Timed Discrete Event Modelling and Simulation

- extend State Automata with “time in state”
- equivalent to Event Graphs “time to transition”

⇒ schedule events
(timed) Discrete Event Models

Finite State Automaton

Event (Scheduling) Graph

McGill, October, 2001
hv@cs.mcgill.ca
CS 308-522A Modelling and Simulation
Discrete Event Modelling and Simulation

- Model: objects and relationships among objects
- Object: characterized by attributes to which values can be assigned
- Attributes:
 - indicative
 - relational
- Values: of a type
Time and State Relationships

- Indexing Attribute: enables state transitions
 Time is most common.

- Instant: value of System Time at which the value of at least one attribute
 of an object can be assigned.

- Interval: duration between two successive instants.

- Span: contiguous succession of one or more intervals.

- State of an object: enumeration of all attribute values at a particular
 instant.

- State of the system: all object states at a particular instant.
Single Server Queueing System

Physical View

- **Arrival**
- **Queue**
- **Cashier**
- **Departure**

Abstract View

- **Arrival**
 - [IAT distribution]
- **Queue**
- **Cashier**
 - [ST distribution]
Queueing System State Trajectory

state = queue_length x cashier_state

Input Events
Arrival

Output Events
Departure

queue_length

cashier_state

Busy
Idle

state =
queue_length x cashier_state
Time and State Relationships

- Activity: state of an object over an interval
- Event: change in object state, occurring at an instant.
 Initiates an activity
 - Determined: occurrence based on time ("time event")
 - Contingent: based on system conditions ("state event")
- Object activity: state of object between two events for that object
- Process: succession of states of object over a span
Event/Object Activity/Process
Event Scheduling

- Identify *objects* and their *attributes*
- Identify *system attributes* (global)
- Define what causes *changes* in attribute value as *event*
- Write *event routine* for each event:
 - *modify state* (attributes)
 - *schedule* event(s) at \(t + \Delta t, \Delta t \geq 0 \)
- Priorities for *tie-breaking*
- Event scheduling logic
Cashier-queue Event Scheduling Model
declare variables:
 t : Time
 queue_length : PosInt
 cashier_state : \{Idle, Busy\}

declare events:
 start, arrival, departure, end

define events:

 start event:
 /* scheduled first automatically by simulator */

 /* initializations */
 queue_length = 0
 cashier_state = Idle

 /* schedule end of simulation */
 schedule end absolute end_time
/* schedule first arrival */
schedule arrival relative 0

arrival event:
schedule arrival relative Random(IATmean, IATspread)
if (queue_length == 0)
 if (cashier_state == Idle)
 cashier_state = Busy
 schedule departure relative Random(SERVmean, SERVspread)
 else
 queue_length++
else /* queue_length != 0 */
 queue_length++

departure event:
if (queue_length == 0)
 cashier_state = Idle
else /* queue_length != 0 */
 queue_length--
schedule departure relative Random(SERVmean, SERVspread)
end event:
/* terminates simulation */
/* process/output performance metrics */
print time, queue_length /* current */
print average_queue_length
Event Scheduling Kernel

- **start**
 - initializations (schedule "start" event)
 - time flow mechanism: select next event from event list
 - Event List: [(ev1,t1),(ev2,t2), ...]
 - time
 - state variables; performance variables

- event routine 1
 - event routine k
 - event routine k+1

- event routine "end"
 - output performance metrics; cleanup;

- end
Input Generation

A “model” of input (sequence of Inter Arrival Times):

- Trace driven
- Auto generating (bootstrapping)
Cashier-queue Event List

<table>
<thead>
<tr>
<th>time</th>
<th>Event List</th>
<th>State set: queue_size x cashier_status</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>(0, Idle)</td>
<td>Initialized to: empty queue idle cashier arrival pre-scheduled at time 10</td>
</tr>
</tbody>
</table>

- Process current event:
 - set time to current event time
 - update state:
 - cashier busy
 - queue length increases
 - schedule next arrival at t+IAT()
 - schedule departure at t+ST()
 - remove current event from list

| 10 | (0, Busy) | 1020 |

- Process current event:
 - set time to current event time
 - update state:
 - cashier remains busy
 - queue length increases
 - schedule next arrival at t+IAT()
 - remove current event from list

| 20 | (1, Busy) | |

- Process current event:
 - set time to current event time
 - generate departure output
 - update state:
 - cashier remains busy
 - customer from queue
 - queue length decreases
 - schedule departure at t+ST()
 - remove current event from list

| 30 | (0, Busy) | |
Queueing System State Trajectory

Input Events
Arrival

Output Events
Departure

queue_length

cashier_state

state = queue_length \times cashier_state
Termination Conditions

- Empty Event List
 Need to stop generating arrivals after t_{end} when auto-generating arrivals

