Overview

- Basis of System Specification
 - 1. Set Theory
 - 2. Time Base
 - 3. Segments and Trajectories
- Hierarchy of System Specification
 - 1. I/O Observation Frame
 - 2. I/O Observation Relation
 - 3. I/O Function Observation
 - 4. I/O System

- 5. Multicomponent Specifications
 - Modular
 - Non-modular
- Non-causal models

System Specification

- Start from observations of structure and behaviour
- Build progressively more complex/detailed models
- OO terminology: *model* composed of
 - objects, with attributes
 - * indicative or relational
 - * have type (set of possible values)
 - relationships between objects

Set Theory for Abstraction

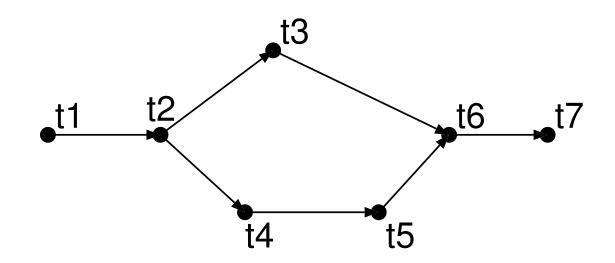
 $\{1, 2, \dots, 9\}$ $\{a,b,\ldots,z\}$ $\mathbb{N}, \mathbb{N}^+, \mathbb{N}^+_{\infty}$ $\mathbb{R}, \mathbb{R}^+, \mathbb{R}^+_{\infty}$ $EV = \{ARRIVAL, DEPARTURE\}$ $EV^{\phi} = EV \cup \{\phi\}$ $A \times B = \{(a,b) | a \in A, b \in B\}$ + semantics !

Time Base

$$time = \langle T, < \rangle$$

- Dynamic system: irreversible passage of *time*.
- Set T, ordering relation < on elements of T.
 - transitive: $A < B \land B < C \Rightarrow A < C$
 - irreflexive: $A \not< A$
 - antisymmetric: $A < B \Rightarrow B \not< A$
- Ordering:
 - Total (linear) ordering $\forall t, t' \in T : t < t' \lor t' < t \lor t = t'$
 - Partial ordering: uncertainty, multiplicity, concurrency,

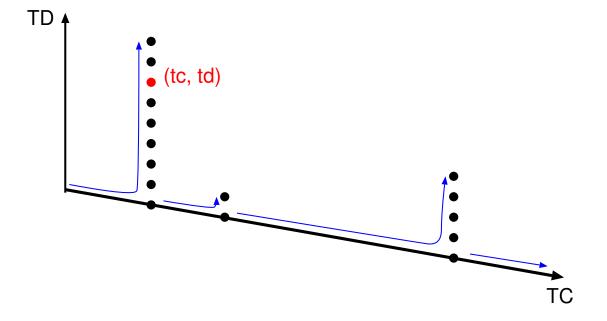
Partial Ordering



Past, Future, Intervals

- Past: $T_t = \{\tau | \tau \in T, \tau < t\}$
- Future: $T_{]t} = \{\tau | \tau \in T, t < \tau\}$
- $\langle t \text{ means }]t \text{ or } [t]$
- Interval $T_{\langle t_b, t_e \rangle}$
- Abelian group (T, +) with zero 0 and inverse -t
- Order preserving +: $t_1 < t_2 \Rightarrow t_1 + t < t_2 + t$
- Lower bound, upper bound
- Time bases: {*NOW*}, ℝ: *continuous*, ℕ or isomorphic: *discrete*, partial ordering.

