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The DEVS formalism was conceived by Zeigler [Zei84a, Zei84b] to provide a rigourous common basis for discrete-event
modelling and simulation. For the class of formalisms denoted as discrete-event [Nan81], system models are described
at an abstraction level where the time base is continuous (

�
), but during a bounded time-span, only a finite number

of relevant events occur. These events can cause the state of the system to change. In between events, the state of the
system does not change. This is unlike continuous models in which the state of the system may change continuously over
time. As an extension of Finite State Automata, the DEVS (Discrete Event Systems) formalism captures concepts from
Discrete Event simulation. As such it is a sound basis for meaningful model exchange in the Discrete Event realm.

1 The DEVS Formalism

The DEVS formalism fits the general structure of deterministic, causal systems in classical systems theory. DEVS allows
for the description of system behaviour at two levels. At the lowest level, an atomic DEVS describes the autonomous
behaviour of a discrete-event system as a sequence of deterministic transitions between sequential states as well as how
it reacts to external input (events) and how it generates output (events). At the higher level, a coupled DEVS describes a
system as a network of coupled components. The components can be atomic DEVS models or coupled DEVS in their own
right. The connections denote how components influence each other. In particular, output events of one component can
become, via a network connection, input events of another component. It is shown in [Zei84a] how the DEVS formalism
is closed under coupling: for each coupled DEVS, a resultant atomic DEVS can be constructed. As such, any DEVS
model, be it atomic or coupled, can be replaced by an equivalent atomic DEVS. The construction procedure of a resultant
atomic DEVS is also the basis for the implementation of an abstract simulator or solver capable of simulating any DEVS
model. As a coupled DEVS may have coupled DEVS components, hierarchical modelling is supported.

In the following, the different aspects of the DEVS formalism are explained in more detail.

1.1 The atomic DEVS Formalism

The atomic DEVS formalism is a structure describing the different aspects of the discrete-event behaviour of a system:

atomicDEVS ��� S � ta � δint � X � δext � Y � λ ���
The time base T is continuous and is not mentioned explicitly

T � � �
The state set S is the set of admissible sequential states: the DEVS dynamics consists of an ordered sequence of states
from S. Typically, S will be a structured set (a product set)

S �
	 n
i � 1Si �

This formalizes multiple (n) concurrent parts of a system. It is noted how a structured state set is often synthesized from
the state sets of concurrent components in a coupled DEVS model.
The time the system remains in a sequential state before making a transition to the next sequential state is modelled by
the time advance function

ta : S � ��
0 ��� ∞ �
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As time in the real world always advances, the image of ta must be non-negative numbers. ta � 0 allows for the repre-
sentation of instantaneous transitions: no time elapses before transition to a new state. Obviously, this is an abstraction
of reality which may lead to simulation artifacts such as infinite instantaneous loops which do not correspond to real
physical behaviour. If the system is to stay in an end-state s forever, this is modelled by means of ta � s ����� ∞.

The internal transition function
δint : S � S

models the transition from one state to the next sequential state. δint describes the behaviour of a Finite State Automaton;
ta adds the progression of time.
It is possible to observe the system output. The output set Y denotes the set of admissible outputs. Typically, Y will be a
structured set (a product set)

Y �
	 l
i � 1Yi �

This formalizes multiple (l) output ports. Each port is identified by its unique index i. In a user-oriented modelling
language, the indices would be derived from unique port names.
The output function

λ : S � Y ��� φ �
maps the internal state onto the output set. Output events are only generated by a DEVS model at the time of an internal
transition. At that time, the state before the transition is used as input to λ. At all other times, the non-event φ is output.
To describe the total state of the system at each point in time, the sequential state s � S is not sufficient. The elapsed time
e since the system made a transition to the current state s needs also to be taken into account to construct the total state
set

Q ����� s � e ��� s � S � 0 � e � ta � s ���
The elapsed time e takes on values ranging from 0 (transition just made) to ta � s � (about to make transition to the next
sequential state). Often, the time left σ in a state is used:

σ � ta � s �! e

Up to now, only an autonomous system was described: the system receives no external inputs. Hence, the input set X
denoting all admissible input values is defined. Typically, X will be a structured set (a product set)

X �
	 m
i � 1Xi

This formalizes multiple (m) input ports. Each port is identified by its unique index i. As with the output set, port indices
may denote names.

The set Ω contains all admissible input segments ω

ω : T � X �"� φ �
In discrete-event system models, an input segment generates an input event different from the non-event φ only at a finite
number of instants in a bounded time-interval. These external events, inputs x from X , cause the system to interrupt its
autonomous behaviour and react in a way prescribed by the external transition function

δext : Q 	 X � S

The reaction of the system to an external event depends on the sequential state the system is in, the particular input and
the elapsed time. Thus, δext allows for the description of a large class of behaviours typically found in discrete-event
models (including synchronization, preemption, suspension and re-activation).

