Overview

1. Ordinary Differential Equations, Algebraic Equations
2. Block Diagrams

3. Causal Block Diagrams
e denotational semantics (modelling)

e operational semantics (simulation)
4. Virtual Experimentation
5. Assignment

6. The Modelling and Simulation Process

McGill, 12 September, 2000 hv@cs.mcgill.ca CS522: Modelling and Simulation 1/34

The Mass-Spring problem (recap)
e physical system: mass - spring
e a priori knowledge: Newton’s Law, ideal spring law
e measurement data: position in function of time, with noise

e goals:
— determine model structure
— determine spring constant (strength) parameter value

— perform what-if experiments
e model structure: use ideal spring constant amplitude feature
e model: x'’ = -K/M*x with Initial Conditions

e estimate parameter (calibrate model) through

McGill, 12 September, 2000 hv@cs.mcgill.ca CS522: Modelling and Simulation 2/34

— accurate simulation of model

— optimization of a “fit” criterion

e once the spring constant is known: what-if experiments

McGill, 12 September, 2000 hv@cs.mcgill.ca CS522: Modelling and Simulation 3/34

Algebraic Equations, Ordinary Differential
Equations

e declarative relationship (constraints) between variables
at+b=c+?2

e declarative relationship (constraints) between functions (of time)

dx(t)
dt

:f(x(t)th))

e Derivative with respect to time is rate of change
e Graphically: derivative is slope of tangent
e Need initial conditions for unique solution

e Higher order differential equations

McGill, 12 September, 2000 hv@cs.mcgill.ca CS522: Modelling and Simulation 4/34

Modelling Formalisms: Block Diagrams

e \isual representation of structure and behaviour of systems

e Can be complete and rigourous if formally specified
— denotational semantics: declarative (= modelling operations)

— operational semantics: how to solve (— simulator)
e Examples: causal block diagrams, flow charts, state charts, ...
e Can be used to analyze, design, specify, implement systems.

e Important issues:
— concurrency (implementation may be sequential)

— hierarchy (closure under composition ?)

McGill, 12 September, 2000 hv@cs.mcgill.ca CS522: Modelling and Simulation 5/34

Causal Block Diagrams

e Denotational Semantics: sets of algebraic equations and ODEs

e Concurrency is inherent (no order is specified), but . ..

e Analog Computers: solution of DB are signals ...

e Continuous System Modelling Program (CSMP): emulate analog
computers

e QOperational Semantics: data flow ?

McGill, 12 September, 2000 hv@cs.mcgill.ca CS522: Modelling and Simulation 6/34

Representing ODEs in BD form

e Non-causal Diagram

e Causal Block Diagram

McGill, 12 September, 2000 hv@cs.mcgill.ca CS522: Modelling and Simulation 7/34

Representing algebraic equations in BD form

Can a data-flow appoach be used to build a simulator ?
e No loop

e Loop

McGill, 12 September, 2000 hv@cs.mcgill.ca CS522: Modelling and Simulation 8/34

Determining Order: Dependency Graph

McGill, 12 September, 2000

a=d-c

b=c+a-3
c=6+d*e a c
d=2

Ny

hv@cs.mcgill.ca CS522: Modelling and Simulation

9/34

Problems with model re-use: sorting
post-order traversal depth-first search

1. find_root(s)

2. DFS(root)
DFS(node)
{
if (not_visited(node)) "

{

mark_visited(node)
foreach child_node of node

{ (&)
DFS(child_node)

}
print(node)

}
} d e Jc a b

Q

McGill, 12 September, 2000 hv@cs.mcgill.ca CS522: Modelling and Simulation 10/34

Dependency Cycle (aka Algebraic Loop)

x = y+16
y V = —Xx—Z
\ < — 5

can never be sorted due to a dependency cycle
aka strong component (every vertex in the component is reachable from
every other)

X—y—X

McGill, 12 September, 2000 hv@cs.mcgill.ca CS522: Modelling and Simulation 11/34

May be solved implicitly

Z2=135
x—y = —6
X+y = —Z

Implicit set of n equations in n unknowns.
e non-linear — non-linear residual solver.

e linear — numeric or symbolic solution.