Time Bases for hybrid system models



Behaviour over Time: Segments and Trajectories

- With time base, describe *behaviour over time*
- Time function, *trajectory*, signal: $f: T \rightarrow A$
- Restriction to $T' \subseteq T$ $f|T': T' \to A, \forall t \in T': f|T'(t) = f(t)$
- Past of $f: f|T_t\rangle$
- Future of $f: f|T_{\langle t}$
- Restriction to an interval: *segment* \equiv **behaviour** $\omega: \langle t_1, t_2 \rangle \rightarrow A$
- $\Omega = (A, T)$ set of all segments

Segments

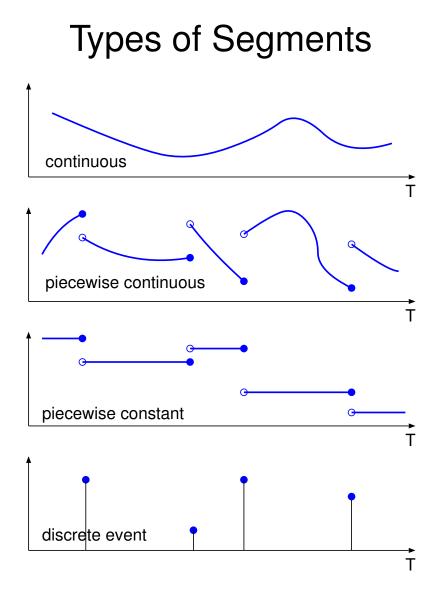
- Length $l: \Omega \to T_0^+$
- Contiguous segments if domains are contiguous $\langle t_1, t_2 \rangle, \langle t_3, t_4 \rangle, t_2 = t_3$
- Concatenation of contiguous segments: $\omega_1 \bullet \omega_2$ $\omega_1 \bullet \omega_2(t) = \omega_1(t), \forall t \in dom(\omega_1)$ $\omega_1 \bullet \omega_2(t) = \omega_2(t), \forall t \in dom(\omega_2)$
- Must remain *function*: unique values !
- Ω closed under concatenation
- Left and right segments:

$$\omega_{t\rangle} \bullet \omega_{\langle t} = \omega$$

Types of Segments

- Continuous: $\omega : \langle t_1, t_2 \rangle \rightarrow \mathbb{R}^n$
- Piecewise continuous
- Piecewise constant
- Event segments: $\omega : \langle t_1, t_2 \rangle \rightarrow A \cup \{\phi\}$
- Correspondence between

piecewise constant and event segments (later, state trajectory)



Observation Frame

$$O = \langle T, X, Y \rangle$$

- *T* is *time-base*: \mathbb{N} (discrete-time), \mathbb{R} (continuous-time)
- X input value set: \mathbb{R}^n, EV^{ϕ}
- *Y* output value set: system response

I/O Relation Observation

 $IORO = \langle T, X, \Omega, Y, R \rangle$

- $\langle T, X, Y \rangle$ is Observation Frame
- Ω is the set of all possible input segments
- *R* is the *I/O relation* $\Omega \subseteq (X,T), R \subseteq \Omega \times (Y,T)$ $(\omega, \rho) \in R \Rightarrow dom(\omega) = dom(\rho)$
- $\omega: \langle t_i, t_f \rangle \to X$: input *segment*
- $\rho: \langle t_i, t_f \rangle \to Y$: output *segment*
- note: not really necessary to observe over same time domain

I/O Function Observation

 $IOFO = \langle T, X, \Omega, Y, F \rangle$

- $\langle T, X, \Omega, Y, R \rangle$ is a Relation Observation
- Ω is the set of all possible input segments
- *F* is the *set of I/O functions* $f \in F \Rightarrow f \subset \Omega \times (Y,T)$, where *f* is a **function** such that $dom(f(\omega)) = dom(\omega)$
- f = initial state: **unique** response to ω
- $R = \bigcup_{f \in F} f$

I/O System

- State summarizes the past of the system.
- Future is uniquely determined by
 - current state
 - future input

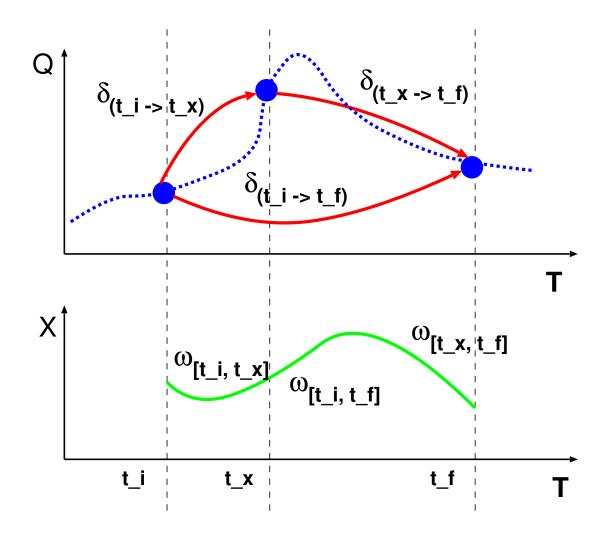
$$SYS = \langle T, X, \Omega, Q, \delta, Y, \lambda \rangle$$