When an input event x to an atomic model is not listed in the δext specification, the event is ignored.

In Figure 1, an example state trajectory is given for an atomic DEVS model. In the figure, the system made an internal
transition to state s2. In the absence of external input events, the system stays in state s2 for a duration ta � s2 � . During
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Figure 1: State Trajectory of a DEVS-specified Model
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Figure 2: Traffic light example

this period, the elapsed time e increases from 0 to ta � s2 � , with the total state �#� s2 � e � . When the elapsed time reaches
ta � s2 � , first an output is generated: y2 � λ � s2 � , then the system transitions instantaneously to the new state s4 � δ int � s2 � .
In autonomous mode, the system would stay in state s4 for ta � s4 � and then transition (after generating output) to s1 �
δint � s4 � . Before e reaches ta � s4 � however, an external input event x arrives. At that time, the system forgets about the
scheduled internal transition and transitions to s3 � δext �$� s4 � e ��� x � . Note how an external transition does not give rise to
an output. Once in state s3, the system continues in autonomous mode.

As an example atomic DEVS, consider the model of two traffic lights depicted in Figure 2. In autonomous mode, the
light transition in intuitive fashion. If the “switch to manual” (M) external event is received, lights in both directions blink
yellow. If the “switch to automatic” event is received, the system switches back deterministically to state RY to resume
autonomous mode. The atomic DEVS representation is given below.

DEVS ��� X � S � Y � δint � δext � λ � ta �
T � �
X ��� M � A �
ω : T � X ��� φ �
S ��� RG � RY � GR � Y R � BB �
δint � RG �%� RY ; δint � RY ��� GR
δint � GR �%� Y R; δint � Y R �%� RG
ta � RG �&� 60s; ta � RY �&� 10s
ta � GR �&� 50s; ta � Y R �%� 10s
ta � BB �&��� ∞
δext �$� RG � e ��� M �&� BB
δext �$� RY � e ��� M ��� BB
δext �$� GR � e ��� M �&� BB
δext �$� Y R � e ��� M �%� BB
δext �$� BB � e ��� A �&� RY
Y �'� GREY � YELLOW � BLINK �
λ � RG �%� λ � RY �%� λ � GR �%� GREY
λ � Y R �%� YELLOW
λ � BB �%� BLINK
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1.2 The coupled DEVS Formalism

The coupled DEVS formalism describes a discrete-event system in terms of a network of coupled components.

coupledDEV S ��� Xsel f � Ysel f � D �(� Mi �)�(� Ii �)�(� Zi * j �)� select �
The component sel f denotes the coupled model itself. Xsel f is the (possibly structured) set of allowed external inputs to
the coupled model. Ysel f is the (possibly structured) set of allowed (external) outputs of the coupled model. D is a set of
unique component references (names). The coupled model itself is referred to by means of sel f , a unique reference not
in D.

The set of components is
� Mi � i � D �)�

Each of the components must be an atomic DEVS

Mi �+� Si � tai � δint * i � Xi � δext * i � Yi � λi ���-, i � D �
The set of influencees of a component, the components influenced by i � D �.� sel f � , is Ii. The set of all influencees
describes the coupling network structure

� Ii � i � D �"� sel f �/�)�
For modularity reasons, a component (including sel f ) may not influence components outside its scope –the coupled
model–, rather only other components of the coupled model, or the coupled model sel f :

, i � D ��� sel f � : Ii 0 D ��� sel f �)�
This is further restricted by the requirement that none of the components (including sel f ) may influence themselves
directly as this could cause an instantaneous dependency cycle (in case of a 0 time advance inside such a component)
akin to an algebraic loop in continuous models:

, i � D ��� sel f � : i 1� Ii �
Note how one can always encode a self-loop (i � Ii) in the internal transition function.

To translate an output event of one component (such as a departure of a customer) to a corresponding input event (such
as the arrival of a customer) in influencees of that component, output-to-input translation functions Z i * j are defined:

� Zi * j � i � D ��� sel f �)� j � Ii �)�
Zsel f * j : Xsel f � X j �-, j � D �
Zi * sel f : Yi � Ysel f �-, i � D �

Zi * j : Yi � X j �-, i � j � D �
Together, Ii and Zi * j completely specify the coupling (structure and behaviour).