- Schedule Termination Event
 - process statistics
 - cleanup
 - stop
 - *caveat*: process all final events!
 - use reserved priority
 - re-schedule

- Similarly: schedule initialization/setup
Event Scheduling (dis)advantages

- advantage: run-time efficient
- disadvantage: hard to understand model
Activity Scanning (rule-based)

Activity:

- condition: must be satisfied for activity to take place. Becomes true \textit{only} at event times.

- actions: operations performed when condition becomes true

Time-advance mechanism:

- fixed time-step

Also known as Two Phase Approach
Cashier-queue Activity Scanning Model
declare (and initialize) variables:
 t : Time
queue_length : PosInt = 0
cashier_state : {Idle, Busy} = Idle
t_arrival : Time = 0
t_depart : Time = plusInf

declare activities:
 queue_pay, depart, end

queue_pay activity
condition: t >= t_arrival
actions:
 if (queue_length == 0)
 if (cashier_state == Idle)
 keep queue_length == 0
 cashier_state = Busy
 t_depart = t + Random(SERVmean, SERVspread) /* service time */
 else
 queue_length++
else /* queue_length != 0 */
 queue_length++, keep cashier_state == Busy
 t_arrival = t + Random(IATmean, IATspread) /* inter arrival time */

depart activity
condition: t >= t_departure
actions:
 if (queue_length == 0)
 cashier_state = Idle
 else /* queue_length != 0 */
 queue_length--, keep cashier_state == Busy
 t_depart = t + Random(SERVmean, SERVspread) /* service time */

end activity
condition: t >= t_end
actions:
 print t, queue_length /* current */
 print avg_queue_length /* performance metric */
Activity Scanning

start

initializations

time flow mechanism: discrete time step

activity scan

state variables; performance variables

discrete time variable

activity 1
condition
actions

activity k
condition
actions

activity k+1
condition
actions

activity "end"
condition
output performance metrics; cleanup;

end
Activity Scanning (dis)advantages

- advantage: declarative model

- disadvantages:
 - inaccurate if changes occur in between time-steps
 - run-time inefficient (fixed time-step)
Three Phase Approach

- **Bound to occur activities**: unconditional state changes. Pre-scheduled.
- **Conditional activities**
Three Phase Approach

start
initializations
time flow mechanism: select earliest time on EL
Event List (EL): [(activity B1, t1), (activity B2, t2), ...]
execute all B activities on EL due now
state variables; performance variables
A phase
B phase

activity scan

C phase

activity C1
condition
actions
activity Ck
condition
actions
activity C(k+1)
condition
actions

activity B1
... actions
activity Bk
... actions
activity B(k+1)
... actions

activity C"end"
... condition
actions
... performance metrics; cleanup

activity B"end"
... actions

end

McGill, October, 2001
hv@cs.mcgill.ca
CS 308-522A Modelling and Simulation
Three Phase Approach (dis)advantages

- advantage: performance added to Activity Scanning
- disadvantage: mixing two views
Process Interaction

start

Initializations

Clock Update Phase

- current time = move time of first xact on Future Events List (FEL)
- transfer all xacts with move-time = current time to the Current Events List; order by priority

Scan Phase

- move next object on CEL through as far as possible through its process description

Y more xacts to move ?

N terminate simulation ?

Y output performance metrics; cleanup;

end

FEL: [xact1, x1ct2, ...]

increasing move-time

Increasing move-time

CEL

xact1'
xact2'
xact3'

... more xacts to move ?

... terminate simulation ?

output performance metrics; cleanup;

end

Process Interaction model
(e.g., GPSS block diagram)

GENERATE 10, 5
QUEUE wait
SEIZE cashier
DEPART wait
ADVANCE 5, 3
RELEASE cashier
TERMINATE 1
Process Interaction: Transaction Life

Transaction Creation

Y

IAT=0

N

CEL

ADVANCE

FEL

move time = clock time

TERMINATE

Transaction Destruction
Cashier-Queue: GPSS Process Interaction View

GENERATE 10, 5
QUEUE wait
SEIZE cashier
DEPART wait
ADVANCE 5, 3
RELEASE cashier
TERMINATE 1
Process Interaction (dis)advantages