Т	time base	
X	input set	
$\boldsymbol{\omega}:T\to X$	input segment	
Q	state set	
$\delta: \Omega \times Q \to Q$	transition function	
Y	output set	
$\lambda: Q o Y$ (or $Q imes X o Y$)	output function	

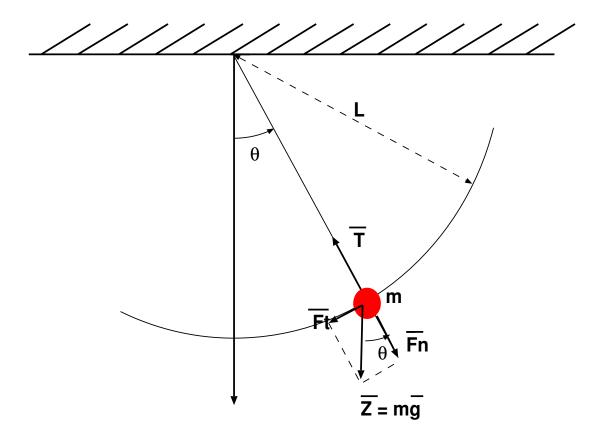
$$\forall t_x \in [t_i, t_f] : \delta(\boldsymbol{\omega}_{[t_i, t_f]}, q_i) = \delta(\boldsymbol{\omega}_{[t_x, t_f]}, \delta(\boldsymbol{\omega}_{[t_i, t_x]}, q_i))$$

Closure requirement: Ω closed under concatenation and left segmentation.

Composition Property



Pendulum

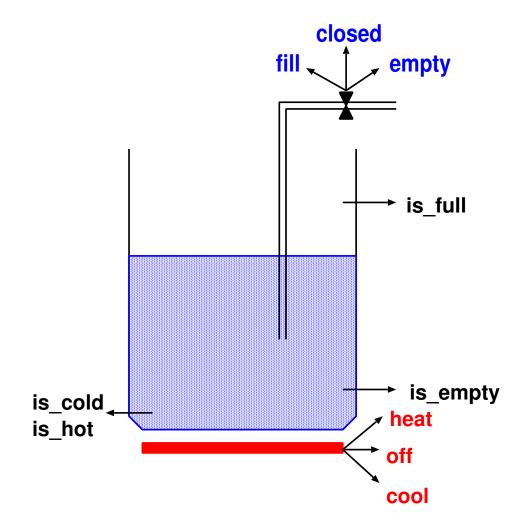


$PENDULUM = \langle T, X, \omega, Q, \delta, Y, \lambda \rangle$

- $T = \mathbb{R}$ $X = \emptyset$ $\omega: T \to X$ $Q = \left[-\frac{\pi}{2}, \frac{\pi}{2}\right] \times \mathbb{R}$ $\delta: \Omega \times Q \to Q$ $\delta(\omega_{[t_i, t_f]}, (\theta(t_i), \phi(t_i))) =$ $(\theta(t_i) + \int_{t_i}^{t_f} \phi(\alpha) d\alpha, \phi(t_i) + \int_{t_i}^{t_f} \frac{g}{L} \theta(\alpha) d\alpha)$ $Y = \mathbb{R}^+ \times \mathbb{R}$
- $\lambda: Q \to Y$ $\lambda(\theta, \phi) = (L\cos\theta, L\sin\theta)$

McGill, 18/20 September, 2000

System under study: T, h controlled liquid



Detailed (continuous) view, ALG + ODE formalism

Inputs (discontinuous \rightarrow hybrid model):