As a result of coupling of concurrent components, multiple state transitions may occur at the same simulation time. This
is an artifact of the discrete-event abstraction and may lead to behaviour not related to real-life phenomena. A logic-based
foundation to study the semantics of these artifacts was introduced by Radiya and Sargent [RS94]. In sequential simu-
lation systems, such transition collisions are resolved by means of some form of selection of which of the components’
transitions should be handled first. This corresponds to the introduction of priorities in some simulation languages. The
coupled DEVS formalism explicitly represents a select function for tie-breaking between simultaneous events:

select : 2D � D

select chooses a unique component from any non-empty subset E of D:

select � E �2� E �
The subset E corresponds to the set of all components having a state transition simultaneously.
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1.3 Closure of DEVS under coupling

As mentioned before, it is possible to construct a resultant atomic DEVS model for each coupled DEVS. This closure
under coupling of atomic DEVS models makes any coupled DEVS equivalent to an atomic DEVS. By induction, any
hierarchically coupled DEVS can thus be flattened to an atomic DEVS. As a result, the requirement that each of the
components of a coupled DEVS be an atomic DEVS can be relaxed to be atomic or coupled as the latter can always be
replaced by an equivalent atomic DEVS.
The core of the closure procedure is the selection of the most imminent (i.e., soonest to occur) event from all the compo-
nents’ scheduled events [Zei84a]. In case of simultaneous events, the select function is used. In the sequel, the resultant
construction is described.

From the coupled DEVS
� Xsel f � Ysel f � D �(� Mi �)�(� Ii �)�(� Zi * j �)� select ���

with all components Mi atomic DEVS models

Mi ��� Si � tai � δint * i � Xi � δext * i � Yi � λi ���-, i � D

the atomic DEVS
� S � ta � δint � X � δext � Y � λ �

is constructed.

The resultant set of sequential states is the product of the total state sets of all the components

S �
	 i 3 DQi �
where

Qi �4��� si � ei ��� s � Si � 0 � ei � tai � si ���)�-, i � D �
The time advance function ta

ta : S � � 
0 �5� ∞

is constructed by selecting the most imminent event time, of all the components. This means, finding the smallest time
remaining until internal transition, of all the components

ta � s �6� min � σi � tai � si �7 ei � i � D �)�
A number of imminent components may be scheduled for a simultaneous internal transition. These components are
collected in a set

IMM � s �8�4� i � D �σi � ta � s ���)�
From IMM, a set of elements of D, one component i 9 is chosen by means of the select tie-breaking function of the
coupled model

select : 2D � D
IMM � s �:� i 9

Output of the selected component is generated before it makes its internal transition. Note also how, as in a Moore
machine, input does not directly influence output. In DEVS models, only an internal transition produces output. An input
can only influence/generate output via an internal transition similar to the presence of memory in the form of integrating
elements in continuous models. Allowing an external transition to produce output could lead to infinite instantaneous
loops. This is equivalent to algebraic loops in continuous systems. The output of the component is translated into coupled
model output by means of the coupling information

λ � s �&� Zi ;<* sel f � λi ; � si ; �$��� if sel f � Ii ; �
If the output of i 9 is not connected to the output of the coupled model, the non-event φ can be generated as output of
the coupled model. As φ literally stands for no event, the output can also be ignored without changing the meaning (but
increasing performance of simulator implementations).
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The internal transition function transforms the different parts of the total state as follows:

δint � s �������$�$�=��� s > j � e > j ���$�$�$�?��� where

� s > j � e > j �:� � δint * j � s j ��� 0 � � for j � i 9 �
� � δext * j � s j � e j � ta � s ��� Zi ; * j � λi ; � si ; �$�$��� 0 �@� for j � Ii ; �
� � s j � e j � ta � s �$� � otherwise �

The selected imminent component i 9 makes an internal transition to sequential state δint * i ; � si ; � . Its elapsed time is reset to
0. All the influencees of i 9 change their state due to an external transition prompted by an input which is the output-to-
input translated output of i 9 , with an elapsed time adjusted for the time advance ta � s � . The influencees’ elapsed time is
reset to 0. Note how i 9 is not allowed to be an influencee of i 9 in DEVS. The state of all other components is not affected
and their elapsed time is merely adjusted for the time advance ta � s � .
The external transition function transforms the different parts of the total state as follows:

δext � s � e � x ���+���$�$�=��� s >i � e >i ���$�$�$�A��� where

� s >i � e >i �:� � δext * i � si � ei � e � Zsel f * i � x �$��� 0 �@� for i � Isel f �
� � si � ei � e � � otherwise �

An incoming external event is routed, with an adjustment for elapsed time, to each of the components connected to the
coupled model input (after the appropriate input-to-input translation). For all those components, the elapsed time is reset
to 0. All other components are not affected and only the elapsed time is adjusted.
Some limitations of DEVS are that

B a conflict due to simultaneous internal and external events is resolved by ignoring the internal event. It should be
possible to explicitly specify behaviour in case of conflicts;B there is limited potential for parallel implementation;B the select function is an artificial legacy of the semantics of traditional sequential simulators based on an event list;B it is not possible to describe variable structure.