- advantage: declarative model, high-level “process view”
- disadvantage: rather inefficient
General disadvantages

- (here) not formally defined, is possible
- non-modular, is possible

⇒ DEVS formalism
World Views: Classification

“Discrete” Formalisms

Discrete Time Formalisms
- Activity Scanning
- Difference Equations
- Finite State Automata

Discrete Event Formalisms
- Statecharts
- Process Interaction
- Event Scheduling
- Three Phase Approach

DEVS
(Pseudo-) Random-number Generators

- SYS model is deterministic + random constructs
- randomness ≡ not enough detail known or don’t care
- randomness: characterized by distribution
- In SYS: draw from distribution and
 Monte-Carlo run multiple deterministic simulations.
- Alternatives:
 - Transform to deterministic.
 - Markov Chains (analytical).
Probability Distributions

- Continuous vs. discrete
- Probability Density Function ($f(x)$)
- Cumulative Probability Function ($F(X)$)
- see probability course: Poisson, Erlang, …
Pseudo-random

• Sample from distribution \(U(0, 1) \)

• Reproducability/comparison of experiments!
 – science needs reproducible results
 – makes debugging easier
 – \textit{identical} random numbers to compare \textit{different} systems

• Quality of generator:
 – appear uniformly distributed
 – non-correlated
 – fast and doesn’t need much storage
 – long period, dense (full) coverage
 – provision for \textit{streams} (subsegments)
Linear Congruential Generators

\[Z_i = (aZ_{i-1} + c) \mod m \]

- \(m \) is modulus
- \(a \) is multiplier
- \(c \) is increment
- \(Z_0 \) is seed
- \(c = 0 \) is called \textit{multiplicative} LCG
Generators ctd.

- Composite Generators
- Tausworthe generators (operate on bits)
- L’Ecuyer, Devroye (non-uniform)
- Testing RNG: empirical vs. theoretical
- References: Knuth, Law & Kelton
Marse and Roberts’ portable RNG

\[Z[i] = (630360016 \times Z[i - 1]) \mod (2^{31} - 1) \]

- Prime modulus multiplicative linear congruential generator.
- Based on Fortran UNIRAN code.
- Multiple (100) streams are supported with seeds spaced 100,000 apart.
- Include file: rand.h
- C file: rand.c
- Example use: randtest.c
Non-uniform continuously distributed RNG

Inverse Transformation Method
Gathering Statistics (report generation)

1. counters
2. summary measures
3. utilization
4. occupancy
5. distributions and transit times
Counters

In all previous examples: keep/update counters (as state vars)!

- numbers of entities of different types in the system
- number of times a particular event occurred
- basis for statistics (performance metrics)
Summary Measures

- minima and maxima:
 compare new values to current min and max, update when necessary

- mean of a set of N observations $x_i, i = 1, 2, \ldots, N$

$$m = \frac{1}{N} \sum_{i=1}^{N} x_i$$
Summary Measures (ctd.)

- standard deviation (from mean)

\[
s = \sqrt{\frac{1}{N - 1} \sum_{i=1}^{N} (m - x_i)^2}
\]

- need to calculate \(m \) first → need to keep all observations
- sum of squares may grow very large (accuracy ↓)

\[
\sum_{i=1}^{N} (m - x_i)^2 = \sum_{i=1}^{N} x_i^2 - Nm^2
\]
Utilization

The fraction (or %) of time each *individual* entity is engaged

\[
U = \frac{1}{t_{end} - t_{start}} \sum_{i=1}^{N} (t_e - t_b)_i
\]
Average Use and Occupancy

for groups and classes of entities
Average Use and Occupancy (ctd.)

- Average use over time (t_i are times of change)

\[
A = \frac{1}{t_{end} - t_{start}} \sum_{i=1}^{N} n_i(t_{i+1} - t_i)
\]

Example use: average queue length.

- Occupancy: average number in use with respect to MAX

\[
O = \frac{A}{MAX}
\]

No bookkeeping of individual entity information required, only total use (n_i) and when change occurs. This, as opposed to for example average transit time computation where individual times must be kept.
Distributions and Transit Times

Number of intervals N, Uniform interval size Δ, Lower tabulation limit L.
Implementation: table of interval *counters*.
Global accumulation: number of entries, sum of entries, sum of squares.
Distributions and Transit Times (ctd.)

- Transit times: use clock as *time stamp*, enter in table at end of transit.
- Distribution of number of entities: measure at uniform intervals of time.