McGill, 12 September, 2000 hv@cs.mcgill.ca CS522: Modelling and Simulation 12/34

McGill, 12 September, 2000

May be solved symbolically
(if linear and not too large)

—6 —1
-z 1 —6—z
1 —1 2
1 1
L
X _=
Y =

hv@cs.mcgill.ca

I —6
1 —z 6
I —1
1 1
5
—6—2
2
6—z
2

CS522: Modelling and Simulation

N ‘
A\

13/34

Simple Loop Detection

1. Build dependency matrix D
2. Calculate transitive closure D*
3. If True on diagonal of D*, a loop exists

Even with Warshall’s algorithm, still O(n>) and don’t know immediately
which nodes involved in the loop(s).

McGill, 12 September, 2000 hv@cs.mcgill.ca CS522: Modelling and Simulation 14/34

Tarjan’s O(n+ m) Loop Detection (1972)

1. Complete Depth First Search (DFS) on G
(possibly multiple DFS trees), postorder numbering
FOREACH v IN V
dfsNr[v] <= 0
FOREACH v IN V
IF dfsNr[v] ==
DE'S (v)

2. Reverse edges in the annotated G — Gg

3. DFS on Gg starting with highest numbered v

set of vertices in each DFS tree = strong component.

Remove strong component and repeat.

McGill, 12 September, 2000 hv@cs.mcgill.ca CS522: Modelling and Simulation

15/34

McGill, 12 September, 2000

Set of Algebraic Egns, no Loops

Q

S

S

hv@cs.mcgill.ca

b*+3
sin(c X e)

Vd—4.5
n/2

u()

CS522: Modelling and Simulation

16/34

Sorting, no Loops

McGill, 12 September, 2000 hv@cs.mcgill.ca CS522: Modelling and Simulation 17/34

McGill, 12 September, 2000

Sorting Result

hv@cs.mcgill.ca

n/2

u()
Nz

sin(c X e)

b* +3

CS522: Modelling and Simulation

18/34

McGill, 12 September, 2000

Algebraic Loop (Cycle) Detection

Q

S

S

hv@cs.mcgill.ca

b +3
sin(c X e)

Jd—45
n/2
@+ u()

CS522: Modelling and Simulation

19/34

Algebraic Loop (Cycle) Detection

N
A B
ol / 0
(¢)] 3
+B1 o2

)

v1

McGill, 12 September, 2000 hv@cs.mcgill.ca CS522: Modelling and Simulation 20/34

Algebraic Loop (Cycle) Detection Result

McGill, 12 September, 2000

n/2
N

sin(c xe)

b*+3
az—l—u()

hv@cs.mcgill.ca

d = mn/2
c = +Jd—45
b —sin(cxe) = 0
—b? -3 =0
—e +u() = 0
C$522: Modeling and Simulation 21/34

Causal Block Diagram for the Mass-Spring Model

d*x K
a2 - m
" I/ ? I i % > > > !

McGill, 12 September, 2000 hv@cs.mcgill.ca CS522: Modelling and Simulation 22/34

Time-slicing simulator pseudo-code

McGill, 12 September, 2000 hv@cs.mcgill.ca CS522: Modelling and Simulation 23/34

Main program:

FOREACH block IN system

IF block is integrator

initialise block’s output with initial condition (IC)
ELSE

initialise output with 0

READ system network (graph) structure
DETECT algebraic loops (replace by single block with solution or halt)
SORT the non-integrator blocks

READ integrator configuration info
step_size

communication_interval

READ experiment info
start_time

end_time

parameters

initial conditions

McGill, 12 September, 2000 hv@cs.mcgill.ca CS522: Modelling and Simulation 24/34

Time-slicing simulator pseudo-code (ctd.)