- Emptying, filling flow rate ϕ
- Rate of adding/removing heat W

Parameters:

- Cross-section surface of vessel A
- Specific heat of liquid *c*
- Density of liquid ρ

State variables:

- Temperature *T*
- Level of liquid *l*

Outputs (sensors):

• *is_low*,*is_high*,*is_cold*,*is_hot*

$\frac{dT}{dt}$	=	$\frac{1}{l} \left[\frac{W}{c \rho A} - \phi T \right]$
$\frac{dl}{dt}$	=	φ
is_low	=	$(l < l_{low})$
is_high	=	$(l > l_{high})$
is_cold	=	$(T < T_{cold})$
is_hot	=	$(T > T_{hot})$

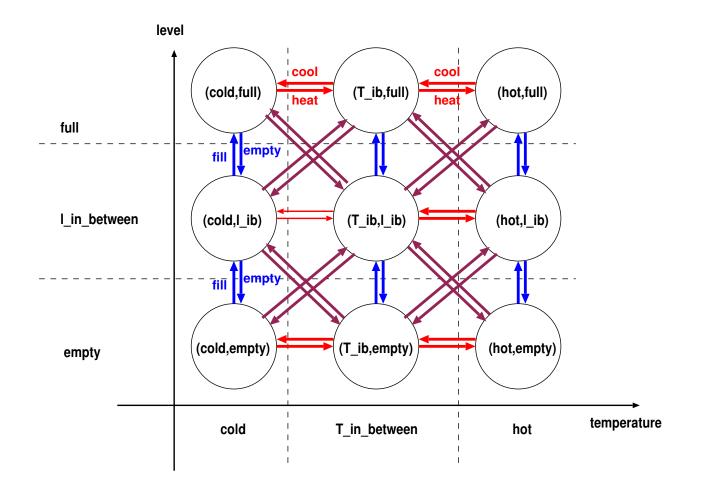
$$SYS_{VESSEL}^{ODE} = \langle \mathcal{T}, X, \Omega, Q, \delta, Y, \lambda \rangle$$

 $\begin{aligned} \mathcal{T} &= \mathbb{R} \\ X &= \mathbb{R} \times \mathbb{R} = \{(W, \phi)\} \\ \omega : \mathcal{T} \to X \\ Q &= \mathbb{R}^+ \times \mathbb{R}^+ = \{(T, l)\} \\ \delta : \Omega \times Q \to Q \\ \delta(\omega_{[t_i, t_f]}, (T(t_i), l(t_i))) = \end{aligned}$

$$(T(t_i) + \int_{t_i}^{t_f} \frac{1}{l(\alpha)} [\frac{W(\alpha)}{c\rho A} - \phi(\alpha)T(\alpha)] d\alpha, \ l(t_i) + \int_{t_i}^{t_f} \phi(\alpha)d\alpha)$$
$$Y = \mathbb{B} \times \mathbb{B} \times \mathbb{B} \times \mathbb{B} = \{(is_low, is_high, is_cold, is_hot)\}$$
$$\lambda : Q \to Y$$
$$\lambda(T, l) = ((l < l_{low}), (l > l_{high}), (T < T_{cold}), (T > T_{hot}))$$

McGill, 18/20 September, 2000

High-level (discrete) view, FSA formalism



$$SYS_{VESSEL}^{FSA} = \langle \mathcal{T}, X, \Omega, Q, \delta, Y, \lambda \rangle$$

$$\mathcal{T} = \mathbb{N}$$

$$X = \{heat, cool, off\} \times \{fill, empty, closed\}$$

$$\omega : \mathcal{T} \to X$$

$$Q = \{cold, T_{between}, hot\} \times \{empty, l_{between}, full\}$$

$$\delta : \Omega \times Q \to Q$$

$$\delta((off, fill), (cold, empty)) = (cold, l_{between})$$

$$\delta((off, fill), (cold, l_{between})) = (cold, full))$$

$$\delta((off, fill), (cold, full))) = (cold, full))$$

$$\vdots$$

$$\delta((heat, fill), (hot, full))) = (hot, full))$$

$$Y = \mathbb{B} \times \mathbb{B} \times \mathbb{B}$$

$$\lambda : Q \to Y$$

 $\lambda(T,l) = ((l == low), (l == high), (T == cold), (T == hot))$

From I/O System specification to I/O Function observation

Given: initial state q and a given input segment ω . State Trajectory $STRAJ_{q,\omega}$ from SYS

