-advance mechanism:

fixed time-step

Also known as Two Phase Approach

Cashier-queue Activity Scanning Model

```
declare (and initialize) variables:
     : Time
queue_length : PosInt = 0
cashier state : {Idle, Busy} = Idle
t_arrival : Time = 0
t depart : Time = plusInf
declare activities:
queue_pay, depart, end
queue_pay activity
condition: t >= t_arrival
actions:
if (queue length == 0)
  if (cashier state == Idle)
  keep queue_length == 0
  cashier_state = Busy
  t_depart = t + Random(SERVmean, SERVspread) /* service time */
  else
  queue_length++
```

```
else /* queue length != 0 */
  queue_length++, keep cashier_state == Busy
t_arrival = t + Random(IATmean, IATspread) /* inter arrival time */
depart activity
condition: t >= t_departure
actions:
if (queue_length == 0)
 cashier state = Idle
else /* queue length != 0 */
  queue_length--, keep cashier_state == Busy
 t depart = t + Random(SERVmean, SERVspread) /* service time */
end activity
condition: t >= t_end
actions:
print t, queue_length /* current */
print avg queue length /* performance metric */
```

Activity Scanning

Activity Scanning (dis)advantages

- advantage: declarative model
- disadvantages:
 - inaccurate if changes occur in between time-steps
 - run-time inefficient (fixed time-step)

Three Phase Approach

- Bound to occur activities: unconditional state changes. Pre-scheduled.
- Conditional activites

Three Phase Approach

Three Phase Approach (dis)advantages

- advantage: performance added to Activity Scanning
- disadvantage: mixing two views

Process Interaction

Process Interaction: Transaction Life

Cashier-Queue: GPSS Process Interaction View

GENERATE 10, 5
QUEUE wait
SEIZE cashier
DEPART wait
ADVANCE 5, 3
RELEASE cashier
TERMINATE 1

Process Interaction (dis)advantages

- advantage: declarative model, high-level "process view"
- disadvantage: rather inefficient

General disadvantages

- (here) not formally defined, is possible
- non-modular, is possible
- \Rightarrow DEVS formalism

World Views: Classification

(Pseudo-) Random-number Generators

- SYS model is deterministic + random constructs
- randomness ≡ not enough detail known or don't care
- randomness: characterized by distribution
- In SYS: draw from distribution and Monte-Carlo run multiple deterministic simulations.
- Alternatives:
 - Transform to deterministic.
 - Markov Chains (analytical).

Probability Distributions

- Continuous vs. discrete
- Probability Density Function (f(x))
- Cumulative Probability Function (F(X))
- see probability course: Poisson, Erlang, ...

Pseudo-random

- Sample from distribution (U(0,1))
- Reproducability/comparison of experiments!
 - science needs reproducable results
 - makes debugging easier
 - identical random numbers to compare different systems
- Quality of generator:
 - appear uniformly distributed
 - non-correlated
 - fast and doesn't need much storage
 - long period, dense (full) coverage
 - provision for *streams* (subsegments)

Linear Congruential Generators

$$Z_i = (aZ_{i-1} + c) mod m$$

m is modulus

a is multiplier

c is increment

 Z_0 is seed

c=0 is called *multiplicative* LCG

Generators ctd.

- Composite Generators
- Tausworthe generators (operate on bits)
- L'Ecuyer, Devroye (non-uniform)
- Testing RNG: empirical vs. theoretical
- References: Knuth, Law & Kelton

Marse and Roberts' portable RNG

$$Z[i] = (630360016 * Z[i-1]) mod(2^{31}-1)$$

- Prime modulus multiplicative linear congruential generator.
- Based on Fortran UNIRAN code.
- Multiple (100) streams are supported with seeds spaced 100,000 apart.
- Include file: rand.h
- C file: rand.c
- Example use: randtest.c

Non-uniform continuously distributed RNG

Inverse Transformation Method

Gathering Statistics (report generation)

- 1. counters
- 2. summary measures
- 3. utilization
- 4. occupancy
- 5. distributions and transit times

Counters

In all previous examples: keep/update counters (as state vars)!

- numbers of entities of different types in the system
- number of times a particular event occurred
- basis for statistics (performance metrics)

Summary Measures

- minima and maxima:
 compare new values to current min and max, update when necessary
- mean of a set of N observations $x_i, i = 1, 2, ..., N$

$$m = \frac{1}{N} \sum_{i=1}^{N} x_i$$

Summary Measures (ctd.)

standard deviation (from mean)

$$s = \sqrt{\frac{1}{N-1} \sum_{i=1}^{N} (m - x_i)^2}$$

- need to calculate m first \rightarrow need to keep all observations
- sum of squares may grow very large (accuracy ↓)

$$\sum_{i=1}^{N} (m - x_i)^2 = \sum_{i=1}^{N} x_i^2 - Nm^2$$

Utilization

The fraction (or %) of time each individual entity is engaged

$$U = \frac{1}{t_{end} - t_{start}} \sum_{i=1}^{N} (t_e - t_b)_i$$

Average Use and Occupancy

for groups and classes of entities

Average Use and Occupancy (ctd.)

Average use over time (t_i are times of change)

$$A = \frac{1}{t_{end} - t_{start}} \sum_{i=1}^{N} n_i (t_{i+1} - t_i)$$

Example use: average queue length.

• Occupancy: average number in use with respect to *MAX*

$$O = \frac{A}{MAX}$$

No bookkeeping of individual entity information required, only *total* use (n_i) and *when* change occurs. This, as opposed to for example average transit time computation where individual times must be kept.

Distributions and Transit Times

Number of intervals N, Uniform interval size Δ , Lower tabulation limit L. Implementation: table of interval *counters*.

Global accumulation: number of entries, sum of entries, sum of squares.

Distributions and Transit Times (ctd.)

- Transit times: use clock as *time stamp*, enter in table at end of transit.
- Distribution of number of entitities: measure at uniform intervals of time.