Simulation Kernel Loop:
WHILE (NOT End_of simulation) DO
Update_blocks

Output time and state variables

Update_blocks:
FOREACH{in proper order} block IN system
given current block inputs
(get input from output of influencer)
Calculate_block_output for block

increment current_time with stepsize

End_of simulation:
termination condition such as
current time >= end _time

condition (state values) == TRUE

McGill, 12 September, 2000 hv@cs.mcgill.ca

CS522: Modelling and Simulation

25/34

Calculate_block_output: ([...] means optional)

WeightedSum
W, block_number, P1, el[, P2, e2[, P3, e3]] ; ——>
output= SUM_1i (Pi*ei)
Summer
+, block_number, P1l, el[, P2, e2[, P3, e3]1] ; ——>
output = SUM_1i (sign(Pi) *ei)
(only the sign of Pi is used)
Integrator
I, block_number, IC, el ; --——>
output= previous_output + step_size*el
(simple fixed-step Euler integration)
Minus (Sign Inverter)
-, block_number, el ; -——>
output= -el.
Multiplier
X, block_number, el, e2 ; ———>
output= el*e2.
Divider
/, block_number, el, e2 ; --—>

output= el/e2.

Constant
K, block_number, P1 ; —-—->
output= P1.
Output
0, block_number, el ; —-——>
output= el.

(As a side-effect, the (time, el) tuple is put

on the output stream at every communication point).

McGill, 12 September, 2000 hv@cs.mcgill.ca CS522: Modelling and Simulation 26/34

Time Slicing: Circle Test

McGill, 12 September, 2000 hv@cs.mcgill.ca CS522: Modelling and Simulation 27/34

; Circle Test for

; CSMP-style Time Slicing Simulator

Sendtime = 100;
Stimestep = ?;

Scomminterval = 1.5;

I, 1, 0, 3 ; x' 1s integral of x'’, IC=0
I, 2, 1, 1 ; X 1s integral of x', IC=1
-, 3, 2 ; X

, 4, 1 ; output x’
0, 5, 2 ; output x

McGill, 12 September, 2000 hv@cs.mcgill.ca CS522: Modelling and Simulation 28/34

Experimentation

Needed (to be specified by user in a tool):
1. Model
2. Parameters (constant for each simulation run)
3. Initial Conditions
4. Input (file, interactive, real system)
5. Output (file, plot, real system)
6. Solver Configuration

7. Experiment type (simulation, optimization, parameter estimation =
model calibration)

McGill, 12 September, 2000 hv@cs.mcgill.ca CS522: Modelling and Simulation 29/34

Model Calibration: Parameter Fit

simple frictionless mass - spring system

X

8 x_measured

position [m]

McGill, 12 September, 2000 hv@cs.mcgill.ca CS522: Modelling and Simulation 30/34

From Here On ...

e Virtual Experiments: simulation, optimisation, what-if, ...

e Validation/Falsification

McGill, 12 September, 2000 hv@cs.mcgill.ca CS522: Modelling and Simulation 31/34

Assignment

Experimentation Environment:
e (Cases: circle test (phase plots), mass-spring
e Starting points: modelling environment, saving, plotter
e See above (include experiment saving !).
e Report on WWW.
e Document !

e 2 weeks: 26 September.

McGill, 12 September, 2000 hv@cs.mcgill.ca CS522: Modelling and Simulation 32/34

McGill, 12 September, 2000

Modelling and Simulation Process

Information Sources

Activities

a priori

knowledge

modeller’s and
experimenter’s

goals

experiment observation
(measurement)

data

'_____"_(Experimental Frame Definition)4—“

\/

class of parametric | model candidates
A 4
e N\
Structure Characterlsatlonj) R

\/

parametrl'ic model

—————— | o ! . . N
(Parameter Estlmatlonj) _

T
\

model with meaninglful parameter values

validated model

hv@cs.mcgill.ca CS522: Modelling and Simulation 33/34

-

-

\

McGill, 12 September, 2000

"release"

hv@cs.mcgill.ca

. . N
decision
making
formulated
problem
N - .
communication communicated] Jcommunicated problem
results problem formulation objectives
A g questions
requirements
A /
‘(Experimental
}Frame Definition
refined %
requirements
s A /
refinement
\ J
A
4] ~N
version
management
\ J
A
N
comm ?
Y

CS522: Modelling and Simulation

34/34