 $TRAJ_{q,\omega}: dom(\omega) \to Q,$

with

$$STRAJ_{q,\omega}(t) = \delta(\omega_t), \forall t \in dom(\omega).$$

From this state trajectory, construt an *output trajectory* $OTRAJ_{q,\omega}$

$$OTRAJ_{q,\omega}: dom(\omega) \to Y,$$

with

$$OTRAJ_{q,\omega}(t) = \lambda(STRAJ_{q,\omega}(t), \omega(t)), \forall t \in dom(\omega).$$

McGill, 18/20 September, 2000

Thus, for every q (initial state), it is possible to construct

$$\mathcal{T}_q: \Omega \to (Y,T),$$

where

$$\mathcal{T}_{q}(\boldsymbol{\omega}) = OTRAJ_{q,\boldsymbol{\omega}}, \forall \boldsymbol{\omega} \in \boldsymbol{\Omega}.$$

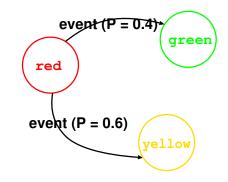
The I/O Function Observation associated with SYS is then

$$IOFO = \langle T, X, \Omega, Y, \{ \mathcal{T}_q(\omega) | q \in Q \} \rangle.$$

I/O Relation Observation relation R constructed as the union of all I/O functions:

$$R = \{(\omega, \rho) | \omega \in \Omega, \rho = OTRAJ_{q,\omega}, q \in Q\}.$$

In SYS: δ is deterministic, but ...



- 1. Transform non-deterministic into deterministic model (*e.g.*, NFA to DFA).
- 2. Monte Carlo simulation: sample from probability distribution; perform multiple deterministic runs and thus obtain an estimate for performance variables.

Discrete-event models ($T = \mathbb{R}$, finite non- ϕ)

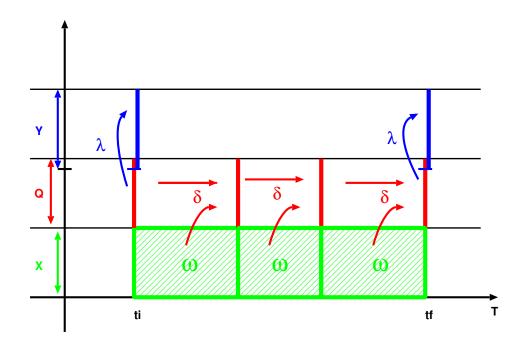
- Specification and analysis of behaviour
 - physical systems (time-scale, parameter abstraction) queueing systems
 - non-physical systems (software)
- Traditionally: World Views
 - 1. Event Scheduling
 - 2. Activity Scanning
 - 3. Three Phase Approach
 - 4. Process Interaction
- Emulate non-determinism by deterministic + pseudo RNG
- All can be *represented* as DEVS

Formalism classification based on general system model

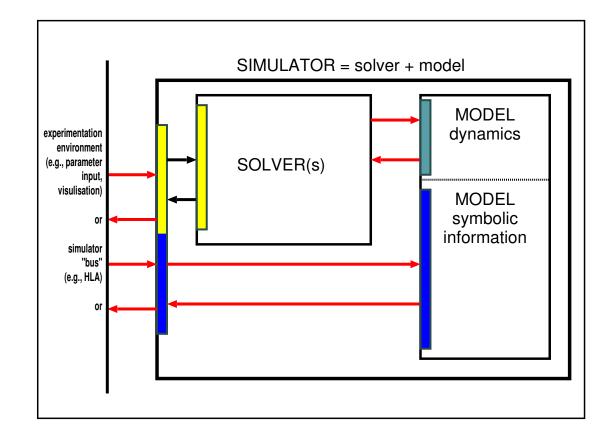
	T: Continuous	T: Discrete	T: { NOW }
<i>Q</i> : Continuous	DAE	Difference Eqns.	Algebraic Eqns.
<i>Q</i> : Discrete	Discrete-event	Finite State Automata	Integer Eqns.
	Naive Physics	Petri Nets	