Some of these are compensated for in parallel DEVS ([Cho96]).

1.4 Implementation of a DEVS Solver

The algorithm in Figure 3 is based on the closure under coupling construction and can be used as a specification of a
–possibly parallel– implementation of a DEVS solver or “abstract simulator” [Zei84a, KSKP96]. In an atomic DEVS
solver, the last event time tL as well as the local state s are kept. In a coordinator, only the last event time tL is kept. The
next-event-time tN is sent as output of either solver. It is possible to also keep tN in the solvers. This requires consistent
(recursive) initialization of the tNs. If kept, the tN allows one to check whether the solvers are appropriately synchronized.
The operation of an abstract simulator involves handling four types of messages. The � x � f rom � t � message carries external
input information. The � y � f rom � t � message carries external output information. The �5C)� f rom � t � and � done � f rom � tN �
messages are used for scheduling (synchronizing) the abstract simulators. In these messages, t is the simulation time and
tN is the next-event-time. The �5C)� f rom � t � message indicates an internal event C is due.
When a coordinator receives a �5C)� f rom � t � message, it selects an imminent component i 9 by means of the tie-breaking
function select specified for the coupled model and routes the message to i 9 . Selection is necessary as there may be more
than one imminent component (with minimum next remaining time).
When an atomic simulator receives a �5C)� f rom � t � message, it generates an output message � y � f rom � t � based on the old
state s. It then computes the new state by means of the internal transition function. Note how in DEVS, output messages
are only produced while executing internal events. When a simulator outputs a � y � f rom � t � message, it is sent to its parent
coordinator. The coordinator sends the output, after appropriate output-to-input translation, to each of the influencees of
i 9 (if any). If the coupled model itself is an influencee of i 9 , the output, after appropriate output-to-output translation, is
sent to the the coupled model’s parent coordinator.
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message m simulator coordinator

�5C)� f rom � t � simulator correct only if t � tN

y D λ � s � send �5C)� sel f � t � to i 9 , where
if y E� φ : i 9 � select � imm children �

send � λ � s ��� sel f � t � to parent imm children �4� i � D �Mi � tN � t �
s D δint � s � active children D active children ��� i 9F�
tL D t
tN D tL � ta � s �
send � done � sel f � tN � to parent

� x � f rom � t � simulator correct only if tL � t � tN (ignore δint to resolve a t � tN conflict)

e D t  tL , i � Isel f :
s D δext � s � e � x � send � Zsel f * i � x ��� sel f � t � to i
tL D t active children D active children ��� i �
tN D tL � ta � s �
send � done � sel f � tN � to parent

� y � f rom � t � , i � I f rom G � sel f � :
send � Z f rom * i � y ��� f rom � t � to i
active children D active children �"� i �

if sel f � I f rom :
send � Z f rom * sel f � y ��� sel f � t � to parent

� done � f rom � t � active children D active children G � f rom �
if active children � /0:

tL D t
tN D min � Mi � tN � i � D �
send � done � sel f � tN � to parent

Figure 3: DEVS Simulation Procedure
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t D tN of topmost coordinator
repeat until t H tend (or some other termination condition)

send �5C)� main � t � to topmost coupled model top
wait for � done � top � tN �
t D tN

Figure 4: DEVS Simulation Procedure Main Loop

When a coordinator receives an � x � f rom � t � message from its parent coordinator, it routes the message, after appropriate
input-to-input translation, to each of the affected components.
When an atomic simulator receives an � x � f rom � t � message, it executes the external transition function of its associated
atomic model.
After processing an � x � f rom � t � or � y � f rom � t � message, a simulator sends a � done � f rom � tN � message to its parent coor-
dinator to prepare a new schedule. When a coordinator has received � done � f rom � tN � messages from all its components, it
sets its next-event-time tN to the minimum tN of all its components and sends a � done � f rom � tN � message to its parent coor-
dinator. This process is recursively applied until the top-level coordinator or root coordinator receives a � done � f rom � tN �
message.

As the simulation procedure is synchronous, it does not support a-synchronously arriving (real-time) external input.
Rather, the environment or Experimental Frame should also be modelled as a DEVS component.
To run a simulation experiment, the initial conditions tL and s must first be set in all simulators of the hierarchy. If tN
is kept in the simulators, it must be recursively set too. Once the initial conditions are set, the main loop described in
Figure 4 is executed.
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