Overview

1. Ordinary Differential Equations, Algebraic Equations
2. Block Diagrams

3. Causal Block Diagrams
e denotational semantics (modelling)

e operational semantics (simulation)
4. Virtual Experimentation
5. Assignment

6. The Modelling and Simulation Process
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The Mass-Spring problem (recap)
e physical system: mass - spring
e a priori knowledge: Newton’s Law, ideal spring law
e measurement data: position in function of time, with noise

e goals:
— determine model structure
— determine spring constant (strength) parameter value

— perform what-if experiments
e model structure: use ideal spring constant amplitude feature
e model: x'’ = -K/M*x with Initial Conditions

e estimate parameter (calibrate model) through
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— accurate simulation of model

— optimization of a “fit” criterion

e once the spring constant is known: what-if experiments
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Algebraic Equations, Ordinary Differential
Equations

e declarative relationship (constraints) between variables
at+b=c+?2

e declarative relationship (constraints) between functions (of time)

dx(t)
dt

:f(x(t)th))

e Derivative with respect to time is rate of change
e Graphically: derivative is slope of tangent
e Need initial conditions for unique solution

e Higher order differential equations
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Modelling Formalisms: Block Diagrams

e \isual representation of structure and behaviour of systems

e Can be complete and rigourous if formally specified
— denotational semantics: declarative (= modelling operations)

— operational semantics: how to solve (— simulator)
e Examples: causal block diagrams, flow charts, state charts, ...
e Can be used to analyze, design, specify, implement systems.

e Important issues:
— concurrency (implementation may be sequential)

— hierarchy (closure under composition ?)
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Causal Block Diagrams

e Denotational Semantics: sets of algebraic equations and ODEs

e Concurrency is inherent (no order is specified), but . ..

e Analog Computers: solution of DB are signals ...

e Continuous System Modelling Program (CSMP): emulate analog
computers

e QOperational Semantics: data flow ?
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Representing ODEs in BD form

e Non-causal Diagram

e Causal Block Diagram
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Representing algebraic equations in BD form

Can a data-flow appoach be used to build a simulator ?
e No loop

e Loop
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Determining Order: Dependency Graph
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Problems with model re-use: sorting
post-order traversal depth-first search

1. find_root(s)

2. DFS(root)
DFS(node)
{
if (not_visited(node)) "

{

mark_visited(node)
foreach child_node of node

{ (&)
DFS(child_node)

}
print(node)

}
} d e Jc a b

Q
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Dependency Cycle (aka Algebraic Loop)

x = y+16
y  V = —Xx—Z
\ < — 5

can never be sorted due to a dependency cycle
aka strong component (every vertex in the component is reachable from
every other)

X—y—X
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May be solved implicitly

Z2=135
x—y = —6
X+y = —Z

Implicit set of n equations in n unknowns.
e non-linear — non-linear residual solver.

e linear — numeric or symbolic solution.
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May be solved symbolically
(if linear and not too large)
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Simple Loop Detection

1. Build dependency matrix D
2. Calculate transitive closure D*
3. If True on diagonal of D*, a loop exists

Even with Warshall’s algorithm, still O(n>) and don’t know immediately
which nodes involved in the loop(s).
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Tarjan’s O(n+ m) Loop Detection (1972)

1. Complete Depth First Search (DFS) on G
(possibly multiple DFS trees), postorder numbering
FOREACH v IN V
dfsNr[v] <= 0
FOREACH v IN V
IF dfsNr[v] ==
DE'S (v)

2. Reverse edges in the annotated G — Gg

3. DFS on Gg starting with highest numbered v

set of vertices in each DFS tree = strong component.

Remove strong component and repeat.
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Set of Algebraic Egns, no Loops
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Sorting, no Loops
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Sorting Result
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Algebraic Loop (Cycle) Detection
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Algebraic Loop (Cycle) Detection
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Algebraic Loop (Cycle) Detection Result
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Causal Block Diagram for the Mass-Spring Model

d*x K
a2 - m
" I/ ? I i % > > > !
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Time-slicing simulator pseudo-code
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Main program:

FOREACH block IN system

IF block is integrator

initialise block’s output with initial condition (IC)
ELSE

initialise output with 0

READ system network (graph) structure
DETECT algebraic loops (replace by single block with solution or halt)
SORT the non-integrator blocks

READ integrator configuration info
step_size

communication_interval

READ experiment info
start_time

end_time

parameters

initial conditions
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Time-slicing simulator pseudo-code (ctd.)

Simulation Kernel Loop:
WHILE (NOT End_of simulation) DO
Update_blocks

Output time and state variables

Update_blocks:
FOREACH{in proper order} block IN system
given current block inputs
(get input from output of influencer)
Calculate_block_output for block

increment current_time with stepsize

End_of simulation:
termination condition such as
current time >= end _time

condition (state values) == TRUE
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Calculate_block_output: ([...] means optional)

WeightedSum
W, block_number, P1, el[, P2, e2[, P3, e3]] ; ——>
output= SUM_1i (Pi*ei)
Summer
+, block_number, P1l, el[, P2, e2[, P3, e3]1] ; ——>
output = SUM_1i (sign(Pi) *ei)
(only the sign of Pi is used)
Integrator
I, block_number, IC, el ; --——>
output= previous_output + step_size*el
(simple fixed-step Euler integration)
Minus (Sign Inverter)
-, block_number, el ; -——>
output= -el.
Multiplier
X, block_number, el, e2 ; ———>
output= el*e2.
Divider
/, block_number, el, e2 ; --—>

output= el/e2.

Constant
K, block_number, P1 ; —-—->
output= P1.
Output
0, block_number, el ; —-——>
output= el.

(As a side-effect, the (time, el) tuple is put

on the output stream at every communication point).
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Time Slicing: Circle Test
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; Circle Test for

; CSMP-style Time Slicing Simulator

Sendtime = 100;
Stimestep = ?;

Scomminterval = 1.5;

I, 1, 0, 3 ; x' 1s integral of x'’, IC=0
I, 2, 1, 1 ; X 1s integral of x', IC=1
-, 3, 2 ; X

, 4, 1 ; output x’
0, 5, 2 ; output x
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Experimentation

Needed (to be specified by user in a tool):
1. Model
2. Parameters (constant for each simulation run)
3. Initial Conditions
4. Input (file, interactive, real system)
5. Output (file, plot, real system)
6. Solver Configuration

7. Experiment type (simulation, optimization, parameter estimation =
model calibration)
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Model Calibration: Parameter Fit

simple frictionless mass - spring system

X

8 x_measured

position [m]
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From Here On ...

e Virtual Experiments: simulation, optimisation, what-if, ...

e Validation/Falsification
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Assignment

Experimentation Environment:
e (Cases: circle test (phase plots), mass-spring
e Starting points: modelling environment, saving, plotter
e See above (include experiment saving !).
e Report on WWW.
e Document !

e 2 weeks: 26 September.
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Modelling and Simulation Process
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