Basis for **general, standard software architecture of simulators** Other classifications based on **structure of formalisms**

Simulation Kernel Operation



Model-Solver Architecture



Difference Equations (solving may be symbolic)

$$\begin{cases} x_1 = 1\\ x_{i+1} = ax_i + 1 \end{cases}$$

$$x_n = 1 + a + a^2 + \dots + a^{n-1}$$

 $ax_n = a + a^2 + \dots + a^{n-1} + a^n$

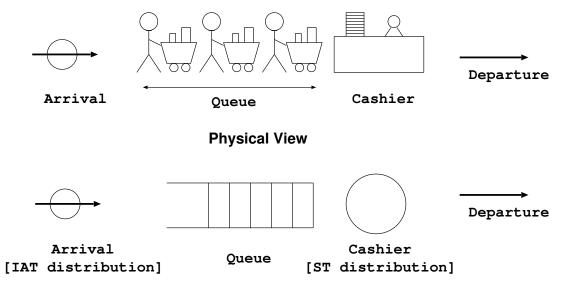
$$\implies x_n(1-a) = 1 - a^n$$
$$\implies x_n = \frac{1-a^n}{1-a}$$

McGill, 18/20 September, 2000

Iterative Specification of Systems

- Iterative Application of Generator Segments
- Elementary Segments, generate any input segment
- Generator State Transition function, apply iteratively

State set can be product set



Abstract View

Adding Structure

- no *structure* is imposed on sets upto now
- additional information: construct sets from primitives
- cross-product \times
- building *concrete* systems from building blocks
- system \rightarrow structured system
- structured sets and functions \sim *variables, ports*

Multivariable Sets

Variables, coordinates, ports v_i

 $V = (v_1, v_2, \dots, v_n)$ $S_1, S_2, \dots S_n$ $S = (V, S_1 \times S_2 \times \dots S_n)$

Projection operator

$$: S \times V \to \bigcup_{j=1}^{n} S_j, S.v_i = s_i$$
$$: S \times 2^V \to \bigcup_{v \in 2^V} \times_{j \in V} S_j, S.(v_i, v_j, \ldots) = s.v_i, s.v_j, \ldots$$

McGill, 18/20 September, 2000

.

hv@cs.mcgill.ca

Examples

Ports

 $X_1 = ((heatFlow, liquidFlow), \mathbb{R} \times \mathbb{R})$

 $x \in X_1$, *x*.*heatFlow*

Variables

 $S_{1} = ((temperature, level),]0.0, 100.0[\times[0, H])$ $S_{2} = ((qLength, cashStatus), \mathbb{N} \times \{Idle, Busy\})$ $s \in S_{2}, s.qLength$

Structured Functions

 $f: A \to B$

with A and B structured sets

Projection

 $f.b_i : A \to ((b_i), B_i),$ $f.b_i(a) = f(a).b_i$

$$f.(b_i, b_j, \ldots) : A \to ((b_i, b_j, \ldots), B_i \times B_j \times \ldots)$$
$$f.(b_i, b_j, \ldots)(a) = f(a).(b_i, b_j, \ldots)$$

McGill, 18/20 September, 2000

Adding Structure to

- IORO
- IOFO
- IOSYS

 $IOSYS = \langle T, X, \Omega, Q, \delta, Y, \lambda \rangle$

 X, Q, δ, Y, λ

are structured sets/functions

Multicomponent Specification

- Collections of *interacting* components
- Compositional modelling
- *Modular* (interaction through ports only).
 Encapsulated. Allows for *hierarchical (de-)composition*.
 - *non-modular* (direct interaction between components).
 Not encapsulated. "global" variable access. Direct interaction through transition function

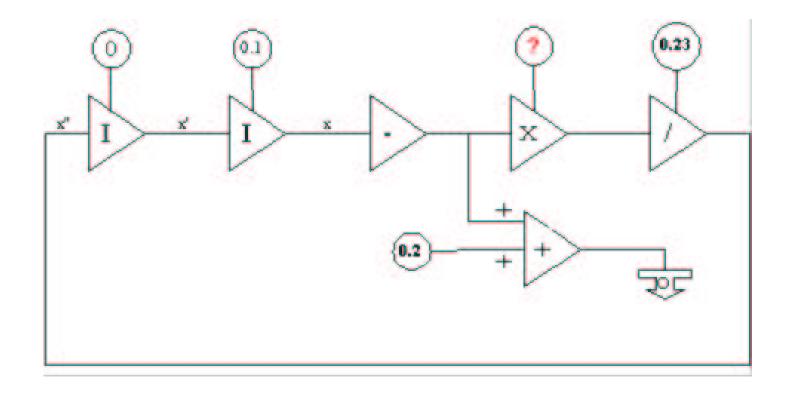
Nonmodular Multicomponent Specification

 $MC = \langle T, X, \Omega, Y, D, \{M_d | d \in D\} \rangle$

 $M_d = \langle Q_d, E_d, I_d, \delta_d, \lambda_d \rangle, \forall d \in D$

- *D* is a set of component *references/names*
- Q_d is the *state set* of component d
- $I_d \subseteq D$ is the set of *influencers* of *d*
- $E_d \subseteq D$ is the set of *influencees* of *d*
- δ_d is the state transition function of d $\delta_d : \times_{i \in I_d} Q_i \times \Omega \to \times_{j \in E_d} Q_j$
- λ_d is the *output function* of d $\lambda_d : \times_{i \in I_d} Q_i \times X \to Y$

Example: Causal Block Diagram



Time Slicing Causal Block Diagram semantics

- $E_d = \{d\}$
- $Y = \times_{d \in D} Y_d$
- $Q = \times_{d \in D} Q_d$
- $\delta(q, \omega).d = \delta_d(\times_{i \in I_d} q_i, \omega)$
- $\lambda(q, \omega(t)).d = \lambda_d(\times_{i \in I_d} q_i, \omega(t))$
- Less constrained for Discrete Event

Modular Multicomponent (Network) Specification

 $N = \langle T, X_N, Y_N, D, \{ M_d | d \in D \}, \{ I_d | d \in D \cup \{ N \} \}, \{ Z_d | d \in D \cup \{ N \} \} \rangle$

- X_N and Y_N are external network inputs and outputs
- *D* is a set of component *references* or *names*
- $\forall d \in D.M_d$ is an I/O system
- $I_d \subseteq D \cup \{N\}$ is the set of *influencers* of *d*
- $Z_d : \times_{i \in I_d} YX_i \to XY_d$ is the *interface map* for d $YX_i = X_i$ if $i = N, YX_i = Y_i$ if $i \neq N$ $XY_d = Y_d$ if $d = N, YX_d = X_d$ if $d \neq N$

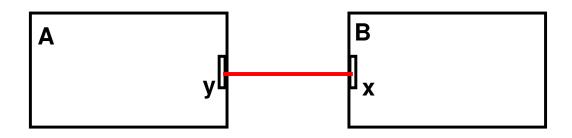
Semantics: Flattening/Closure under coupling

 $\langle T, X_N, Y_N, D, \{ M_d | d \in D \}, \{ I_d | d \in D \cup \{ N \} \}, \{ Z_d | d \in D \cup \{ N \} \} \rangle$ $\rightarrow \langle T, X, \Omega, Q, \delta, Y, \lambda \rangle$

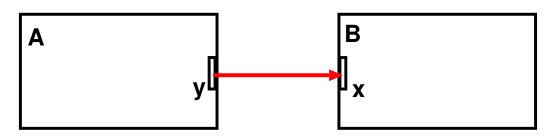
- Continuous
 - unique names (scope resolution)
 - connect(M1.o,M2.i) $\equiv M2.i := M1.o \rightarrow \#I_d \leq 1$
 - *closure* of the ALG+ODE formalism
 - Discrete Event (later, DEVS)
- Allows for *hierarchy*

Closure in Block Diagrams

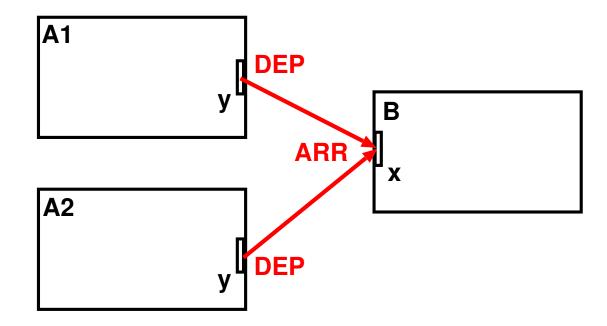
non-causal



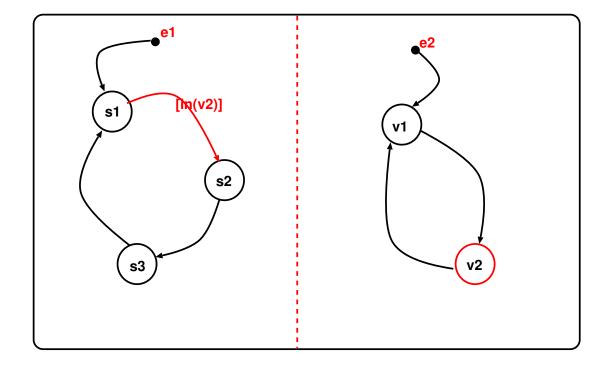
causal



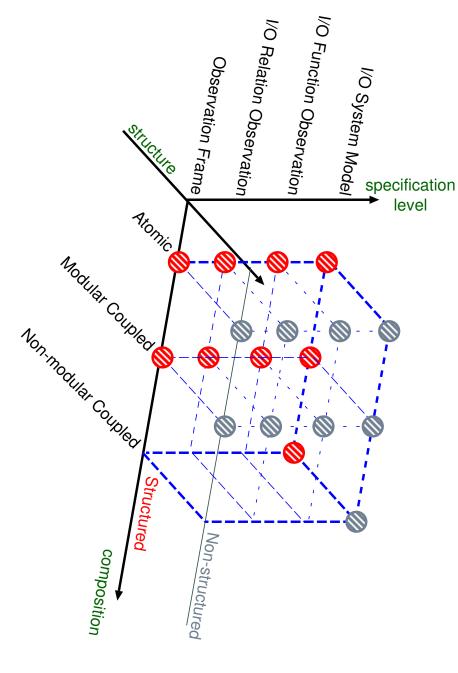
Closure in modular Discrete Event formalisms



Closure in State Charts



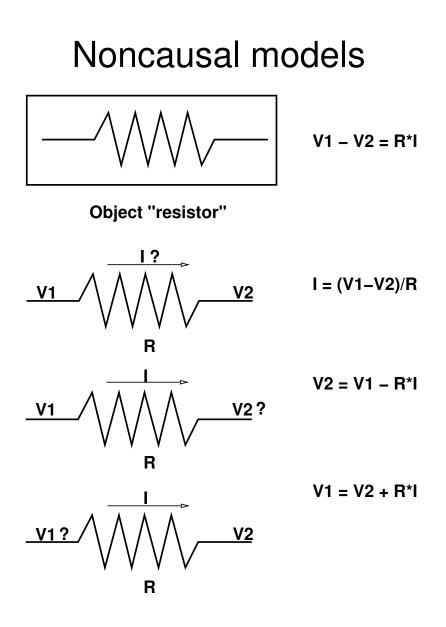
+ relationships (morphisms, transformations)



Hierarchy of system specification

Transforming Nonmodular into Modular Specifications

- example: shared memory to distributed memory
- direct access routed through ports
- may use local copy



Classification: Different Model Types

- well-defined (white box) vs. ill-defined (black box)
- continuous vs. discrete (time base)
- deterministic vs. stochastic
- graphical vs. textual
- causal vs. noncausal
- . . .
- which formalism ?

Arch of Karplus

